Brown–Booth–Tillotson theory for classes of exponentiable spaces
Brown, Booth and Tillotson introduced the C -product, or the BBT C -product, for any class C of topological spaces. It is proved that any topological space is exponentiable with respect to the BBT C -product if and only if C is a subclass of the class of exponentiable spaces. The topology of the fun...
Uloženo v:
| Vydáno v: | Topology and its Applications Ročník 156; číslo 13; s. 2264 - 2283 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina japonština |
| Vydáno: |
Elsevier B.V
01.08.2009
Elsevier BV |
| Témata: | |
| ISSN: | 0166-8641, 1879-3207 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Brown, Booth and Tillotson introduced the
C
-product, or the BBT
C
-product, for any class
C
of topological spaces. It is proved that any topological space is exponentiable with respect to the BBT
C
-product if and only if
C
is a subclass of the class of exponentiable spaces. The topology of the function space is induced by a canonical manner making use of the exponential topology for the spaces in
C
. It is not the
C
-open topology in general. The function space defined by this method enjoys good properties for algebraic topology. A necessary and sufficient condition on the class
C
is obtained for the exponential function to be a homeomorphism with the BBT
C
-product. |
|---|---|
| ISSN: | 0166-8641 1879-3207 |
| DOI: | 10.1016/j.topol.2009.05.012 |