Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment

Across the world, the flood magnitude is expected to increase as well as the damage caused by their occurrence. In this case, the prediction of areas which are highly susceptible to these phenomena becomes very important for the authorities. The present study is focused on the evaluation of flood po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management Jg. 265; S. 110485
Hauptverfasser: Costache, Romulus, Pham, Quoc Bao, Avand, Mohammadtaghi, Thuy Linh, Nguyen Thi, Vojtek, Matej, Vojteková, Jana, Lee, Sunmin, Khoi, Dao Nguyen, Thao Nhi, Pham Thi, Dung, Tran Duc
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.07.2020
Schlagworte:
ISSN:0301-4797, 1095-8630, 1095-8630
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Across the world, the flood magnitude is expected to increase as well as the damage caused by their occurrence. In this case, the prediction of areas which are highly susceptible to these phenomena becomes very important for the authorities. The present study is focused on the evaluation of flood potential within Trotuș river basin in Romania using six ensemble models created by the combination of Analytical Hierarchy Process (AHP), Certainty Factor (CF) and Weights of Evidence (WOE) on one hand, and Gradient Boosting Trees (GBT) and Multilayer Perceptron (MLP) on the other hand. A number of 12 flood predictors, 172 flood locations and 172 non-flood locations were used. A percentage of 70% of flood and non-flood locations were used as input in models. From the input data, 70% were used as training sample and 30% as validating sample. The highest accuracy was obtained by the MLP-CF model in terms of both training (0.899) and testing (0.889) samples. A percentage between 21.88% and 36.33% of study area is covered with high and very high flood potential. The results validation, performed through the ROC Curve method, highlights that the MLP-CF model provided the most accurate results. [Display omitted] •This study presents six novel ensembles used to identify the areas susceptible to floods.•Historical flood locations were considered into the methodological workflow.•The model performances were assessed through several statistical metrics.•Generally, more than 19% of the study area has a high and very high flood susceptibility.
AbstractList Across the world, the flood magnitude is expected to increase as well as the damage caused by their occurrence. In this case, the prediction of areas which are highly susceptible to these phenomena becomes very important for the authorities. The present study is focused on the evaluation of flood potential within Trotuș river basin in Romania using six ensemble models created by the combination of Analytical Hierarchy Process (AHP), Certainty Factor (CF) and Weights of Evidence (WOE) on one hand, and Gradient Boosting Trees (GBT) and Multilayer Perceptron (MLP) on the other hand. A number of 12 flood predictors, 172 flood locations and 172 non-flood locations were used. A percentage of 70% of flood and non-flood locations were used as input in models. From the input data, 70% were used as training sample and 30% as validating sample. The highest accuracy was obtained by the MLP-CF model in terms of both training (0.899) and testing (0.889) samples. A percentage between 21.88% and 36.33% of study area is covered with high and very high flood potential. The results validation, performed through the ROC Curve method, highlights that the MLP-CF model provided the most accurate results.
Across the world, the flood magnitude is expected to increase as well as the damage caused by their occurrence. In this case, the prediction of areas which are highly susceptible to these phenomena becomes very important for the authorities. The present study is focused on the evaluation of flood potential within Trotuș river basin in Romania using six ensemble models created by the combination of Analytical Hierarchy Process (AHP), Certainty Factor (CF) and Weights of Evidence (WOE) on one hand, and Gradient Boosting Trees (GBT) and Multilayer Perceptron (MLP) on the other hand. A number of 12 flood predictors, 172 flood locations and 172 non-flood locations were used. A percentage of 70% of flood and non-flood locations were used as input in models. From the input data, 70% were used as training sample and 30% as validating sample. The highest accuracy was obtained by the MLP-CF model in terms of both training (0.899) and testing (0.889) samples. A percentage between 21.88% and 36.33% of study area is covered with high and very high flood potential. The results validation, performed through the ROC Curve method, highlights that the MLP-CF model provided the most accurate results. [Display omitted] •This study presents six novel ensembles used to identify the areas susceptible to floods.•Historical flood locations were considered into the methodological workflow.•The model performances were assessed through several statistical metrics.•Generally, more than 19% of the study area has a high and very high flood susceptibility.
Across the world, the flood magnitude is expected to increase as well as the damage caused by their occurrence. In this case, the prediction of areas which are highly susceptible to these phenomena becomes very important for the authorities. The present study is focused on the evaluation of flood potential within Trotuș river basin in Romania using six ensemble models created by the combination of Analytical Hierarchy Process (AHP), Certainty Factor (CF) and Weights of Evidence (WOE) on one hand, and Gradient Boosting Trees (GBT) and Multilayer Perceptron (MLP) on the other hand. A number of 12 flood predictors, 172 flood locations and 172 non-flood locations were used. A percentage of 70% of flood and non-flood locations were used as input in models. From the input data, 70% were used as training sample and 30% as validating sample. The highest accuracy was obtained by the MLP-CF model in terms of both training (0.899) and testing (0.889) samples. A percentage between 21.88% and 36.33% of study area is covered with high and very high flood potential. The results validation, performed through the ROC Curve method, highlights that the MLP-CF model provided the most accurate results.Across the world, the flood magnitude is expected to increase as well as the damage caused by their occurrence. In this case, the prediction of areas which are highly susceptible to these phenomena becomes very important for the authorities. The present study is focused on the evaluation of flood potential within Trotuș river basin in Romania using six ensemble models created by the combination of Analytical Hierarchy Process (AHP), Certainty Factor (CF) and Weights of Evidence (WOE) on one hand, and Gradient Boosting Trees (GBT) and Multilayer Perceptron (MLP) on the other hand. A number of 12 flood predictors, 172 flood locations and 172 non-flood locations were used. A percentage of 70% of flood and non-flood locations were used as input in models. From the input data, 70% were used as training sample and 30% as validating sample. The highest accuracy was obtained by the MLP-CF model in terms of both training (0.899) and testing (0.889) samples. A percentage between 21.88% and 36.33% of study area is covered with high and very high flood potential. The results validation, performed through the ROC Curve method, highlights that the MLP-CF model provided the most accurate results.
ArticleNumber 110485
Author Vojtek, Matej
Thao Nhi, Pham Thi
Costache, Romulus
Thuy Linh, Nguyen Thi
Khoi, Dao Nguyen
Dung, Tran Duc
Lee, Sunmin
Vojteková, Jana
Avand, Mohammadtaghi
Pham, Quoc Bao
Author_xml – sequence: 1
  givenname: Romulus
  surname: Costache
  fullname: Costache, Romulus
  organization: Research Institute of the University of Bucharest, 90-92 Sos. Panduri, 5th District, 050663, Bucharest, Romania
– sequence: 2
  givenname: Quoc Bao
  surname: Pham
  fullname: Pham, Quoc Bao
  organization: Environmental Quality, Atmospheric Science and Climate Change Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
– sequence: 3
  givenname: Mohammadtaghi
  surname: Avand
  fullname: Avand, Mohammadtaghi
  organization: Department of Watershed Management Engineering, College of Natural Resources, Tarbiat Modares University, Tehran, 14115-111, Iran
– sequence: 4
  givenname: Nguyen Thi
  surname: Thuy Linh
  fullname: Thuy Linh, Nguyen Thi
  organization: Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Viet Nam
– sequence: 5
  givenname: Matej
  surname: Vojtek
  fullname: Vojtek, Matej
  organization: Department of Geography and Regional Development, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Trieda A. Hlinku 1, 94974, Nitra, Slovakia
– sequence: 6
  givenname: Jana
  surname: Vojteková
  fullname: Vojteková, Jana
  organization: Department of Geography and Regional Development, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Trieda A. Hlinku 1, 94974, Nitra, Slovakia
– sequence: 7
  givenname: Sunmin
  surname: Lee
  fullname: Lee, Sunmin
  organization: Department of Geoinformatics, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, South Korea
– sequence: 8
  givenname: Dao Nguyen
  surname: Khoi
  fullname: Khoi, Dao Nguyen
  organization: Faculty of Environment, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
– sequence: 9
  givenname: Pham Thi
  surname: Thao Nhi
  fullname: Thao Nhi, Pham Thi
  email: Phamtthaonhi2@duytan.edu.vn
  organization: Institute of Research and Development, Duy Tan University, Danang, 550000, Viet Nam
– sequence: 10
  givenname: Tran Duc
  surname: Dung
  fullname: Dung, Tran Duc
  organization: Center of Water Management and Climate Change, Institute for Environment and Resources, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Viet Nam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32421551$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPCTwD5yIEEe712vOKAUMWXVMEFztbYnm0ddu1ge1PlH_Cz2ZDAgUtOI42e99VonityEVNEQp5ztuKMq9eb1QbjboS4algz7zhrtXxEFpx1cqmVYBdkwQTjy3bdrS_JVSkbxpho-PoJuRRN23Ap-YL8-pJ2OND7vc3B0zF5HAq1WB8QI7VhBzlARVoq1FBqcOUVhVxDH1yAgUac8p9RH1L-UShET21KMxjvKAx3KYd6Pxbap0z7ISVPy1QcbmuwYQh1T6EULGXEWJ-Sxz0MBZ-d5jX5_uH9t5tPy9uvHz_fvLtdOtHpuhS6Ays0X3vpHWPAPFNSo-v7VnitrOIatWiFAKFAddB3qpXKauktAFgursnLY-82p58TlmrGMJ80DBAxTcU0cv6N0Kpj59GWtaptpW5m9MUJneyI3mxzGCHvzd9Hz4A8Ai6nUjL2_xDOzEGo2ZiTUHMQao5C59yb_3IuHFykWDOE4Wz67TE9W8VdwGyKCxgd-pDRVeNTONPwG2DbwpE
CitedBy_id crossref_primary_10_1038_s41598_024_84655_y
crossref_primary_10_1016_j_ijdrr_2025_105743
crossref_primary_10_1007_s11356_021_12806_z
crossref_primary_10_1016_j_jafrearsci_2025_105856
crossref_primary_10_1080_10106049_2022_2032394
crossref_primary_10_3390_rs14102465
crossref_primary_10_1007_s11356_024_33507_3
crossref_primary_10_1007_s12517_021_07201_4
crossref_primary_10_1016_j_scitotenv_2022_159087
crossref_primary_10_1111_jfr3_12683
crossref_primary_10_1007_s11069_024_06609_x
crossref_primary_10_3390_rs16183374
crossref_primary_10_1007_s00477_024_02833_w
crossref_primary_10_3390_math8091407
crossref_primary_10_1007_s40808_024_02206_w
crossref_primary_10_1007_s11069_021_04877_5
crossref_primary_10_1080_10106049_2022_2071470
crossref_primary_10_1016_j_jhydrol_2020_125734
crossref_primary_10_1007_s00477_022_02179_1
crossref_primary_10_1111_risa_14179
crossref_primary_10_3846_gac_2024_18555
crossref_primary_10_5194_nhess_22_1469_2022
crossref_primary_10_1080_10106049_2021_1914746
crossref_primary_10_1007_s11269_024_03995_6
crossref_primary_10_1016_j_apgeog_2023_103113
crossref_primary_10_3390_w13223239
crossref_primary_10_3390_w16233511
crossref_primary_10_1080_02626667_2023_2269909
crossref_primary_10_1007_s11600_022_00940_2
crossref_primary_10_1016_j_jhydrol_2023_129961
crossref_primary_10_1080_10106049_2022_2117857
crossref_primary_10_1007_s12517_021_07755_3
crossref_primary_10_1080_02626667_2020_1842412
crossref_primary_10_1016_j_jhydrol_2022_128091
crossref_primary_10_1007_s11269_020_02603_7
crossref_primary_10_1016_j_ecolind_2021_107612
crossref_primary_10_1007_s11356_022_23441_7
crossref_primary_10_1016_j_jenvman_2025_125670
crossref_primary_10_1007_s12665_025_12129_z
crossref_primary_10_1080_10106049_2021_1975832
crossref_primary_10_1080_10106049_2021_2022016
crossref_primary_10_1016_j_jhydrol_2025_133184
crossref_primary_10_3390_atmos16080945
crossref_primary_10_1007_s12517_021_06466_z
crossref_primary_10_3390_su13094830
crossref_primary_10_1007_s10064_021_02280_9
crossref_primary_10_1016_j_jhydrol_2020_125663
crossref_primary_10_1016_j_jafrearsci_2025_105732
crossref_primary_10_5004_dwt_2022_28960
crossref_primary_10_1007_s00500_021_05903_1
crossref_primary_10_1007_s12145_022_00825_4
crossref_primary_10_1016_j_jenvman_2021_112449
crossref_primary_10_1080_02626667_2024_2394639
crossref_primary_10_1007_s13201_025_02424_2
crossref_primary_10_14358_PERS_21_00087R2
crossref_primary_10_1007_s00477_025_03012_1
crossref_primary_10_1080_10106049_2022_2136264
crossref_primary_10_3390_ijgi10040252
crossref_primary_10_1007_s10064_022_02874_x
crossref_primary_10_1016_j_asr_2025_07_076
crossref_primary_10_1016_j_ijdrr_2024_104435
crossref_primary_10_1016_j_ijdrr_2025_105324
crossref_primary_10_3390_rs14215523
crossref_primary_10_1016_j_ecolind_2022_109785
crossref_primary_10_2166_nh_2023_139
crossref_primary_10_1007_s00477_025_02922_4
crossref_primary_10_1007_s43832_024_00186_7
crossref_primary_10_1080_19475705_2025_2493222
crossref_primary_10_1007_s11356_023_27799_0
crossref_primary_10_3390_rs15123116
crossref_primary_10_1016_j_chemosphere_2021_132251
crossref_primary_10_1016_j_ecolind_2020_106620
crossref_primary_10_1080_19475705_2022_2060138
crossref_primary_10_3390_rs14164050
crossref_primary_10_3390_geosciences11010025
crossref_primary_10_1007_s10661_024_13496_z
crossref_primary_10_1007_s11356_024_33895_6
crossref_primary_10_3390_membranes12090849
crossref_primary_10_1016_j_jenvman_2024_120214
crossref_primary_10_1007_s12145_025_01864_3
crossref_primary_10_1007_s11600_025_01595_5
crossref_primary_10_1080_10106049_2020_1861664
crossref_primary_10_1007_s12145_023_00954_4
crossref_primary_10_1088_1755_1315_1091_1_012017
crossref_primary_10_1016_j_jenvman_2021_113040
crossref_primary_10_1080_10106049_2021_1973115
crossref_primary_10_1007_s12517_022_10541_4
crossref_primary_10_1016_j_scitotenv_2020_141565
crossref_primary_10_1007_s11356_024_33389_5
crossref_primary_10_1007_s00477_020_01862_5
crossref_primary_10_3390_rs13234945
crossref_primary_10_1016_j_jhydrol_2022_127747
crossref_primary_10_1007_s00477_021_01997_z
crossref_primary_10_3390_rs14246229
crossref_primary_10_3390_rs16060988
crossref_primary_10_1016_j_catena_2022_106379
Cites_doi 10.3390/w10111536
10.1007/s12517-012-0807-z
10.1016/j.jhydrol.2012.09.006
10.1080/19475705.2018.1552630
10.1016/j.jksuci.2015.12.004
10.1016/j.envdev.2015.04.003
10.1016/j.scitotenv.2018.01.266
10.1016/j.jhydrol.2016.06.027
10.1016/j.jseaes.2012.10.005
10.1016/j.asoc.2017.09.038
10.1007/s11269-019-02301-z
10.1080/19475705.2017.1362038
10.1016/j.scitotenv.2019.135983
10.1016/j.scitotenv.2017.10.114
10.1016/j.jenvman.2019.06.102
10.1080/02626667.2011.555836
10.1016/j.scitotenv.2019.135161
10.1007/s11069-018-3244-9
10.1080/10106049.2017.1316780
10.1016/j.scitotenv.2019.02.328
10.1016/j.jhydrol.2020.124808
10.1007/s11069-012-0347-6
10.1016/j.apgeog.2010.03.010
10.1007/s00477-016-1278-7
10.1007/s11707-017-0636-1
10.1016/j.scitotenv.2019.07.197
10.1007/s10346-016-0740-4
10.1007/s12040-017-0828-9
10.3390/s18113704
10.1007/s12665-016-5919-4
10.1016/j.catena.2019.104179
10.3390/rs12010106
10.1016/j.envsoft.2017.06.012
10.1007/s00477-015-1021-9
10.1038/nclimate1911
10.3390/w10091210
10.1016/j.enggeo.2004.10.004
10.1007/s12040-015-0608-3
10.1007/s11069-015-1915-3
10.1016/j.jhydrol.2018.01.033
10.1007/s10584-014-1084-5
10.1007/s12517-015-2112-0
10.1371/journal.pone.0133262
10.1016/j.scitotenv.2019.136492
10.1002/ldr.3058
10.1007/s11069-016-2357-2
10.1016/j.knosys.2013.06.011
10.1016/j.catena.2019.03.016
10.1080/10106049.2015.1041559
10.1016/j.jhydrol.2019.03.073
10.3390/w11020364
10.1080/19475705.2017.1308971
10.1016/j.jenvman.2018.03.089
10.1016/j.scitotenv.2018.07.054
10.1007/s00500-015-1983-z
10.1007/s12040-015-0624-3
10.1029/2005WR004155
10.1007/s12517-012-0610-x
10.1016/j.scitotenv.2019.01.021
10.1007/s12517-018-3933-4
10.1007/s10661-016-5665-9
10.3390/rs11010062
10.5775/fg.2067-4635.2014.071.i
10.1007/s41748-019-00123-y
10.3390/rs11131589
10.1016/j.scitotenv.2019.134514
10.1007/s12517-012-0532-7
10.1007/s00477-019-01689-9
10.1016/j.scitotenv.2018.12.397
10.1016/j.scitotenv.2018.10.064
10.1007/s12665-014-3289-3
10.1016/j.watres.2010.10.006
10.3390/su10030648
10.1016/j.scitotenv.2018.04.282
10.3390/s150715974
10.1016/j.neucom.2013.06.008
10.1007/s11442-015-1236-1
10.1080/15230406.2015.1039587
10.1007/s12583-012-0236-7
10.1016/j.scitotenv.2017.09.262
10.3390/w11030615
10.1016/j.jhydrol.2019.02.034
10.1007/s12665-011-1504-z
10.1080/19475705.2015.1045043
10.1080/19475705.2018.1549111
10.1016/0025-5564(75)90047-4
10.2166/nh.2019.163
10.1515/geo-2018-0047
10.1016/j.scitotenv.2017.12.256
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2020.110485
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Statistics
EISSN 1095-8630
ExternalDocumentID 32421551
10_1016_j_jenvman_2020_110485
S0301479720304199
Genre Journal Article
GeographicLocations Romania
GeographicLocations_xml – name: Romania
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABYKQ
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AVARZ
AXJTR
BELTK
BKOJK
BKOMP
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
WH7
XSW
Y6R
YK3
ZCA
ZU3
~02
~G-
~KM
29K
3EH
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDBO
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
D-I
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
UHS
UQL
VH1
WUQ
XPP
YV5
ZMT
ZY4
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-389ab3817d5dc00a0d0658ecff43d86b618e83433a36a69af96456b85dbaaab13
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000533526800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-4797
1095-8630
IngestDate Sun Sep 28 10:11:14 EDT 2025
Mon Sep 29 04:48:42 EDT 2025
Mon Jul 21 06:06:37 EDT 2025
Sat Nov 29 07:25:24 EST 2025
Tue Nov 18 21:53:53 EST 2025
Fri Feb 23 02:49:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bivariate statistics
Ensemble models
Flood susceptibility
Machine learning
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-389ab3817d5dc00a0d0658ecff43d86b618e83433a36a69af96456b85dbaaab13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32421551
PQID 2404644582
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524238690
proquest_miscellaneous_2404644582
pubmed_primary_32421551
crossref_primary_10_1016_j_jenvman_2020_110485
crossref_citationtrail_10_1016_j_jenvman_2020_110485
elsevier_sciencedirect_doi_10_1016_j_jenvman_2020_110485
PublicationCentury 2000
PublicationDate 2020-07-01
2020-07-00
2020-Jul-01
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of environmental management
PublicationTitleAlternate J Environ Manage
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Martínez-Álvarez, Reyes, Morales-Esteban, Rubio-Escudero (bib56) 2013; 50
Meesad, Boonrawd, Nuipian (bib57) 2011
Hategekimana, Yu, Nie, Zhu, Liu, Guo (bib34) 2018; 92
Santos, Reis, Pereira, Santos (bib75) 2019; 667
Bonham-Carter (bib5) 1991
Wang, Guo, Li, He, Wu (bib96) 2019; 10
Thaseen, Kumar (bib88) 2017; 29
Choubin, Moradi, Golshan, Adamowski, Sajedi-Hosseini, Mosavi (bib13) 2019; 651
Kanani-Sadat, Arabsheibani, Karimipour, Nasseri (bib42) 2019; 572
Kia, Pirasteh, Pradhan, Mahmud, Sulaiman, Moradi (bib48) 2012; 67
Costache (bib16) 2019; 33
Sheela, Deepa (bib79) 2013; 122
Witten, Frank, Hall, Pal (bib100) 2016
Dano, Balogun, Matori, Wan Yusouf, Rimi Abubakar, Mohamed, Ahmed, Aina, Pradhan (bib23) 2019; 11
Rahmati, Pourghasemi, Zeinivand (bib67) 2016; 31
Costache, Fontanine, Corodescu (bib110) 2014; 6
Shen, Hwang (bib80) 2019; 10
Yang, Shao, Scholz, Plant (bib104) 2011; 45
Dodangeh, Choubin, Eigdir, Nabipour, Panahi, Shamshirband, Mosavi (bib28) 2020; 705
Tincu, Lazar, Lazar (bib91) 2018; 10
Arabameri, Rezaei, Cerdà, Conoscenti, Kalantari (bib1) 2019; 660
Prăvălie, Bandoc, Patriche, Tomescu (bib116) 2017; 31
Semanjski, Gautama (bib76) 2015; 15
Costache, Prăvălie, Mitof (bib112) 2015; 10
Li, Wu, Wen, He (bib52) 2019
Costache, Hong, Wang (bib20) 2019; 183
Sajedi-Hosseini, Malekian, Choubin, Rahmati, Cipullo, Coulon, Pradhan (bib74) 2018; 644
Elkhrachy (bib31) 2015; 18
Shortliffe, Buchanan (bib81) 1975; 23
Mahmoud, Gan (bib55) 2018; 636
Zardari, Ahmed, Shirazi, Yusop (bib106) 2015
Zaharia, Costache, Prăvălie, Ioana-Toroimac (bib105) 2017; 11
Costache, Zaharia (bib22) 2017; 126
Souissi, Zouhri, Hammami, Msaddek, Zghibi, Dlala (bib83) 2019
Khosravi, Pham, Chapi, Shirzadi, Shahabi, Revhaug, Prakash, Bui (bib45) 2018; 627
Shafapour Tehrany, Shabani, Neamah Jebur, Hong, Chen, Xie (bib77) 2017; 8
Lee, Lee, Lee, Jung (bib51) 2018; 10
Vojtek, Vojteková (bib95) 2019; 11
Arnell, Gosling (bib2) 2016; 134
Lombardo, Cama, Conoscenti, Märker, Rotigliano (bib54) 2015; 79
Dou, Bui, Yunus, Jia, Song, Revhaug, Xia, Zhu (bib29) 2015; 10
Jain, Jain, Jain (bib41) 2018; 62
Vogel (bib93) 2016; 43
Wang, Li, Chen, Bai (bib97) 2015; 124
Xu, Xu, Dai, Xiao, Tan, Yuan (bib103) 2012; 23
Quinlan (bib65) 1993
Costache, Popa, Tien Bui, Diaconu, Ciubotaru, Minea, Pham (bib114) 2020; 585
Rahman, Ningsheng, Islam, Dewan, Iqbal, Washakh, Shufeng (bib66) 2019; 3
Pourghasemi, Pradhan, Gokceoglu, Mohammadi, Moradi (bib62) 2013; 6
Tien Bui, Khosravi, Li, Shahabi, Panahi, Singh, Chapi, Shirzadi, Panahi, Chen (bib89) 2018; 10
Chapi, Singh, Shirzadi, Shahabi, Bui, Pham, Khosravi (bib11) 2017; 95
Dewan (bib27) 2013
Karegowda, Manjunath, Jayaram (bib43) 2010; 2
Gnecco, Morisi, Roth, Sanguineti, Taramasso (bib32) 2017; 21
Hong, Tsangaratos, Ilia, Liu, Zhu, Chen (bib38) 2018; 625
Lee, Kim, Jung, Lee, Lee (bib50) 2017; 8
Siahkamari, Haghizadeh, Zeinivand, Tahmasebipour, Rahmati (bib82) 2018; 33
Nardi, Vivoni, Grimaldi (bib60) 2006; 42
Rahmati, Zeinivand, Besharat (bib68) 2016; 7
Kourgialas, Karatzas (bib49) 2011; 56
Das (bib24) 2018; 11
Termeh, Kornejady, Pourghasemi, Keesstra (bib87) 2018; 615
Wu, Li, Wang, Liu, Yang, Xing, Pei, Yan (bib101) 2016; 9
Tien Bui, Khosravi, Shahabi, Daggupati, Adamowski, Melesse, Thai Pham, Pourghasemi, Mahmoudi, Bahrami (bib90) 2019; 11
Dumitriu (bib30) 2007
Vinke-de Kruijf, Kuks, Augustijn (bib92) 2015; 16
Chapi, Singh, Shirzadi, Shahabi, Bui, Pham, Khosravi (bib12) 2017; 95
Vojtek, Petroselli, Vojteková, Asgharinia (bib94) 2019; 50
Costache, Bui (bib17) 2020; 712
Tehrany, Lee, Pradhan, Jebur, Lee (bib85) 2014; 72
Sajedi‐Hosseini, Choubin, Solaimani, Cerdà, Kavian (bib73) 2018; 29
Costache, Bui (bib18) 2019; 691
Devkota, Regmi, Pourghasemi, Yoshida, Pradhan, Ryu, Dhital, Althuwaynee (bib26) 2013; 65
Hosseini, Choubin, Mosavi, Nabipour, Shamshirband, Darabi, Haghighi (bib40) 2020; 711
Hong, Panahi, Shirzadi, Ma, Liu, Zhu, Chen, Kougias, Kazakis (bib37) 2018; 621
Prăvălie, Bandoc, Patriche, Sternberg (bib115) 2019; 178
Gomez, Kavzoglu (bib33) 2005; 78
Pradhan, Lee (bib64) 2009; 4
Regmi, Devkota, Yoshida, Pradhan, Pourghasemi, Kumamoto, Akgun (bib70) 2014; 7
Hirabayashi, Mahendran, Koirala, Konoshima, Yamazaki, Watanabe, Kim, Kanae (bib36) 2013; 3
Khosravi, Shahabi, Pham, Adamowski, Shirzadi, Pradhan, Dou, Ly, Gróf, Ho (bib47) 2019; 573
Ngo, Hoang, Pradhan, Nguyen, Tran, Nguyen, Samui, Tien Bui (bib61) 2018; 18
Prăvălie, Costache (bib113) 2014; 13
Zaharia, Costache, Prăvălie, Minea (bib111) 2015; 124
Wang, Hong, Chen, Li, Pamučar, Gigović, Drobnjak, Bui, Duan (bib98) 2019; 11
Bui, Hoang, Martínez-Álvarez, Ngo, Hoa, Pham, Samui, Costache (bib9) 2019; 134413
Costache (bib14) 2019; 33
Khosravi, Pourghasemi, Chapi, Bahri (bib46) 2016; 188
Bonham-Carter, Agterberg, Wright (bib6) 1988; 54
Zare, Pourghasemi, Vafakhah, Pradhan (bib107) 2013; 6
Costache, Hong, Pham (bib19) 2020; 711
Sachdeva, Bhatia, Verma (bib72) 2017
Azareh, Rafiei Sardooi, Choubin, Barkhori, Shahdadi, Adamowski, Shamshirband (bib3) 2019
Degiorgis, Gnecco, Gorni, Roth, Sanguineti, Taramasso (bib25) 2012; 470
Bui, Ho, Pradhan, Pham, Nhu, Revhaug (bib8) 2016; 75
Tang, Zhang, Yi, Xiao (bib84) 2018; 558
Mosavi, Ozturk, Chau (bib59) 2018; 10
Bui, Pradhan, Nampak, Bui, Tran, Nguyen (bib10) 2016; 540
Hong, Xu, Revhaug, Bui (bib39) 2015
Costache (bib15) 2019; 659
Bonham-Carter (bib7) 1994; 13
Rashid (bib69) 2011; 31
Costache (bib109) 2014; 9
Liang, Yuan, Li, Hu (bib53) 2018
Pradhan (bib63) 2010; 9
Khosravi, Nohani, Maroufinia, Pourghasemi (bib44) 2016; 83
Mohammady, Pourghasemi, Pradhan (bib58) 2012; 61
Costache, Pham, Sharifi, Linh, Abba, Vojtek, Vojteková, Nhi, Khoi (bib21) 2020; 12
Heckerman (bib35) 1986
Bandoc, Prăvălie (bib117) 2015; 25
Baratloo, Hosseini, Negida, El Ashal (bib4) 2015
Tehrany, Pradhan, Jebur (bib86) 2015; 29
Wang, Hong, Chen, Li, Panahi, Khosravi, Shirzadi, Shahabi, Panahi, Costache (bib99) 2019; 247
Xu, Dai, Yao, Chen, Tu, Cao, Xiao (bib102) 2010; 29
Saaty (bib71) 1980
Shafizadeh-Moghadam, Valavi, Shahabi, Chapi, Shirzadi (bib78) 2018; 217
Chitu, Boogard, Busuioc, Burcea, Șandric, Adler (bib108) 2017; 14
Costache (10.1016/j.jenvman.2020.110485_bib110) 2014; 6
Costache (10.1016/j.jenvman.2020.110485_bib21) 2020; 12
Gnecco (10.1016/j.jenvman.2020.110485_bib32) 2017; 21
Hong (10.1016/j.jenvman.2020.110485_bib38) 2018; 625
Costache (10.1016/j.jenvman.2020.110485_bib16) 2019; 33
Dewan (10.1016/j.jenvman.2020.110485_bib27) 2013
Termeh (10.1016/j.jenvman.2020.110485_bib87) 2018; 615
Costache (10.1016/j.jenvman.2020.110485_bib19) 2020; 711
Dano (10.1016/j.jenvman.2020.110485_bib23) 2019; 11
Das (10.1016/j.jenvman.2020.110485_bib24) 2018; 11
Semanjski (10.1016/j.jenvman.2020.110485_bib76) 2015; 15
Tehrany (10.1016/j.jenvman.2020.110485_bib86) 2015; 29
Shafizadeh-Moghadam (10.1016/j.jenvman.2020.110485_bib78) 2018; 217
Sajedi-Hosseini (10.1016/j.jenvman.2020.110485_bib74) 2018; 644
Bui (10.1016/j.jenvman.2020.110485_bib9) 2019; 134413
Lee (10.1016/j.jenvman.2020.110485_bib51) 2018; 10
Arabameri (10.1016/j.jenvman.2020.110485_bib1) 2019; 660
Kourgialas (10.1016/j.jenvman.2020.110485_bib49) 2011; 56
Nardi (10.1016/j.jenvman.2020.110485_bib60) 2006; 42
Zaharia (10.1016/j.jenvman.2020.110485_bib105) 2017; 11
Bui (10.1016/j.jenvman.2020.110485_bib10) 2016; 540
Vojtek (10.1016/j.jenvman.2020.110485_bib94) 2019; 50
Costache (10.1016/j.jenvman.2020.110485_bib114) 2020; 585
Hategekimana (10.1016/j.jenvman.2020.110485_bib34) 2018; 92
Elkhrachy (10.1016/j.jenvman.2020.110485_bib31) 2015; 18
Mahmoud (10.1016/j.jenvman.2020.110485_bib55) 2018; 636
Mohammady (10.1016/j.jenvman.2020.110485_bib58) 2012; 61
Chapi (10.1016/j.jenvman.2020.110485_bib11) 2017; 95
Sajedi‐Hosseini (10.1016/j.jenvman.2020.110485_bib73) 2018; 29
Siahkamari (10.1016/j.jenvman.2020.110485_bib82) 2018; 33
Heckerman (10.1016/j.jenvman.2020.110485_bib35) 1986
Gomez (10.1016/j.jenvman.2020.110485_bib33) 2005; 78
Karegowda (10.1016/j.jenvman.2020.110485_bib43) 2010; 2
Costache (10.1016/j.jenvman.2020.110485_bib15) 2019; 659
Pradhan (10.1016/j.jenvman.2020.110485_bib64) 2009; 4
Costache (10.1016/j.jenvman.2020.110485_bib22) 2017; 126
Khosravi (10.1016/j.jenvman.2020.110485_bib45) 2018; 627
Zardari (10.1016/j.jenvman.2020.110485_bib106) 2015
Ngo (10.1016/j.jenvman.2020.110485_bib61) 2018; 18
Vogel (10.1016/j.jenvman.2020.110485_bib93) 2016; 43
Chapi (10.1016/j.jenvman.2020.110485_bib12) 2017; 95
Souissi (10.1016/j.jenvman.2020.110485_bib83) 2019
Bonham-Carter (10.1016/j.jenvman.2020.110485_bib6) 1988; 54
Kia (10.1016/j.jenvman.2020.110485_bib48) 2012; 67
Tehrany (10.1016/j.jenvman.2020.110485_bib85) 2014; 72
Costache (10.1016/j.jenvman.2020.110485_bib14) 2019; 33
Tien Bui (10.1016/j.jenvman.2020.110485_bib90) 2019; 11
Bonham-Carter (10.1016/j.jenvman.2020.110485_bib5) 1991
Costache (10.1016/j.jenvman.2020.110485_bib112) 2015; 10
Rahman (10.1016/j.jenvman.2020.110485_bib66) 2019; 3
Bonham-Carter (10.1016/j.jenvman.2020.110485_bib7) 1994; 13
Khosravi (10.1016/j.jenvman.2020.110485_bib46) 2016; 188
Mosavi (10.1016/j.jenvman.2020.110485_bib59) 2018; 10
Bandoc (10.1016/j.jenvman.2020.110485_bib117) 2015; 25
Costache (10.1016/j.jenvman.2020.110485_bib109) 2014; 9
Wu (10.1016/j.jenvman.2020.110485_bib101) 2016; 9
Prăvălie (10.1016/j.jenvman.2020.110485_bib113) 2014; 13
Wang (10.1016/j.jenvman.2020.110485_bib97) 2015; 124
Witten (10.1016/j.jenvman.2020.110485_bib100) 2016
Martínez-Álvarez (10.1016/j.jenvman.2020.110485_bib56) 2013; 50
Lee (10.1016/j.jenvman.2020.110485_bib50) 2017; 8
Bui (10.1016/j.jenvman.2020.110485_bib8) 2016; 75
Khosravi (10.1016/j.jenvman.2020.110485_bib47) 2019; 573
Azareh (10.1016/j.jenvman.2020.110485_bib3) 2019
Rashid (10.1016/j.jenvman.2020.110485_bib69) 2011; 31
Kanani-Sadat (10.1016/j.jenvman.2020.110485_bib42) 2019; 572
Pourghasemi (10.1016/j.jenvman.2020.110485_bib62) 2013; 6
Zare (10.1016/j.jenvman.2020.110485_bib107) 2013; 6
Vojtek (10.1016/j.jenvman.2020.110485_bib95) 2019; 11
Shortliffe (10.1016/j.jenvman.2020.110485_bib81) 1975; 23
Prăvălie (10.1016/j.jenvman.2020.110485_bib116) 2017; 31
Pradhan (10.1016/j.jenvman.2020.110485_bib63) 2010; 9
Shen (10.1016/j.jenvman.2020.110485_bib80) 2019; 10
Rahmati (10.1016/j.jenvman.2020.110485_bib68) 2016; 7
Quinlan (10.1016/j.jenvman.2020.110485_bib65) 1993
Vinke-de Kruijf (10.1016/j.jenvman.2020.110485_bib92) 2015; 16
Devkota (10.1016/j.jenvman.2020.110485_bib26) 2013; 65
Costache (10.1016/j.jenvman.2020.110485_bib18) 2019; 691
Regmi (10.1016/j.jenvman.2020.110485_bib70) 2014; 7
Costache (10.1016/j.jenvman.2020.110485_bib17) 2020; 712
Li (10.1016/j.jenvman.2020.110485_bib52) 2019
Meesad (10.1016/j.jenvman.2020.110485_bib57) 2011
Dodangeh (10.1016/j.jenvman.2020.110485_bib28) 2020; 705
Choubin (10.1016/j.jenvman.2020.110485_bib13) 2019; 651
Wang (10.1016/j.jenvman.2020.110485_bib96) 2019; 10
Shafapour Tehrany (10.1016/j.jenvman.2020.110485_bib77) 2017; 8
Xu (10.1016/j.jenvman.2020.110485_bib102) 2010; 29
Degiorgis (10.1016/j.jenvman.2020.110485_bib25) 2012; 470
Thaseen (10.1016/j.jenvman.2020.110485_bib88) 2017; 29
Zaharia (10.1016/j.jenvman.2020.110485_bib111) 2015; 124
Santos (10.1016/j.jenvman.2020.110485_bib75) 2019; 667
Chitu (10.1016/j.jenvman.2020.110485_bib108) 2017; 14
Lombardo (10.1016/j.jenvman.2020.110485_bib54) 2015; 79
Rahmati (10.1016/j.jenvman.2020.110485_bib67) 2016; 31
Jain (10.1016/j.jenvman.2020.110485_bib41) 2018; 62
Prăvălie (10.1016/j.jenvman.2020.110485_bib115) 2019; 178
Saaty (10.1016/j.jenvman.2020.110485_bib71) 1980
Khosravi (10.1016/j.jenvman.2020.110485_bib44) 2016; 83
Tang (10.1016/j.jenvman.2020.110485_bib84) 2018; 558
Hong (10.1016/j.jenvman.2020.110485_bib39) 2015
Wang (10.1016/j.jenvman.2020.110485_bib99) 2019; 247
Arnell (10.1016/j.jenvman.2020.110485_bib2) 2016; 134
Xu (10.1016/j.jenvman.2020.110485_bib103) 2012; 23
Tien Bui (10.1016/j.jenvman.2020.110485_bib89) 2018; 10
Yang (10.1016/j.jenvman.2020.110485_bib104) 2011; 45
Dou (10.1016/j.jenvman.2020.110485_bib29) 2015; 10
Sachdeva (10.1016/j.jenvman.2020.110485_bib72) 2017
Dumitriu (10.1016/j.jenvman.2020.110485_bib30) 2007
Wang (10.1016/j.jenvman.2020.110485_bib98) 2019; 11
Hosseini (10.1016/j.jenvman.2020.110485_bib40) 2020; 711
Sheela (10.1016/j.jenvman.2020.110485_bib79) 2013; 122
Liang (10.1016/j.jenvman.2020.110485_bib53) 2018
Hong (10.1016/j.jenvman.2020.110485_bib37) 2018; 621
Baratloo (10.1016/j.jenvman.2020.110485_bib4) 2015
Hirabayashi (10.1016/j.jenvman.2020.110485_bib36) 2013; 3
Costache (10.1016/j.jenvman.2020.110485_bib20) 2019; 183
Tincu (10.1016/j.jenvman.2020.110485_bib91) 2018; 10
References_xml – volume: 712
  start-page: 136492
  year: 2020
  ident: bib17
  article-title: Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles
  publication-title: Sci. Total Environ.
– volume: 711
  year: 2020
  ident: bib19
  article-title: Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models
  publication-title: Sci. Total Environ.
– volume: 573
  start-page: 311
  year: 2019
  end-page: 323
  ident: bib47
  article-title: A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods
  publication-title: J. Hydrol.
– volume: 188
  start-page: 656
  year: 2016
  ident: bib46
  article-title: Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon's entropy, statistical index, and weighting factor models
  publication-title: Environ. Monit. Assess.
– volume: 7
  start-page: 725
  year: 2014
  end-page: 742
  ident: bib70
  article-title: Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya
  publication-title: Arab. J. Geosci.
– volume: 11
  start-page: 1589
  year: 2019
  ident: bib90
  article-title: Flood spatial modeling in northern Iran using remote sensing and gis: a comparison between evidential belief functions and its ensemble with a multivariate logistic regression model
  publication-title: Rem. Sens.
– volume: 178
  start-page: 209
  year: 2019
  end-page: 231
  ident: bib115
  article-title: Recent changes in global drylands: Evidences from two major aridity databases
  publication-title: CATENA
– volume: 92
  start-page: 1137
  year: 2018
  end-page: 1153
  ident: bib34
  article-title: Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya
  publication-title: Nat. Hazards
– volume: 33
  start-page: 927
  year: 2018
  end-page: 941
  ident: bib82
  article-title: Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models
  publication-title: Geocarto Int.
– volume: 21
  start-page: 3673
  year: 2017
  end-page: 3685
  ident: bib32
  article-title: Supervised and semi-supervised classifiers for the detection of flood-prone areas
  publication-title: Soft Comput
– volume: 124
  start-page: 1399
  year: 2015
  end-page: 1415
  ident: bib97
  article-title: GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China
  publication-title: J. Earth Syst. Sci.
– volume: 8
  start-page: 1185
  year: 2017
  end-page: 1203
  ident: bib50
  article-title: Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea
  publication-title: Geomatics, Nat. Hazards Risk
– volume: 625
  start-page: 575
  year: 2018
  end-page: 588
  ident: bib38
  article-title: Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China
  publication-title: Sci. Total Environ.
– volume: 29
  start-page: 462
  year: 2017
  end-page: 472
  ident: bib88
  article-title: Intrusion detection model using fusion of chi-square feature selection and multi class SVM
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 615
  start-page: 438
  year: 2018
  end-page: 451
  ident: bib87
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
– volume: 62
  start-page: 203
  year: 2018
  end-page: 215
  ident: bib41
  article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification
  publication-title: Appl. Soft Comput.
– volume: 6
  start-page: 2873
  year: 2013
  end-page: 2888
  ident: bib107
  article-title: Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms
  publication-title: Arab. J. Geosci.
– volume: 95
  start-page: 229
  year: 2017
  end-page: 245
  ident: bib12
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ. Model. Software
– volume: 10
  start-page: 161
  year: 2015
  end-page: 169
  ident: bib112
  article-title: Flood vulnerability assessment in the low sector of Saratel Catchment. Case study: Joseni Village
  publication-title: Carpathian Journal of Earth and Environmental Sciences
– volume: 43
  start-page: 301
  year: 2016
  end-page: 320
  ident: bib93
  article-title: Methodology and software solutions for multicriteria evaluation of floodplain retention suitability
  publication-title: Cartogr. Geogr. Inf. Sci.
– volume: 627
  start-page: 744
  year: 2018
  end-page: 755
  ident: bib45
  article-title: A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran
  publication-title: Sci. Total Environ.
– volume: 6
  start-page: 363
  year: 2014
  end-page: 372
  ident: bib110
  article-title: Assessment of surface runoff depth changes in Sǎrǎţel River basin, Romania using GIS techniques
  publication-title: Open Geosciences
– start-page: 171
  year: 1991
  end-page: 184
  ident: bib5
  article-title: Integration of geoscientific data using GIS
  publication-title: Geogr. Inf. Syst. Princ. Appl. Longdom Lond.
– volume: 10
  start-page: 1210
  year: 2018
  ident: bib89
  article-title: New hybrids of anfis with several optimization algorithms for flood susceptibility modeling
  publication-title: Water
– volume: 10
  start-page: 648
  year: 2018
  ident: bib51
  article-title: Spatial assessment of urban flood susceptibility using data mining and geographic information System (GIS) tools
  publication-title: Sustainability
– volume: 9
  year: 2010
  ident: bib63
  article-title: Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing
  publication-title: J. Spatial Hydrol.
– volume: 33
  start-page: 3239
  year: 2019
  end-page: 3256
  ident: bib14
  article-title: Flood susceptibility assessment by using bivariate statistics and machine learning models-A useful tool for flood risk management
  publication-title: Water Resour. Manag.
– volume: 558
  start-page: 144
  year: 2018
  end-page: 158
  ident: bib84
  article-title: Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis
  publication-title: J. Hydrol.
– volume: 29
  start-page: 3092
  year: 2018
  end-page: 3103
  ident: bib73
  article-title: Spatial prediction of soil erosion susceptibility using a fuzzy analytical network process: application of the fuzzy decision making trial and evaluation laboratory approach
  publication-title: Land Degrad. Dev.
– volume: 10
  start-page: 1536
  year: 2018
  ident: bib59
  article-title: Flood prediction using machine learning models: literature review
  publication-title: Water
– volume: 83
  start-page: 947
  year: 2016
  end-page: 987
  ident: bib44
  article-title: A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique
  publication-title: Nat. Hazards
– volume: 134
  start-page: 387
  year: 2016
  end-page: 401
  ident: bib2
  article-title: The impacts of climate change on river flood risk at the global scale
  publication-title: Climatic Change
– volume: 95
  start-page: 229
  year: 2017
  end-page: 245
  ident: bib11
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ. Model. Software
– volume: 45
  start-page: 993
  year: 2011
  end-page: 1004
  ident: bib104
  article-title: Feature selection methods for characterizing and classifying adaptive Sustainable Flood Retention Basins
  publication-title: Water Res.
– volume: 10
  start-page: 593
  year: 2018
  end-page: 606
  ident: bib91
  article-title: Modified flash flood potential index in order to estimate areas with predisposition to water accumulation
  publication-title: Open Geosci.
– volume: 67
  start-page: 251
  year: 2012
  end-page: 264
  ident: bib48
  article-title: An artificial neural network model for flood simulation using GIS: johor River Basin, Malaysia
  publication-title: Environ. Earth Sci.
– year: 1986
  ident: bib35
  article-title: Probabilistic interpretation of MYCIN’S certainty factors w pracy Kanal LN
  publication-title: Uncertainty in Artificial Intelligence
– volume: 16
  start-page: 104
  year: 2015
  end-page: 118
  ident: bib92
  article-title: Governance in support of integrated flood risk management? The case of Romania
  publication-title: Environ. Dev.
– volume: 11
  start-page: 615
  year: 2019
  ident: bib23
  article-title: Flood susceptibility mapping using GIS-based analytic network process: a case study of Perlis, Malaysia
  publication-title: Water
– volume: 31
  start-page: 1923
  year: 2017
  end-page: 1939
  ident: bib116
  article-title: Spatio-temporal trends of mean air temperature during 1961–2009 and impacts on crop (maize) yields in the most important agricultural region of Romania
  publication-title: Stoch Environ Res Risk Assess
– volume: 13
  start-page: 398
  year: 1994
  ident: bib7
  article-title: Geographic information systems for geoscientists-modeling with GIS
  publication-title: Comput. Methods Geosci
– volume: 56
  start-page: 212
  year: 2011
  end-page: 225
  ident: bib49
  article-title: Flood management and a GIS modelling method to assess flood-hazard areas—a case study
  publication-title: Hydrol. Sci. Journal–Journal Sci. Hydrol.
– start-page: 110
  year: 2011
  end-page: 114
  ident: bib57
  article-title: A chi-square-test for word importance differentiation in text classification
  publication-title: Presented at the Proceedings of International Conference on Information and Electronics Engineering
– volume: 65
  start-page: 135
  year: 2013
  end-page: 165
  ident: bib26
  article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya
  publication-title: Nat. Hazards
– volume: 29
  start-page: 1149
  year: 2015
  end-page: 1165
  ident: bib86
  article-title: Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 31
  start-page: 42
  year: 2016
  end-page: 70
  ident: bib67
  article-title: Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran
  publication-title: Geocarto Int.
– volume: 659
  start-page: 1115
  year: 2019
  end-page: 1134
  ident: bib15
  article-title: Flash-Flood Potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models
  publication-title: Sci. Total Environ.
– volume: 50
  start-page: 1002
  year: 2019
  end-page: 1019
  ident: bib94
  article-title: Flood inundation mapping in small and ungauged basins: sensitivity analysis using the EBA4SUB and HEC-RAS modeling approach
  publication-title: Nord. Hydrol
– volume: 15
  start-page: 15974
  year: 2015
  end-page: 15987
  ident: bib76
  article-title: Smart city mobility application—gradient boosting trees for mobility prediction and analysis based on crowdsourced data
  publication-title: Sensors
– volume: 78
  start-page: 11
  year: 2005
  end-page: 27
  ident: bib33
  article-title: Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin
  publication-title: Venezuela. Eng. Geol.
– volume: 667
  start-page: 325
  year: 2019
  end-page: 337
  ident: bib75
  article-title: A flood susceptibility model at the national scale based on multicriteria analysis
  publication-title: Sci. Total Environ.
– volume: 711
  start-page: 135161
  year: 2020
  ident: bib40
  article-title: Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method
  publication-title: Sci. Total Environ.
– volume: 636
  start-page: 152
  year: 2018
  end-page: 167
  ident: bib55
  article-title: Urbanization and climate change implications in flood risk management: developing an efficient decision support system for flood susceptibility mapping
  publication-title: Sci. Total Environ.
– volume: 23
  start-page: 351
  year: 1975
  end-page: 379
  ident: bib81
  article-title: A model of inexact reasoning in medicine
  publication-title: Math. Biosci.
– volume: 217
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib78
  article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
  publication-title: J. Environ. Manag.
– volume: 33
  start-page: 1375
  year: 2019
  end-page: 1402
  ident: bib16
  article-title: Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration
  publication-title: Stoch. Environ. Res. Risk Assess.
– start-page: 746
  year: 2018
  end-page: 751
  ident: bib53
  article-title: A segmented local offset method for imbalanced data classification using quasi-linear support vector machine
  publication-title: Presented at the 2018 24th International Conference on Pattern Recognition (ICPR)
– volume: 10
  start-page: 820
  year: 2019
  end-page: 835
  ident: bib96
  article-title: Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor
  publication-title: Geomatics, Nat. Hazards Risk
– volume: 12
  start-page: 106
  year: 2020
  ident: bib21
  article-title: Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques
  publication-title: Rem. Sens.
– volume: 705
  start-page: 135983
  year: 2020
  ident: bib28
  article-title: Integrated machine learning methods with resampling algorithms for flood susceptibility prediction
  publication-title: Sci. Total Environ.
– volume: 11
  start-page: 364
  year: 2019
  ident: bib95
  article-title: Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process
  publication-title: Water
– volume: 61
  start-page: 221
  year: 2012
  end-page: 236
  ident: bib58
  article-title: Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models
  publication-title: J. Asian Earth Sci.
– volume: 9
  start-page: 84
  year: 2016
  ident: bib101
  article-title: Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China
  publication-title: Arab. J. Geosci.
– volume: 10
  year: 2015
  ident: bib29
  article-title: Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan
  publication-title: PloS One
– start-page: 175
  year: 2015
  end-page: 188
  ident: bib39
  article-title: Spatial prediction of landslide hazard at the Yihuang area (China): a comparative study on the predictive ability of backpropagation multi-layer perceptron neural networks and radial basic function neural networks
  publication-title: Cartography-Maps Connecting the World
– year: 2013
  ident: bib27
  article-title: Floods in a Megacity: Geospatial Techniques in Assessing Hazards, Risk and Vulnerability
– volume: 4
  start-page: 1
  year: 2009
  end-page: 15
  ident: bib64
  article-title: Landslide risk analysis using artificial neural network model focussing on different training sites
  publication-title: Int. J. Phys. Sci.
– volume: 50
  start-page: 198
  year: 2013
  end-page: 210
  ident: bib56
  article-title: Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula
  publication-title: Knowl.-Based Syst.
– volume: 13
  start-page: 39
  year: 2014
  end-page: 49
  ident: bib113
  article-title: The analysis of the susceptibility of the flash-floods’ genesis in the area of the hydrographical basin of Bāsca Chiojdului river
  publication-title: Forum Geografic
– volume: 79
  start-page: 1621
  year: 2015
  end-page: 1648
  ident: bib54
  article-title: Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy)
  publication-title: Nat. Hazards
– volume: 11
  start-page: 229
  year: 2017
  end-page: 247
  ident: bib105
  article-title: Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)
  publication-title: Front. Earth Sci.
– volume: 10
  start-page: 912
  year: 2019
  end-page: 934
  ident: bib80
  article-title: Spatial–Temporal snapshots of global natural disaster impacts Revealed from EM-DAT for 1900-2015
  publication-title: Geomatics, Nat. Hazards Risk
– volume: 644
  start-page: 954
  year: 2018
  end-page: 962
  ident: bib74
  article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination
  publication-title: Sci. Total Environ.
– volume: 660
  start-page: 443
  year: 2019
  end-page: 458
  ident: bib1
  article-title: A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran
  publication-title: Sci. Total Environ.
– volume: 72
  start-page: 4001
  year: 2014
  end-page: 4015
  ident: bib85
  article-title: Flood susceptibility mapping using integrated bivariate and multivariate statistical models
  publication-title: Environ. Earth Sci.
– volume: 11
  start-page: 576
  year: 2018
  ident: bib24
  article-title: Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India
  publication-title: Arab. J. Geosci.
– volume: 2
  start-page: 271
  year: 2010
  end-page: 277
  ident: bib43
  article-title: Comparative study of attribute selection using gain ratio and correlation based feature selection
  publication-title: Int. J. Inf. Technol. Knowl. Manag.
– volume: 8
  start-page: 1538
  year: 2017
  end-page: 1561
  ident: bib77
  article-title: GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques
  publication-title: Geomatics, Nat. Hazards Risk
– year: 2007
  ident: bib30
  article-title: Sediment System of the Trotuș Drainage Basin
– volume: 470
  start-page: 302
  year: 2012
  end-page: 315
  ident: bib25
  article-title: Classifiers for the detection of flood-prone areas using remote sensed elevation data
  publication-title: J. Hydrol.
– volume: 18
  start-page: 3704
  year: 2018
  ident: bib61
  article-title: A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using Sentinel-1 SAR imagery and geospatial data
  publication-title: Sensors
– volume: 14
  start-page: 419
  year: 2017
  end-page: 434
  ident: bib108
  article-title: Identifying hydrological pre-conditions and rainfall triggers of slope failures at catchment scale for 2014 storm events in the Ialomita Subcarpathians, Romania
  publication-title: Landslides
– year: 2015
  ident: bib4
  article-title: Part 1: Simple Definition and Calculation of Accuracy, Sensitivity and Specificity
– volume: 651
  start-page: 2087
  year: 2019
  end-page: 2096
  ident: bib13
  article-title: An Ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines
  publication-title: Sci. Total Environ.
– volume: 540
  start-page: 317
  year: 2016
  end-page: 330
  ident: bib10
  article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS
  publication-title: J. Hydrol.
– volume: 691
  start-page: 1098
  year: 2019
  end-page: 1118
  ident: bib18
  article-title: Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: a case study at the Putna river catchment of Romania
  publication-title: Sci. Total Environ.
– start-page: 1
  year: 2017
  end-page: 7
  ident: bib72
  article-title: Flood susceptibility mapping using GIS-based support vector machine and particle swarm optimization: a case study in Uttarakhand (India)
  publication-title: Presented at the 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)
– year: 1993
  ident: bib65
  publication-title: C4.5: programs for Machine Learning
– volume: 621
  start-page: 1124
  year: 2018
  end-page: 1141
  ident: bib37
  article-title: Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution
  publication-title: Sci. Total Environ.
– year: 1980
  ident: bib71
  article-title: The Analytical Hierarchy Process, Planning, Priority
– volume: 23
  start-page: 97
  year: 2012
  end-page: 120
  ident: bib103
  article-title: Landslide hazard mapping using GIS and weight of evidence model in Qingshui river watershed of 2008 Wenchuan earthquake struck region
  publication-title: J. Earth Sci.
– volume: 585
  year: 2020
  ident: bib114
  article-title: Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning
  publication-title: Journal of Hydrology
– start-page: 1
  year: 2019
  end-page: 21
  ident: bib3
  article-title: Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment
  publication-title: Geocarto Int.
– volume: 42
  year: 2006
  ident: bib60
  article-title: Investigating a floodplain scaling relation using a hydrogeomorphic delineation method
  publication-title: Water Resour. Res.
– year: 2019
  ident: bib52
  article-title: Privacy-Preserving Gradient Boosting Decision Trees
– volume: 18
  start-page: 261
  year: 2015
  end-page: 278
  ident: bib31
  article-title: Flash flood hazard mapping using satellite images and GIS tools: a case study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt
  publication-title: J. Remote Sens. Space Sci.
– volume: 126
  start-page: 59
  year: 2017
  ident: bib22
  article-title: Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment–case study: Bâsca Chiojdului River catchment (Romania)
  publication-title: J. Earth Syst. Sci.
– volume: 6
  start-page: 2351
  year: 2013
  end-page: 2365
  ident: bib62
  article-title: Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran
  publication-title: Arab. J. Geosci.
– volume: 3
  start-page: 816
  year: 2013
  ident: bib36
  article-title: Global flood risk under climate change
  publication-title: Nat. Clim. Change
– volume: 75
  start-page: 1101
  year: 2016
  ident: bib8
  article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks
  publication-title: Environ. Earth Sci.
– volume: 247
  start-page: 712
  year: 2019
  end-page: 729
  ident: bib99
  article-title: Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm
  publication-title: J. Environ. Manag.
– volume: 183
  start-page: 104179
  year: 2019
  ident: bib20
  article-title: Identification of torrential valleys using GIS and a novel hybrid integration of artificial intelligence, machine learning and bivariate statistics
  publication-title: Catena
– start-page: 1
  year: 2019
  end-page: 25
  ident: bib83
  article-title: GIS-based MCDM-AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia
  publication-title: Geocarto Int.
– volume: 54
  start-page: 1585
  year: 1988
  end-page: 1592
  ident: bib6
  article-title: Integration of geological datasets for gold exploration in Nova Scotia
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 25
  start-page: 1307
  year: 2015
  end-page: 1327
  ident: bib117
  article-title: Climatic water balance dynamics over the last five decades in Romania’s most arid region, Dobrogea
  publication-title: J. Geogr. Sci.
– volume: 7
  start-page: 1000
  year: 2016
  end-page: 1017
  ident: bib68
  article-title: Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis
  publication-title: Geomatics, Nat. Hazards Risk
– year: 2016
  ident: bib100
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– volume: 9
  start-page: 31
  year: 2014
  end-page: 38
  ident: bib109
  article-title: Using GIS techniques for assessing lag time and concentration time in small river basins. Case study: Pecineaga river basin, Romania
  publication-title: Geographia Technica
– volume: 3
  start-page: 585
  year: 2019
  end-page: 601
  ident: bib66
  article-title: Flood susceptibility assessment in Bangladesh using machine learning and multi-criteria decision analysis
  publication-title: Earth Syst. Environ.
– year: 2015
  ident: bib106
  article-title: Weighting Methods and Their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management
– volume: 122
  start-page: 425
  year: 2013
  end-page: 429
  ident: bib79
  article-title: Neural network based hybrid computing model for wind speed prediction
  publication-title: Neurocomputing
– volume: 124
  start-page: 1311
  year: 2015
  end-page: 1324
  ident: bib111
  article-title: Assessment and mapping of flood potential in the Slănic catchment in Romania
  publication-title: Journal of Earth System Science
– volume: 31
  start-page: 35
  year: 2011
  end-page: 45
  ident: bib69
  article-title: Interpreting flood disasters and flood hazard perceptions from newspaper discourse: tale of two floods in the Red River valley, Manitoba, Canada
  publication-title: Appl. Geogr.
– volume: 29
  start-page: 2972
  year: 2010
  end-page: 2981
  ident: bib102
  article-title: GIS based certainty factor analysis of landslide triggering factors in Wenchuan earthquake
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 134413
  year: 2019
  ident: bib9
  article-title: A novel deep learning neural network approach for predicting flash flood susceptibility: a case study at a high frequency tropical storm area
  publication-title: Sci. Total Environ.
– volume: 572
  start-page: 17
  year: 2019
  end-page: 31
  ident: bib42
  article-title: A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method
  publication-title: J. Hydrol.
– volume: 11
  start-page: 62
  year: 2019
  ident: bib98
  article-title: A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou, China
  publication-title: Rem. Sens.
– volume: 10
  start-page: 1536
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib59
  article-title: Flood prediction using machine learning models: literature review
  publication-title: Water
  doi: 10.3390/w10111536
– volume: 7
  start-page: 725
  year: 2014
  ident: 10.1016/j.jenvman.2020.110485_bib70
  article-title: Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0807-z
– volume: 29
  start-page: 2972
  year: 2010
  ident: 10.1016/j.jenvman.2020.110485_bib102
  article-title: GIS based certainty factor analysis of landslide triggering factors in Wenchuan earthquake
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 13
  start-page: 398
  year: 1994
  ident: 10.1016/j.jenvman.2020.110485_bib7
  article-title: Geographic information systems for geoscientists-modeling with GIS
  publication-title: Comput. Methods Geosci
– volume: 470
  start-page: 302
  year: 2012
  ident: 10.1016/j.jenvman.2020.110485_bib25
  article-title: Classifiers for the detection of flood-prone areas using remote sensed elevation data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.09.006
– volume: 2
  start-page: 271
  year: 2010
  ident: 10.1016/j.jenvman.2020.110485_bib43
  article-title: Comparative study of attribute selection using gain ratio and correlation based feature selection
  publication-title: Int. J. Inf. Technol. Knowl. Manag.
– volume: 10
  start-page: 912
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib80
  article-title: Spatial–Temporal snapshots of global natural disaster impacts Revealed from EM-DAT for 1900-2015
  publication-title: Geomatics, Nat. Hazards Risk
  doi: 10.1080/19475705.2018.1552630
– volume: 29
  start-page: 462
  year: 2017
  ident: 10.1016/j.jenvman.2020.110485_bib88
  article-title: Intrusion detection model using fusion of chi-square feature selection and multi class SVM
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2015.12.004
– volume: 16
  start-page: 104
  year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib92
  article-title: Governance in support of integrated flood risk management? The case of Romania
  publication-title: Environ. Dev.
  doi: 10.1016/j.envdev.2015.04.003
– volume: 627
  start-page: 744
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib45
  article-title: A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.266
– volume: 540
  start-page: 317
  year: 2016
  ident: 10.1016/j.jenvman.2020.110485_bib10
  article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.06.027
– volume: 61
  start-page: 221
  year: 2012
  ident: 10.1016/j.jenvman.2020.110485_bib58
  article-title: Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2012.10.005
– year: 1980
  ident: 10.1016/j.jenvman.2020.110485_bib71
– volume: 62
  start-page: 203
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib41
  article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.038
– volume: 33
  start-page: 3239
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib14
  article-title: Flood susceptibility assessment by using bivariate statistics and machine learning models-A useful tool for flood risk management
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-019-02301-z
– volume: 8
  start-page: 1538
  year: 2017
  ident: 10.1016/j.jenvman.2020.110485_bib77
  article-title: GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques
  publication-title: Geomatics, Nat. Hazards Risk
  doi: 10.1080/19475705.2017.1362038
– volume: 705
  start-page: 135983
  year: 2020
  ident: 10.1016/j.jenvman.2020.110485_bib28
  article-title: Integrated machine learning methods with resampling algorithms for flood susceptibility prediction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135983
– volume: 621
  start-page: 1124
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib37
  article-title: Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.114
– volume: 247
  start-page: 712
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib99
  article-title: Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.06.102
– volume: 56
  start-page: 212
  year: 2011
  ident: 10.1016/j.jenvman.2020.110485_bib49
  article-title: Flood management and a GIS modelling method to assess flood-hazard areas—a case study
  publication-title: Hydrol. Sci. Journal–Journal Sci. Hydrol.
  doi: 10.1080/02626667.2011.555836
– volume: 711
  start-page: 135161
  year: 2020
  ident: 10.1016/j.jenvman.2020.110485_bib40
  article-title: Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135161
– volume: 92
  start-page: 1137
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib34
  article-title: Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3244-9
– volume: 33
  start-page: 927
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib82
  article-title: Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2017.1316780
– volume: 667
  start-page: 325
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib75
  article-title: A flood susceptibility model at the national scale based on multicriteria analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.328
– year: 2007
  ident: 10.1016/j.jenvman.2020.110485_bib30
– volume: 585
  year: 2020
  ident: 10.1016/j.jenvman.2020.110485_bib114
  article-title: Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2020.124808
– volume: 65
  start-page: 135
  year: 2013
  ident: 10.1016/j.jenvman.2020.110485_bib26
  article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0347-6
– volume: 31
  start-page: 35
  year: 2011
  ident: 10.1016/j.jenvman.2020.110485_bib69
  article-title: Interpreting flood disasters and flood hazard perceptions from newspaper discourse: tale of two floods in the Red River valley, Manitoba, Canada
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2010.03.010
– volume: 31
  start-page: 1923
  issue: 8
  year: 2017
  ident: 10.1016/j.jenvman.2020.110485_bib116
  article-title: Spatio-temporal trends of mean air temperature during 1961–2009 and impacts on crop (maize) yields in the most important agricultural region of Romania
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-016-1278-7
– volume: 11
  start-page: 229
  year: 2017
  ident: 10.1016/j.jenvman.2020.110485_bib105
  article-title: Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)
  publication-title: Front. Earth Sci.
  doi: 10.1007/s11707-017-0636-1
– volume: 691
  start-page: 1098
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib18
  article-title: Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: a case study at the Putna river catchment of Romania
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.197
– volume: 14
  start-page: 419
  issue: 1
  year: 2017
  ident: 10.1016/j.jenvman.2020.110485_bib108
  article-title: Identifying hydrological pre-conditions and rainfall triggers of slope failures at catchment scale for 2014 storm events in the Ialomita Subcarpathians, Romania
  publication-title: Landslides
  doi: 10.1007/s10346-016-0740-4
– volume: 9
  start-page: 31
  issue: 1
  year: 2014
  ident: 10.1016/j.jenvman.2020.110485_bib109
  article-title: Using GIS techniques for assessing lag time and concentration time in small river basins. Case study: Pecineaga river basin, Romania
  publication-title: Geographia Technica
– volume: 126
  start-page: 59
  year: 2017
  ident: 10.1016/j.jenvman.2020.110485_bib22
  article-title: Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment–case study: Bâsca Chiojdului River catchment (Romania)
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-017-0828-9
– volume: 18
  start-page: 3704
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib61
  article-title: A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using Sentinel-1 SAR imagery and geospatial data
  publication-title: Sensors
  doi: 10.3390/s18113704
– volume: 75
  start-page: 1101
  year: 2016
  ident: 10.1016/j.jenvman.2020.110485_bib8
  article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5919-4
– start-page: 1
  year: 2017
  ident: 10.1016/j.jenvman.2020.110485_bib72
  article-title: Flood susceptibility mapping using GIS-based support vector machine and particle swarm optimization: a case study in Uttarakhand (India)
– volume: 183
  start-page: 104179
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib20
  article-title: Identification of torrential valleys using GIS and a novel hybrid integration of artificial intelligence, machine learning and bivariate statistics
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104179
– year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib52
– volume: 12
  start-page: 106
  year: 2020
  ident: 10.1016/j.jenvman.2020.110485_bib21
  article-title: Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques
  publication-title: Rem. Sens.
  doi: 10.3390/rs12010106
– volume: 95
  start-page: 229
  year: 2017
  ident: 10.1016/j.jenvman.2020.110485_bib11
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2017.06.012
– volume: 29
  start-page: 1149
  year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib86
  article-title: Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-015-1021-9
– volume: 3
  start-page: 816
  year: 2013
  ident: 10.1016/j.jenvman.2020.110485_bib36
  article-title: Global flood risk under climate change
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1911
– volume: 10
  start-page: 1210
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib89
  article-title: New hybrids of anfis with several optimization algorithms for flood susceptibility modeling
  publication-title: Water
  doi: 10.3390/w10091210
– volume: 78
  start-page: 11
  year: 2005
  ident: 10.1016/j.jenvman.2020.110485_bib33
  article-title: Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin
  publication-title: Venezuela. Eng. Geol.
  doi: 10.1016/j.enggeo.2004.10.004
– volume: 124
  start-page: 1311
  issue: 6
  year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib111
  article-title: Assessment and mapping of flood potential in the Slănic catchment in Romania
  publication-title: Journal of Earth System Science
  doi: 10.1007/s12040-015-0608-3
– volume: 79
  start-page: 1621
  year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib54
  article-title: Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy)
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1915-3
– volume: 558
  start-page: 144
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib84
  article-title: Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.01.033
– volume: 134
  start-page: 387
  year: 2016
  ident: 10.1016/j.jenvman.2020.110485_bib2
  article-title: The impacts of climate change on river flood risk at the global scale
  publication-title: Climatic Change
  doi: 10.1007/s10584-014-1084-5
– year: 2013
  ident: 10.1016/j.jenvman.2020.110485_bib27
– volume: 4
  start-page: 1
  year: 2009
  ident: 10.1016/j.jenvman.2020.110485_bib64
  article-title: Landslide risk analysis using artificial neural network model focussing on different training sites
  publication-title: Int. J. Phys. Sci.
– volume: 9
  start-page: 84
  year: 2016
  ident: 10.1016/j.jenvman.2020.110485_bib101
  article-title: Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-015-2112-0
– volume: 134413
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib9
  article-title: A novel deep learning neural network approach for predicting flash flood susceptibility: a case study at a high frequency tropical storm area
  publication-title: Sci. Total Environ.
– volume: 10
  year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib29
  article-title: Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan
  publication-title: PloS One
  doi: 10.1371/journal.pone.0133262
– volume: 712
  start-page: 136492
  year: 2020
  ident: 10.1016/j.jenvman.2020.110485_bib17
  article-title: Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.136492
– volume: 29
  start-page: 3092
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib73
  article-title: Spatial prediction of soil erosion susceptibility using a fuzzy analytical network process: application of the fuzzy decision making trial and evaluation laboratory approach
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3058
– volume: 83
  start-page: 947
  year: 2016
  ident: 10.1016/j.jenvman.2020.110485_bib44
  article-title: A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2357-2
– volume: 50
  start-page: 198
  year: 2013
  ident: 10.1016/j.jenvman.2020.110485_bib56
  article-title: Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.06.011
– volume: 178
  start-page: 209
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib115
  article-title: Recent changes in global drylands: Evidences from two major aridity databases
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.03.016
– start-page: 1
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib83
  article-title: GIS-based MCDM-AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia
  publication-title: Geocarto Int.
– year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib106
– start-page: 746
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib53
  article-title: A segmented local offset method for imbalanced data classification using quasi-linear support vector machine
– volume: 31
  start-page: 42
  year: 2016
  ident: 10.1016/j.jenvman.2020.110485_bib67
  article-title: Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2015.1041559
– volume: 573
  start-page: 311
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib47
  article-title: A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.073
– volume: 11
  start-page: 364
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib95
  article-title: Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process
  publication-title: Water
  doi: 10.3390/w11020364
– start-page: 171
  year: 1991
  ident: 10.1016/j.jenvman.2020.110485_bib5
  article-title: Integration of geoscientific data using GIS
  publication-title: Geogr. Inf. Syst. Princ. Appl. Longdom Lond.
– volume: 8
  start-page: 1185
  year: 2017
  ident: 10.1016/j.jenvman.2020.110485_bib50
  article-title: Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea
  publication-title: Geomatics, Nat. Hazards Risk
  doi: 10.1080/19475705.2017.1308971
– year: 1993
  ident: 10.1016/j.jenvman.2020.110485_bib65
– volume: 217
  start-page: 1
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib78
  article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.03.089
– volume: 644
  start-page: 954
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib74
  article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.054
– volume: 21
  start-page: 3673
  year: 2017
  ident: 10.1016/j.jenvman.2020.110485_bib32
  article-title: Supervised and semi-supervised classifiers for the detection of flood-prone areas
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1983-z
– volume: 124
  start-page: 1399
  year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib97
  article-title: GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-015-0624-3
– volume: 42
  year: 2006
  ident: 10.1016/j.jenvman.2020.110485_bib60
  article-title: Investigating a floodplain scaling relation using a hydrogeomorphic delineation method
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004155
– volume: 6
  start-page: 2873
  year: 2013
  ident: 10.1016/j.jenvman.2020.110485_bib107
  article-title: Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0610-x
– volume: 54
  start-page: 1585
  year: 1988
  ident: 10.1016/j.jenvman.2020.110485_bib6
  article-title: Integration of geological datasets for gold exploration in Nova Scotia
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 660
  start-page: 443
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib1
  article-title: A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.021
– volume: 11
  start-page: 576
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib24
  article-title: Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-018-3933-4
– volume: 188
  start-page: 656
  year: 2016
  ident: 10.1016/j.jenvman.2020.110485_bib46
  article-title: Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon's entropy, statistical index, and weighting factor models
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5665-9
– volume: 11
  start-page: 62
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib98
  article-title: A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou, China
  publication-title: Rem. Sens.
  doi: 10.3390/rs11010062
– volume: 13
  start-page: 39
  issue: 1
  year: 2014
  ident: 10.1016/j.jenvman.2020.110485_bib113
  article-title: The analysis of the susceptibility of the flash-floods’ genesis in the area of the hydrographical basin of Bāsca Chiojdului river
  publication-title: Forum Geografic
  doi: 10.5775/fg.2067-4635.2014.071.i
– volume: 3
  start-page: 585
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib66
  article-title: Flood susceptibility assessment in Bangladesh using machine learning and multi-criteria decision analysis
  publication-title: Earth Syst. Environ.
  doi: 10.1007/s41748-019-00123-y
– volume: 11
  start-page: 1589
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib90
  article-title: Flood spatial modeling in northern Iran using remote sensing and gis: a comparison between evidential belief functions and its ensemble with a multivariate logistic regression model
  publication-title: Rem. Sens.
  doi: 10.3390/rs11131589
– volume: 18
  start-page: 261
  year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib31
  article-title: Flash flood hazard mapping using satellite images and GIS tools: a case study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt
  publication-title: J. Remote Sens. Space Sci.
– volume: 6
  start-page: 363
  issue: 3
  year: 2014
  ident: 10.1016/j.jenvman.2020.110485_bib110
  article-title: Assessment of surface runoff depth changes in Sǎrǎţel River basin, Romania using GIS techniques
  publication-title: Open Geosciences
– start-page: 175
  year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib39
  article-title: Spatial prediction of landslide hazard at the Yihuang area (China): a comparative study on the predictive ability of backpropagation multi-layer perceptron neural networks and radial basic function neural networks
– volume: 9
  year: 2010
  ident: 10.1016/j.jenvman.2020.110485_bib63
  article-title: Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing
  publication-title: J. Spatial Hydrol.
– year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib4
– volume: 711
  year: 2020
  ident: 10.1016/j.jenvman.2020.110485_bib19
  article-title: Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134514
– volume: 6
  start-page: 2351
  year: 2013
  ident: 10.1016/j.jenvman.2020.110485_bib62
  article-title: Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0532-7
– volume: 33
  start-page: 1375
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib16
  article-title: Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-019-01689-9
– volume: 659
  start-page: 1115
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib15
  article-title: Flash-Flood Potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.397
– volume: 651
  start-page: 2087
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib13
  article-title: An Ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.064
– volume: 72
  start-page: 4001
  year: 2014
  ident: 10.1016/j.jenvman.2020.110485_bib85
  article-title: Flood susceptibility mapping using integrated bivariate and multivariate statistical models
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-014-3289-3
– volume: 45
  start-page: 993
  year: 2011
  ident: 10.1016/j.jenvman.2020.110485_bib104
  article-title: Feature selection methods for characterizing and classifying adaptive Sustainable Flood Retention Basins
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.10.006
– volume: 10
  start-page: 648
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib51
  article-title: Spatial assessment of urban flood susceptibility using data mining and geographic information System (GIS) tools
  publication-title: Sustainability
  doi: 10.3390/su10030648
– volume: 636
  start-page: 152
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib55
  article-title: Urbanization and climate change implications in flood risk management: developing an efficient decision support system for flood susceptibility mapping
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.282
– volume: 15
  start-page: 15974
  year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib76
  article-title: Smart city mobility application—gradient boosting trees for mobility prediction and analysis based on crowdsourced data
  publication-title: Sensors
  doi: 10.3390/s150715974
– volume: 122
  start-page: 425
  year: 2013
  ident: 10.1016/j.jenvman.2020.110485_bib79
  article-title: Neural network based hybrid computing model for wind speed prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.008
– volume: 25
  start-page: 1307
  issue: 11
  year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib117
  article-title: Climatic water balance dynamics over the last five decades in Romania’s most arid region, Dobrogea
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-015-1236-1
– year: 1986
  ident: 10.1016/j.jenvman.2020.110485_bib35
  article-title: Probabilistic interpretation of MYCIN’S certainty factors w pracy Kanal LN
– volume: 43
  start-page: 301
  year: 2016
  ident: 10.1016/j.jenvman.2020.110485_bib93
  article-title: Methodology and software solutions for multicriteria evaluation of floodplain retention suitability
  publication-title: Cartogr. Geogr. Inf. Sci.
  doi: 10.1080/15230406.2015.1039587
– volume: 23
  start-page: 97
  year: 2012
  ident: 10.1016/j.jenvman.2020.110485_bib103
  article-title: Landslide hazard mapping using GIS and weight of evidence model in Qingshui river watershed of 2008 Wenchuan earthquake struck region
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-012-0236-7
– start-page: 110
  year: 2011
  ident: 10.1016/j.jenvman.2020.110485_bib57
  article-title: A chi-square-test for word importance differentiation in text classification
– volume: 615
  start-page: 438
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib87
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.262
– volume: 10
  start-page: 161
  issue: 1
  year: 2015
  ident: 10.1016/j.jenvman.2020.110485_bib112
  article-title: Flood vulnerability assessment in the low sector of Saratel Catchment. Case study: Joseni Village
  publication-title: Carpathian Journal of Earth and Environmental Sciences
– year: 2016
  ident: 10.1016/j.jenvman.2020.110485_bib100
– volume: 11
  start-page: 615
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib23
  article-title: Flood susceptibility mapping using GIS-based analytic network process: a case study of Perlis, Malaysia
  publication-title: Water
  doi: 10.3390/w11030615
– volume: 572
  start-page: 17
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib42
  article-title: A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.02.034
– volume: 67
  start-page: 251
  year: 2012
  ident: 10.1016/j.jenvman.2020.110485_bib48
  article-title: An artificial neural network model for flood simulation using GIS: johor River Basin, Malaysia
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1504-z
– volume: 7
  start-page: 1000
  year: 2016
  ident: 10.1016/j.jenvman.2020.110485_bib68
  article-title: Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis
  publication-title: Geomatics, Nat. Hazards Risk
  doi: 10.1080/19475705.2015.1045043
– start-page: 1
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib3
  article-title: Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment
  publication-title: Geocarto Int.
– volume: 95
  start-page: 229
  year: 2017
  ident: 10.1016/j.jenvman.2020.110485_bib12
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2017.06.012
– volume: 10
  start-page: 820
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib96
  article-title: Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor
  publication-title: Geomatics, Nat. Hazards Risk
  doi: 10.1080/19475705.2018.1549111
– volume: 23
  start-page: 351
  year: 1975
  ident: 10.1016/j.jenvman.2020.110485_bib81
  article-title: A model of inexact reasoning in medicine
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(75)90047-4
– volume: 50
  start-page: 1002
  year: 2019
  ident: 10.1016/j.jenvman.2020.110485_bib94
  article-title: Flood inundation mapping in small and ungauged basins: sensitivity analysis using the EBA4SUB and HEC-RAS modeling approach
  publication-title: Nord. Hydrol
  doi: 10.2166/nh.2019.163
– volume: 10
  start-page: 593
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib91
  article-title: Modified flash flood potential index in order to estimate areas with predisposition to water accumulation
  publication-title: Open Geosci.
  doi: 10.1515/geo-2018-0047
– volume: 625
  start-page: 575
  year: 2018
  ident: 10.1016/j.jenvman.2020.110485_bib38
  article-title: Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.256
SSID ssj0003217
Score 2.585416
Snippet Across the world, the flood magnitude is expected to increase as well as the damage caused by their occurrence. In this case, the prediction of areas which are...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110485
SubjectTerms Algorithms
Bivariate statistics
Ensemble models
environmental management
Flood susceptibility
Floods
Machine learning
neural networks
Neural Networks, Computer
prediction
ROC Curve
Romania
statistics
watersheds
Title Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment
URI https://dx.doi.org/10.1016/j.jenvman.2020.110485
https://www.ncbi.nlm.nih.gov/pubmed/32421551
https://www.proquest.com/docview/2404644582
https://www.proquest.com/docview/2524238690
Volume 265
WOSCitedRecordID wos000533526800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2lKRJsEBQK4VENEmITnNoe2xkvS5UKUAhFSqXsrLE9zkOpHeI4av6AX-OvuPOwnaoNLQs2TuTYHmfu8fjcmXPvRei9RaPYohR8E8K4AaOkbfjU9Qzbi0w_DrlJQpkyv98dDOho5J83Gr_LWJj1vJum9OrKX_xXU8M-MLYInf0Hc1cXhR3wHYwOWzA7bO9l-EG25vP2ZCNCsVShm7xSY4XTNfjGQC_FFMJK5WiW-s2llAyJ2XOR4FJ-SHm4yuAMTDyX8mg2H2fL6Wqisji0E6F6b-dFLrUxUma7abMq1-cO4rsVWydCV27ob06hMZFmWgm_L4t5UfH-cx3V_aPIovYnllVwXWt95rcMjrhk8YqNJ9Na9FJsxOSDnEEajIsN9MRQ_6wnPMC7LcWx5RgNrNCgnl7O4bfs0wO77blbQzPwHEdVB7rx1lATGLPODDoA_nVHtNqpj7-epXvwPTi76PeDYW80_LD4aYgCZmKhX1dz2UP7dtf1aRPtn3zpjb5WtIDYsvxzdad1ONnxrS3vIkq7HCFJiIZP0GNtUHyiEPgUNXh6gB6Wge75ATrsbRsa67dI_gz9khDFCqJYQRRriOIKoriG6EdcAxQrgOISoBgsj0uA4hqgGACKJUDxdYDiGqDP0cVZb3j62dAVQYyI-HRlALtmocgpGbtxZJrMjAWD5lGSOCSmXuhZlFPiEMKIxzyfJb4HDkJI3ThkjIUWOUTNNEv5S4TN2DUjRmJwCJhDI5d6lpf4SdRlwiV3eQs5ZfcHkU6XL6q2zINSFzkLtNUCYbVAWa2FOtVpC5Uv5q4TaGnbQJNeRWYDQOddp74rsRDAS0Gs9LGUZ0UeAE13wNFxqf2XY1zhSomCdC30QgGpumPhZQlf6tU9WniNHtVP6RvUXC0L_hY9iNYAkeUR2uuO6JF-Fv4AsKv47Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+hybrid+models+between+bivariate+statistics%2C+artificial+neural+networks+and+boosting+algorithms+for+flood+susceptibility+assessment&rft.jtitle=Journal+of+environmental+management&rft.au=Costache%2C+Romulus&rft.au=Pham%2C+Quoc+Bao&rft.au=Avand%2C+Mohammadtaghi&rft.au=Thuy+Linh%2C+Nguyen+Thi&rft.date=2020-07-01&rft.issn=1095-8630&rft.eissn=1095-8630&rft.volume=265&rft.spage=110485&rft_id=info:doi/10.1016%2Fj.jenvman.2020.110485&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon