Breaking through the limitation of carbon price forecasting: A novel hybrid model based on secondary decomposition and nonlinear integration
Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; sec...
Gespeichert in:
| Veröffentlicht in: | Journal of environmental management Jg. 362; S. 121253 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
01.06.2024
|
| Schlagworte: | |
| ISSN: | 0301-4797, 1095-8630, 1095-8630 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool.
•Propose a novel secondary decomposition-integration framework.•Compare 18 different hybrid frameworks and single models.•Validate that the secondary decomposition method is superior to the primary decomposition method.•Validate hybrid methods in frameworks are better than single methods.•Validate the effectiveness of the nonlinear integration and optimization method. |
|---|---|
| AbstractList | Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool. Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool.Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool. Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool. •Propose a novel secondary decomposition-integration framework.•Compare 18 different hybrid frameworks and single models.•Validate that the secondary decomposition method is superior to the primary decomposition method.•Validate hybrid methods in frameworks are better than single methods.•Validate the effectiveness of the nonlinear integration and optimization method. |
| ArticleNumber | 121253 |
| Author | Huangfu, Yubin Huang, Zhehao Zhang, Changhong Lan, Yuqiao |
| Author_xml | – sequence: 1 givenname: Yuqiao surname: Lan fullname: Lan, Yuqiao email: 223025200111@smail.swufe.edu.cn organization: School of Statistics, Southwestern University of Finance and Economics, Chengdu, China – sequence: 2 givenname: Yubin orcidid: 0009-0001-5472-5432 surname: Huangfu fullname: Huangfu, Yubin email: huangfuyubin20@mails.ucas.ac.cn organization: School of Economics and Management, University of Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Zhehao orcidid: 0000-0003-4022-3842 surname: Huang fullname: Huang, Zhehao email: zhehao.h@gzhu.edu.cn organization: Guangzhou Institute of International Finance Guangzhou University Guangzhou, China – sequence: 4 givenname: Changhong surname: Zhang fullname: Zhang, Changhong email: edwinzhang@gwu.edu organization: Department of Decision Sciences, The George Washington University, WA, DC, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38823294$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1uEzEUhS1U1KaljwDyks0E_8z4BxaorYAiVWIDa8tj30kcZuxgTyL1HXho3CawYNOu7rV0vmPdc87RSUwREHpNyZISKt5tlhuI-8nGJSOsXVJGWcdfoAUlumuU4OQELQgntGmllmfovJQNIYQzKk_RGVeKcabbBfp9ncH-DHGF53VOu9W6TsBjmMJs55AiTgN2Nvd12-bgAA8pg7Nlrsh7fIVj2sOI1_d9Dh5PyddHbwt4XIECLkVv8z32dZu2qYRHSxt95eIYItiMQ5xhlR8_e4VeDnYscHmcF-jH50_fb26bu29fvt5c3TWOazU3lIMTsm_7rtdCSa28ok56q6VmPUjHGfFtN4DslKNCEKJ5670ER62jVHJ-gd4efLc5_dpBmc0UioNxtBHSrphqIKjuuH6GlAjeCqq0qtI3R-mun8CbmtdUjzd_w66C7iBwOZWSYfgnocQ8lGo25liqeSjVHEqt3If_OHdsZ842jE_SHw801ET3AbIpLkB04ENtcjY-hScc_gAcXsJx |
| CitedBy_id | crossref_primary_10_1080_13547860_2025_2555003 crossref_primary_10_1016_j_strueco_2025_06_007 crossref_primary_10_1371_journal_pone_0322548 crossref_primary_10_1016_j_energy_2025_138377 crossref_primary_10_1016_j_jclepro_2024_144124 crossref_primary_10_1016_j_jenvman_2024_123663 crossref_primary_10_1016_j_jenvman_2025_124237 crossref_primary_10_3390_math13101624 crossref_primary_10_3390_math13030464 crossref_primary_10_1016_j_apenergy_2025_125330 |
| Cites_doi | 10.3390/en11071907 10.1016/j.jclepro.2019.118671 10.1016/j.eneco.2017.12.030 10.1016/j.energy.2022.124167 10.1016/j.apenergy.2018.09.118 10.1016/j.apenergy.2009.12.019 10.1016/j.apenergy.2022.119784 10.3390/math11143126 10.1016/j.apenergy.2022.118601 10.1016/j.energy.2020.118294 10.1016/S0140-6736(06)68079-3 10.1016/j.eneco.2011.07.012 10.1016/j.bspc.2014.06.009 10.1098/rspa.1998.0193 10.1016/j.jclepro.2023.139063 10.1016/j.eneco.2018.11.007 10.1016/j.apm.2019.10.022 10.1016/j.jenvman.2023.118962 10.1016/j.jclepro.2018.09.071 10.1016/j.apenergy.2012.03.046 10.1016/j.energy.2021.122324 10.1016/j.eneco.2013.06.017 10.1016/j.eswa.2023.122912 10.1038/s41467-020-15996-1 10.1002/ese3.703 10.1080/1540496X.2019.1663166 10.1007/s10479-015-1864-y 10.1007/s10479-021-04392-7 10.1080/14693062.2014.864800 10.1016/j.egyr.2021.11.270 10.1145/3506695 10.1080/14693062.2019.1635875 10.1152/ajpheart.2000.278.6.H2039 10.1016/j.apenergy.2017.01.076 10.1016/j.asoc.2021.108204 10.1016/j.omega.2012.06.005 10.1016/j.jclepro.2019.04.393 10.1016/j.energy.2019.116278 10.1016/j.knosys.2020.106686 10.1016/j.atmosenv.2016.03.056 10.1016/j.apenergy.2021.118011 10.1016/j.energy.2023.127783 10.1007/s10614-013-9417-4 10.1016/j.sepro.2011.08.070 10.1016/j.jenvman.2024.120131 10.1080/21642583.2019.1625082 10.1016/j.energy.2021.123006 10.1016/j.knosys.2018.11.024 10.1007/s10479-023-05443-x 10.1103/PhysRevLett.88.174102 10.3389/fenvs.2022.973855 10.1016/j.jeem.2008.03.003 10.1016/j.jclepro.2023.136959 10.1016/j.jclepro.2018.01.102 10.1016/j.ijepes.2021.107595 10.3390/su13158413 10.1016/j.amepre.2008.08.021 10.1038/s41598-023-45524-2 10.1016/j.ijleo.2018.07.044 10.1142/S1793536909000047 10.1002/ese3.1304 10.3390/en12050950 10.1016/j.jclepro.2019.119386 10.1016/j.jenvman.2021.111988 10.32604/csse.2022.022739 10.1016/j.envres.2015.02.002 10.1016/j.physa.2018.12.017 10.1016/j.apenergy.2021.116485 10.1016/j.energy.2022.123366 10.1109/LSP.2016.2542881 10.1016/j.scitotenv.2020.137117 10.1016/j.jenvman.2023.119873 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.jenvman.2024.121253 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1095-8630 |
| ExternalDocumentID | 38823294 10_1016_j_jenvman_2024_121253 S0301479724012398 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Natural Science Fundation of Guangdong grantid: 2024A1515012502 |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 3EH 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAHBH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYJJ ABEFU ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABTAH ABXDB ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AI. AIDBO AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BELTK BKOJK BKOMP BLECG BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SCC SDF SDG SDP SEN SES SEW SPC SPCBC SSB SSJ SSO SSR SSZ T5K TAE TWZ UHS UQL VH1 WH7 WUQ XPP XSW Y6R YK3 YV5 ZCA ZMT ZU3 ZY4 ~02 ~G- ~KM 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AEGFY CGR CUY CVF ECM EIF NPM YIN 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c398t-13ec67b4b5b968798d81c7da9792be7c320d45fe758c16600934dd7ec1ac11733 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001250223600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0301-4797 1095-8630 |
| IngestDate | Thu Oct 02 22:58:45 EDT 2025 Thu Oct 02 11:03:54 EDT 2025 Wed Feb 19 02:08:03 EST 2025 Sat Nov 29 03:51:54 EST 2025 Tue Nov 18 21:11:14 EST 2025 Wed Jun 26 17:48:40 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Carbon price forecasting Improved variational mode decomposition Seagull optimization algorithm Secondary decomposition Machine learning |
| Language | English |
| License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c398t-13ec67b4b5b968798d81c7da9792be7c320d45fe758c16600934dd7ec1ac11733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0001-5472-5432 0000-0003-4022-3842 |
| PMID | 38823294 |
| PQID | 3063461898 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3206195393 proquest_miscellaneous_3063461898 pubmed_primary_38823294 crossref_primary_10_1016_j_jenvman_2024_121253 crossref_citationtrail_10_1016_j_jenvman_2024_121253 elsevier_sciencedirect_doi_10_1016_j_jenvman_2024_121253 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 2024-Jun 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of environmental management |
| PublicationTitleAlternate | J Environ Manage |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lofgren, Wrake, Hagberg, Roth (bib34) 2014; 14 Torres, Colominas, Schlotthauer, Flandrin (bib59) 2011 Sun, Zhang (bib55) 2022; 253 Chai, Wang, Wang, Wang (bib4) 2019; 229 Liao, Li, Shang, Ma (bib31) 2022; 31 Lu, Ma, Huang, Azimi (bib36) 2020; 249 Mao, Yu (bib39) 2024; 351 Yin, Jiang, Liu, Yu (bib67) 2019; 55 Lu, Gao, Li (bib35) 2022 Zhou, Wang (bib79) 2021; 13 Duan, Zhang, Wang, Feng, Ma (bib11) 2024; 1655 Zhu, Wu, Chen, Liu, Zhou (bib86) 2019; 519 Sun, Huang (bib51) 2020; 207 Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bib7) 2014 Gao, Shao (bib14) 2022; 243 Zhu, Han, Wang, Wu, Zhang, Wei (bib81) 2017; 191 Chevallier (bib6) 2011; 33 Zhang, Cao, Thé, Yu (bib72) 2022; 306 Zhang, Yang, Lu, Wu, Yu, Lin (bib74) 2023; 346 Hao, Wang, Wang, Yang (bib18) 2024; 244 Wang, Tan, Zhang, Pu, Zhang, Zhang (bib61) 2023; 425 Wu, Liu (bib64) 2020; 8 Colominas, Schlotthauer, Torres (bib8) 2014; 14 Ji, Niu, Li, Li, Sun, Zhu (bib23) 2022; 116 Wang, Chau, Qiu, Chen (bib62) 2015; 139 Li, Ning, Yang, Gao (bib27) 2022; 239 Karapinar, Dudu, Geyik, Yakut (bib24) 2019; 19 Sun, Huang (bib53) 2020; 207 Rostaghi, Azami (bib46) 2016; 23 McMichael, Woodruff, Hales (bib40) 2006; 367 Zhu, Wang, Chevallier, Wei (bib82) 2015; 45 Richman, Moorman (bib45) 2000; 278 García-Martos, Rodríguez, Sánchez (bib15) 2013; 101 Dhiman, Kumar (bib9) 2019; 165 Guo, Gu, Liu, Liang, Mo, Fan (bib17) 2020; 11 Sadefo Kamdem, Miano Mukami, Njong (bib47) 2023 Chai, Zhang, Zhang (bib5) 2021 Zhou, Huo, Xu, Li (bib78) 2019; 12 Huang, Dai, Wang, Zhou (bib21) 2021; 285 Li, Zheng, Yang (bib28) 2022; 8 Sun, Huang (bib52) 2020; 243 Suykens, Vandewalle (bib56) 1999 Yang, Chen, Li, Wang (bib66) 2020; 716 Yu, Wang, Liang, Liu, Wang (bib68) 2022; 10 Byun, Cho (bib3) 2013; 40 Zhang, Yang, Wang, Thé, Tan, Yu (bib73) 2023; 405 Zhu, Ye, Wang, He, Zhang, Wei (bib85) 2018; 70 Feng, Duan, Wang, Zhang, Ma (bib13) 2023; 13 Lin, Lu, Tan, Yu (bib32) 2022; 246 Guðbrandsdóttir, Haraldsson (bib16) 2011; 1 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib20) 1998; 454 Sun, Zhang (bib54) 2018; 231 Zhang, Li, Hao, Tan (bib71) 2018; 204 Seifert, Uhrig-Homburg, Wagner (bib48) 2008; 56 Li, Ning, Yang, Gao (bib26) 2022; 239 Wu, Huang (bib65) 2009; 1 Song, Liang, Liu, Song (bib50) 2018; 181 Zhou, Huang, Zhang (bib77) 2022; 311 Tian, Hao (bib58) 2020; 79 Zhou, Yu, Yuan (bib80) 2018; 11 Liu, Jin, Bai, Zhang (bib33) 2023; 11 E, Ye, He, Jin (bib12) 2019; 189 Ma, Wang, Luo, Peng, Li (bib38) 2022; 135 Huang, Hu, Liu, Liu (bib22) 2019; 7 Qi, Cheng, Tan, Feng, Zhou (bib44) 2022; 324 Zhu, Wei (bib83) 2013; 41 Prabu, Thiyaneswaran, Sujatha, Nalini, Rajkumar (bib43) 2022; 43 Niu, Wang, Sun, Li (bib42) 2016; 134 Luber, McGeehin (bib37) 2008; 35 Diebold, Mariano (bib10) 1995 Li, Liu (bib30) 2023; 278 Bandt, Pompe (bib2) 2002; 88 Zhang, Wei (bib75) 2010; 87 Bai, Kolter, Koltun (bib1) 2018 Zhu, Ye, Han, Wang, He, Wei, Xie (bib84) 2019; 78 Tang, Gong, Shen (bib57) 2017; 255 Lee, Park, Sim (bib25) 2018; 172 Yun, Huang, Wu, Yang (bib69) 2023; 11 Shi, Wei, Xu, Zhu, Hu, Tang (bib49) 2024; 352 Li, Jin, Sun, Li (bib29) 2021; 214 Nguyen, Huynh, Nasir (bib41) 2021; 285 Zhu (10.1016/j.jenvman.2024.121253_bib82) 2015; 45 Zhang (10.1016/j.jenvman.2024.121253_bib74) 2023; 346 Karapinar (10.1016/j.jenvman.2024.121253_bib24) 2019; 19 Zhou (10.1016/j.jenvman.2024.121253_bib78) 2019; 12 Lee (10.1016/j.jenvman.2024.121253_bib25) 2018; 172 Chevallier (10.1016/j.jenvman.2024.121253_bib6) 2011; 33 Tang (10.1016/j.jenvman.2024.121253_bib57) 2017; 255 Li (10.1016/j.jenvman.2024.121253_bib27) 2022; 239 Ma (10.1016/j.jenvman.2024.121253_bib38) 2022; 135 Richman (10.1016/j.jenvman.2024.121253_bib45) 2000; 278 Dhiman (10.1016/j.jenvman.2024.121253_bib9) 2019; 165 Nguyen (10.1016/j.jenvman.2024.121253_bib41) 2021; 285 Guðbrandsdóttir (10.1016/j.jenvman.2024.121253_bib16) 2011; 1 Byun (10.1016/j.jenvman.2024.121253_bib3) 2013; 40 Tian (10.1016/j.jenvman.2024.121253_bib58) 2020; 79 Zhu (10.1016/j.jenvman.2024.121253_bib84) 2019; 78 Prabu (10.1016/j.jenvman.2024.121253_bib43) 2022; 43 Torres (10.1016/j.jenvman.2024.121253_bib59) 2011 Hao (10.1016/j.jenvman.2024.121253_bib18) 2024; 244 Wu (10.1016/j.jenvman.2024.121253_bib65) 2009; 1 Zhu (10.1016/j.jenvman.2024.121253_bib81) 2017; 191 Duan (10.1016/j.jenvman.2024.121253_bib11) 2024; 1655 Seifert (10.1016/j.jenvman.2024.121253_bib48) 2008; 56 Zhang (10.1016/j.jenvman.2024.121253_bib73) 2023; 405 Zhu (10.1016/j.jenvman.2024.121253_bib86) 2019; 519 Lu (10.1016/j.jenvman.2024.121253_bib36) 2020; 249 Yin (10.1016/j.jenvman.2024.121253_bib67) 2019; 55 Huang (10.1016/j.jenvman.2024.121253_bib20) 1998; 454 McMichael (10.1016/j.jenvman.2024.121253_bib40) 2006; 367 Sun (10.1016/j.jenvman.2024.121253_bib53) 2020; 207 Shi (10.1016/j.jenvman.2024.121253_bib49) 2024; 352 García-Martos (10.1016/j.jenvman.2024.121253_bib15) 2013; 101 Sadefo Kamdem (10.1016/j.jenvman.2024.121253_bib47) 2023 Li (10.1016/j.jenvman.2024.121253_bib30) 2023; 278 Mao (10.1016/j.jenvman.2024.121253_bib39) 2024; 351 Qi (10.1016/j.jenvman.2024.121253_bib44) 2022; 324 Zhang (10.1016/j.jenvman.2024.121253_bib75) 2010; 87 Suykens (10.1016/j.jenvman.2024.121253_bib56) 1999 Li (10.1016/j.jenvman.2024.121253_bib28) 2022; 8 Lu (10.1016/j.jenvman.2024.121253_bib35) 2022 Song (10.1016/j.jenvman.2024.121253_bib50) 2018; 181 Lin (10.1016/j.jenvman.2024.121253_bib32) 2022; 246 Zhu (10.1016/j.jenvman.2024.121253_bib83) 2013; 41 Zhou (10.1016/j.jenvman.2024.121253_bib80) 2018; 11 Sun (10.1016/j.jenvman.2024.121253_bib51) 2020; 207 Guo (10.1016/j.jenvman.2024.121253_bib17) 2020; 11 Yu (10.1016/j.jenvman.2024.121253_bib68) 2022; 10 Li (10.1016/j.jenvman.2024.121253_bib26) 2022; 239 Feng (10.1016/j.jenvman.2024.121253_bib13) 2023; 13 Zhu (10.1016/j.jenvman.2024.121253_bib85) 2018; 70 Zhou (10.1016/j.jenvman.2024.121253_bib79) 2021; 13 Ji (10.1016/j.jenvman.2024.121253_bib23) 2022; 116 Luber (10.1016/j.jenvman.2024.121253_bib37) 2008; 35 Huang (10.1016/j.jenvman.2024.121253_bib21) 2021; 285 Rostaghi (10.1016/j.jenvman.2024.121253_bib46) 2016; 23 Liao (10.1016/j.jenvman.2024.121253_bib31) 2022; 31 Lofgren (10.1016/j.jenvman.2024.121253_bib34) 2014; 14 Cho (10.1016/j.jenvman.2024.121253_bib7) 2014 Zhou (10.1016/j.jenvman.2024.121253_bib77) 2022; 311 Chai (10.1016/j.jenvman.2024.121253_bib5) 2021 Niu (10.1016/j.jenvman.2024.121253_bib42) 2016; 134 Sun (10.1016/j.jenvman.2024.121253_bib55) 2022; 253 Gao (10.1016/j.jenvman.2024.121253_bib14) 2022; 243 Wang (10.1016/j.jenvman.2024.121253_bib61) 2023; 425 Sun (10.1016/j.jenvman.2024.121253_bib52) 2020; 243 Chai (10.1016/j.jenvman.2024.121253_bib4) 2019; 229 Huang (10.1016/j.jenvman.2024.121253_bib22) 2019; 7 Liu (10.1016/j.jenvman.2024.121253_bib33) 2023; 11 Sun (10.1016/j.jenvman.2024.121253_bib54) 2018; 231 Bandt (10.1016/j.jenvman.2024.121253_bib2) 2002; 88 Li (10.1016/j.jenvman.2024.121253_bib29) 2021; 214 Yun (10.1016/j.jenvman.2024.121253_bib69) 2023; 11 Diebold (10.1016/j.jenvman.2024.121253_bib10) 1995 Zhang (10.1016/j.jenvman.2024.121253_bib71) 2018; 204 Wang (10.1016/j.jenvman.2024.121253_bib62) 2015; 139 Zhang (10.1016/j.jenvman.2024.121253_bib72) 2022; 306 Colominas (10.1016/j.jenvman.2024.121253_bib8) 2014; 14 Wu (10.1016/j.jenvman.2024.121253_bib64) 2020; 8 Bai (10.1016/j.jenvman.2024.121253_bib1) 2018 E (10.1016/j.jenvman.2024.121253_bib12) 2019; 189 Yang (10.1016/j.jenvman.2024.121253_bib66) 2020; 716 |
| References_xml | – volume: 101 start-page: 363 year: 2013 end-page: 375 ident: bib15 article-title: Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities publication-title: Appl. Energy – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: bib65 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 204 start-page: 958 year: 2018 end-page: 964 ident: bib71 article-title: A hybrid model using signal processing technology, econometric models and neural network for carbon spot price forecasting publication-title: J. Clean. Prod. – volume: 519 start-page: 140 year: 2019 end-page: 158 ident: bib86 article-title: Carbon price forecasting with variational mode decomposition and optimal combined model publication-title: Phys. Stat. Mech. Appl. – volume: 43 start-page: 737 year: 2022 end-page: 749 ident: bib43 article-title: Grid search for predicting coronary heart disease by tuning hyper-parameters publication-title: Comput. Syst. Sci. Eng. – volume: 239 year: 2022 ident: bib27 article-title: A new carbon price prediction model publication-title: Energy – volume: 11 start-page: 79 year: 2023 end-page: 96 ident: bib69 article-title: Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN‐LSTM publication-title: Energy Sci. Eng. – volume: 12 start-page: 950 year: 2019 ident: bib78 article-title: Forecasting the carbon price using extreme-point symmetric mode decomposition and extreme learning machine optimized by the grey wolf optimizer algorithm publication-title: Energies – volume: 7 start-page: 40 year: 2019 end-page: 47 ident: bib22 article-title: Research on price forecasting method of China's carbon trading market based on PSO-RBF algorithm publication-title: Systems Science & Control Engineering – volume: 172 start-page: 359 year: 2018 end-page: 367 ident: bib25 article-title: Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-free harmony search algorithm publication-title: Optik – volume: 285 year: 2021 ident: bib41 article-title: Carbon emissions determinants and forecasting: evidence from G6 countries publication-title: J. Environ. Manag. – start-page: 1 year: 2022 end-page: 17 ident: bib35 article-title: Does economic policy uncertainty outperform macroeconomic factor and financial market uncertainty in forecasting carbon emission price volatility? Evidence from China publication-title: Appl. Econ. – volume: 13 year: 2023 ident: bib13 article-title: Carbon price prediction based on decomposition technique and extreme gradient boosting optimized by the grey wolf optimizer algorithm publication-title: Sci. Rep. – year: 2023 ident: bib47 article-title: Time-frequency analysis and machine learning models for carbon market forecasting publication-title: Ann. Oper. Res. – year: 2018 ident: bib1 article-title: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling – volume: 19 start-page: 1157 year: 2019 end-page: 1172 ident: bib24 article-title: How to reach an elusive INDC target: macro-economic implications of carbon taxation and emissions trading in Turkey publication-title: Clim. Pol. – volume: 1 start-page: 481 year: 2011 end-page: 489 ident: bib16 article-title: Predicting the price of EU ETS carbon credits publication-title: Systems Engineering Procedia – volume: 134 start-page: 168 year: 2016 end-page: 180 ident: bib42 article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting publication-title: Atmos. Environ. – volume: 11 start-page: 1907 year: 2018 ident: bib80 article-title: Predicting the carbon price sequence in the shenzhen emissions exchange using a multiscale ensemble forecasting model based on ensemble empirical mode decomposition publication-title: Energies – volume: 346 year: 2023 ident: bib74 article-title: Predicting carbon futures prices based on a new hybrid machine learning: comparative study of carbon prices in different periods publication-title: J. Environ. Manag. – volume: 278 year: 2023 ident: bib30 article-title: Carbon price forecasting based on secondary decomposition and feature screening publication-title: Energy – volume: 367 start-page: 859 year: 2006 end-page: 869 ident: bib40 article-title: Climate change and human health: present and future risks publication-title: Lancet – volume: 231 start-page: 1354 year: 2018 end-page: 1371 ident: bib54 article-title: Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm publication-title: Appl. Energy – volume: 79 start-page: 126 year: 2020 end-page: 144 ident: bib58 article-title: Point and interval forecasting for carbon price based on an improved analysis-forecast system publication-title: Appl. Math. Model. – volume: 239 year: 2022 ident: bib26 article-title: A new carbon price prediction model publication-title: Energy – volume: 311 year: 2022 ident: bib77 article-title: Carbon price forecasting based on CEEMDAN and LSTM publication-title: Appl. Energy – volume: 243 year: 2020 ident: bib52 article-title: A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network publication-title: J. Clean. Prod. – volume: 253 year: 2022 ident: bib55 article-title: A novel carbon price prediction model based on optimized least square support vector machine combining characteristic-scale decomposition and phase space reconstruction publication-title: Energy – volume: 45 start-page: 195 year: 2015 end-page: 206 ident: bib82 article-title: Carbon price analysis using empirical mode decomposition publication-title: Comput. Econ. – volume: 324 year: 2022 ident: bib44 article-title: Predicting China's carbon price based on a multi-scale integrated model publication-title: Appl. Energy – volume: 181 start-page: 374 year: 2018 end-page: 384 ident: bib50 article-title: How China's current carbon trading policy affects carbon price? An investigation of the Shanghai Emission Trading Scheme pilot publication-title: J. Clean. Prod. – volume: 207 year: 2020 ident: bib51 article-title: A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network publication-title: Energy – volume: 1655 year: 2024 ident: bib11 article-title: Forecasting carbon price using signal processing technology and extreme gradient boosting optimized by the whale optimization algorithm publication-title: Energy Science & Engineering ese3 – volume: 56 start-page: 180 year: 2008 end-page: 194 ident: bib48 article-title: Dynamic behavior of CO2 spot prices publication-title: J. Environ. Econ. Manag. – volume: 244 year: 2024 ident: bib18 article-title: A novel interval-valued carbon price analysis and forecasting system based on multi-objective ensemble strategy for carbon trading market publication-title: Expert Syst. Appl. – volume: 55 start-page: 3433 year: 2019 end-page: 3451 ident: bib67 article-title: Factors affecting carbon emission trading price: evidence from China publication-title: Emerg. Mark. Finance Trade – volume: 191 start-page: 521 year: 2017 end-page: 530 ident: bib81 article-title: Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression publication-title: Appl. Energy – volume: 352 year: 2024 ident: bib49 article-title: A CNN-LSTM based deep learning model with high accuracy and robustness for carbon price forecasting: a case of Shenzhen's carbon market in China publication-title: J. Environ. Manag. – volume: 405 year: 2023 ident: bib73 article-title: Multi-step carbon price forecasting using a hybrid model based on multivariate decomposition strategy and deep learning algorithms publication-title: J. Clean. Prod. – volume: 41 start-page: 517 year: 2013 end-page: 524 ident: bib83 article-title: Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology publication-title: Omega – volume: 246 year: 2022 ident: bib32 article-title: Forecasting energy prices using a novel hybrid model with variational mode decomposition publication-title: Energy – year: 1995 ident: bib10 article-title: Comparing Predictive Accuracy – volume: 31 start-page: 1 year: 2022 end-page: 40 ident: bib31 article-title: An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks publication-title: ACM Trans. Softw. Eng. Methodol. – volume: 116 year: 2022 ident: bib23 article-title: A three-stage framework for vertical carbon price interval forecast based on decomposition–integration method publication-title: Appl. Soft Comput. – volume: 14 start-page: 537 year: 2014 end-page: 558 ident: bib34 article-title: Why the EU ETS needs reforming: an empirical analysis of the impact on company investments publication-title: Clim. Policy – volume: 35 start-page: 429 year: 2008 end-page: 435 ident: bib37 article-title: Climate change and extreme heat events publication-title: Am. J. Prev. Med. – volume: 33 start-page: 1295 year: 2011 end-page: 1312 ident: bib6 article-title: A model of carbon price interactions with macroeconomic and energy dynamics publication-title: Energy Econ. – volume: 425 year: 2023 ident: bib61 article-title: Carbon market price prediction based on sequence decomposition-reconstruction-dimensionality reduction and improved deep learning model publication-title: J. Clean. Prod. – volume: 70 start-page: 143 year: 2018 end-page: 157 ident: bib85 article-title: A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting publication-title: Energy Econ. – volume: 243 year: 2022 ident: bib14 article-title: A novel interval decomposition ensemble model for interval carbon price forecasting publication-title: Energy – volume: 11 start-page: 3126 year: 2023 ident: bib33 article-title: Prediction and analysis of the price of carbon emission rights in Shanghai: under the background of COVID-19 and the Russia–Ukraine conflict publication-title: Mathematics – volume: 716 year: 2020 ident: bib66 article-title: Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm publication-title: Sci. Total Environ. – volume: 306 year: 2022 ident: bib72 article-title: A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms publication-title: Appl. Energy – start-page: 4144 year: 2011 end-page: 4147 ident: bib59 article-title: A complete ensemble empirical mode decomposition with adaptive noise publication-title: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Presented at the ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 87 start-page: 1804 year: 2010 end-page: 1814 ident: bib75 article-title: An overview of current research on EU ETS: evidence from its operating mechanism and economic effect publication-title: Appl. Energy – year: 2014 ident: bib7 article-title: Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation – volume: 135 year: 2022 ident: bib38 article-title: Ultra-short-term Railway traction load prediction based on DWT-TCN-PSO_SVR combined model publication-title: Int. J. Electr. Power Energy Syst. – volume: 78 start-page: 202 year: 2019 end-page: 216 ident: bib84 article-title: A multiscale analysis for carbon price drivers publication-title: Energy Econ. – volume: 351 year: 2024 ident: bib39 article-title: A hybrid forecasting approach for China's national carbon emission allowance prices with balanced accuracy and interpretability publication-title: J. Environ. Manag. – volume: 139 start-page: 46 year: 2015 end-page: 54 ident: bib62 article-title: Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition publication-title: Environ. Res. – volume: 10 year: 2022 ident: bib68 article-title: Carbon market volatility analysis based on structural breaks: evidence from EU-ETS and China publication-title: Front. Environ. Sci. – year: 1999 ident: bib56 article-title: Least Squares Support Vector Machine Classifiers – volume: 229 start-page: 775 year: 2019 end-page: 786 ident: bib4 article-title: A decomposition–integration model with dynamic fuzzy reconstruction for crude oil price prediction and the implications for sustainable development publication-title: J. Clean. Prod. – volume: 285 year: 2021 ident: bib21 article-title: A hybrid model for carbon price forecasting using GARCH and long short-term memory network publication-title: Appl. Energy – volume: 214 year: 2021 ident: bib29 article-title: A new secondary decomposition ensemble learning approach for carbon price forecasting publication-title: Knowl. Base Syst. – volume: 14 start-page: 19 year: 2014 end-page: 29 ident: bib8 article-title: Improved complete ensemble EMD: a suitable tool for biomedical signal processing publication-title: Biomed. Signal Process Control – volume: 189 year: 2019 ident: bib12 article-title: Energy price prediction based on independent component analysis and gated recurrent unit neural network publication-title: Energy – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bib20 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. A – volume: 207 year: 2020 ident: bib53 article-title: A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network publication-title: Energy – volume: 11 start-page: 2078 year: 2020 ident: bib17 article-title: Assessing the impact of ETS trading profit on emission abatements based on firm-level transactions publication-title: Nat. Commun. – volume: 255 start-page: 157 year: 2017 end-page: 168 ident: bib57 article-title: Factors of carbon price volatility in a comparative analysis of the EUA and sCER publication-title: Ann. Oper. Res. – volume: 249 year: 2020 ident: bib36 article-title: Carbon trading volume and price forecasting in China using multiple machine learning models publication-title: J. Clean. Prod. – volume: 23 start-page: 610 year: 2016 end-page: 614 ident: bib46 article-title: Dispersion entropy: a measure for time-series analysis publication-title: IEEE Signal Process. Lett. – volume: 8 start-page: 2708 year: 2020 end-page: 2721 ident: bib64 article-title: Forecasting the carbon price sequence in the Hubei emissions exchange using a hybrid model based on ensemble empirical mode decomposition publication-title: Energy Sci. Eng. – volume: 88 year: 2002 ident: bib2 article-title: Permutation entropy: a natural complexity measure for time series publication-title: Phys. Rev. Lett. – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: bib9 article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems publication-title: Knowl. Base Syst. – volume: 278 start-page: H2039 year: 2000 end-page: H2049 ident: bib45 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 8 start-page: 1644 year: 2022 end-page: 1664 ident: bib28 article-title: Carbon price combination prediction model based on improved variational mode decomposition publication-title: Energy Rep. – volume: 40 start-page: 207 year: 2013 end-page: 221 ident: bib3 article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities publication-title: Energy Econ. – volume: 13 start-page: 8413 year: 2021 ident: bib79 article-title: Forecasting carbon price with secondary decomposition algorithm and optimized extreme learning machine publication-title: Sustainability – year: 2021 ident: bib5 article-title: Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine publication-title: Ann. Oper. Res. – volume: 11 start-page: 1907 year: 2018 ident: 10.1016/j.jenvman.2024.121253_bib80 article-title: Predicting the carbon price sequence in the shenzhen emissions exchange using a multiscale ensemble forecasting model based on ensemble empirical mode decomposition publication-title: Energies doi: 10.3390/en11071907 – start-page: 4144 year: 2011 ident: 10.1016/j.jenvman.2024.121253_bib59 article-title: A complete ensemble empirical mode decomposition with adaptive noise – year: 2014 ident: 10.1016/j.jenvman.2024.121253_bib7 – volume: 243 year: 2020 ident: 10.1016/j.jenvman.2024.121253_bib52 article-title: A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118671 – volume: 70 start-page: 143 year: 2018 ident: 10.1016/j.jenvman.2024.121253_bib85 article-title: A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.12.030 – volume: 253 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib55 article-title: A novel carbon price prediction model based on optimized least square support vector machine combining characteristic-scale decomposition and phase space reconstruction publication-title: Energy doi: 10.1016/j.energy.2022.124167 – volume: 231 start-page: 1354 year: 2018 ident: 10.1016/j.jenvman.2024.121253_bib54 article-title: Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.118 – volume: 87 start-page: 1804 year: 2010 ident: 10.1016/j.jenvman.2024.121253_bib75 article-title: An overview of current research on EU ETS: evidence from its operating mechanism and economic effect publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.12.019 – volume: 324 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib44 article-title: Predicting China's carbon price based on a multi-scale integrated model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119784 – volume: 11 start-page: 3126 year: 2023 ident: 10.1016/j.jenvman.2024.121253_bib33 article-title: Prediction and analysis of the price of carbon emission rights in Shanghai: under the background of COVID-19 and the Russia–Ukraine conflict publication-title: Mathematics doi: 10.3390/math11143126 – volume: 311 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib77 article-title: Carbon price forecasting based on CEEMDAN and LSTM publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118601 – volume: 207 year: 2020 ident: 10.1016/j.jenvman.2024.121253_bib51 article-title: A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network publication-title: Energy doi: 10.1016/j.energy.2020.118294 – volume: 367 start-page: 859 year: 2006 ident: 10.1016/j.jenvman.2024.121253_bib40 article-title: Climate change and human health: present and future risks publication-title: Lancet doi: 10.1016/S0140-6736(06)68079-3 – volume: 33 start-page: 1295 year: 2011 ident: 10.1016/j.jenvman.2024.121253_bib6 article-title: A model of carbon price interactions with macroeconomic and energy dynamics publication-title: Energy Econ. doi: 10.1016/j.eneco.2011.07.012 – volume: 14 start-page: 19 year: 2014 ident: 10.1016/j.jenvman.2024.121253_bib8 article-title: Improved complete ensemble EMD: a suitable tool for biomedical signal processing publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2014.06.009 – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.jenvman.2024.121253_bib20 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1998.0193 – volume: 425 year: 2023 ident: 10.1016/j.jenvman.2024.121253_bib61 article-title: Carbon market price prediction based on sequence decomposition-reconstruction-dimensionality reduction and improved deep learning model publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.139063 – volume: 78 start-page: 202 year: 2019 ident: 10.1016/j.jenvman.2024.121253_bib84 article-title: A multiscale analysis for carbon price drivers publication-title: Energy Econ. doi: 10.1016/j.eneco.2018.11.007 – volume: 79 start-page: 126 year: 2020 ident: 10.1016/j.jenvman.2024.121253_bib58 article-title: Point and interval forecasting for carbon price based on an improved analysis-forecast system publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.10.022 – volume: 207 year: 2020 ident: 10.1016/j.jenvman.2024.121253_bib53 article-title: A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network publication-title: Energy doi: 10.1016/j.energy.2020.118294 – volume: 346 year: 2023 ident: 10.1016/j.jenvman.2024.121253_bib74 article-title: Predicting carbon futures prices based on a new hybrid machine learning: comparative study of carbon prices in different periods publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.118962 – volume: 204 start-page: 958 year: 2018 ident: 10.1016/j.jenvman.2024.121253_bib71 article-title: A hybrid model using signal processing technology, econometric models and neural network for carbon spot price forecasting publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.09.071 – volume: 101 start-page: 363 year: 2013 ident: 10.1016/j.jenvman.2024.121253_bib15 article-title: Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.03.046 – volume: 239 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib27 article-title: A new carbon price prediction model publication-title: Energy doi: 10.1016/j.energy.2021.122324 – volume: 40 start-page: 207 year: 2013 ident: 10.1016/j.jenvman.2024.121253_bib3 article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities publication-title: Energy Econ. doi: 10.1016/j.eneco.2013.06.017 – year: 2018 ident: 10.1016/j.jenvman.2024.121253_bib1 – volume: 244 year: 2024 ident: 10.1016/j.jenvman.2024.121253_bib18 article-title: A novel interval-valued carbon price analysis and forecasting system based on multi-objective ensemble strategy for carbon trading market publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122912 – volume: 11 start-page: 2078 year: 2020 ident: 10.1016/j.jenvman.2024.121253_bib17 article-title: Assessing the impact of ETS trading profit on emission abatements based on firm-level transactions publication-title: Nat. Commun. doi: 10.1038/s41467-020-15996-1 – volume: 8 start-page: 2708 year: 2020 ident: 10.1016/j.jenvman.2024.121253_bib64 article-title: Forecasting the carbon price sequence in the Hubei emissions exchange using a hybrid model based on ensemble empirical mode decomposition publication-title: Energy Sci. Eng. doi: 10.1002/ese3.703 – volume: 55 start-page: 3433 year: 2019 ident: 10.1016/j.jenvman.2024.121253_bib67 article-title: Factors affecting carbon emission trading price: evidence from China publication-title: Emerg. Mark. Finance Trade doi: 10.1080/1540496X.2019.1663166 – volume: 255 start-page: 157 year: 2017 ident: 10.1016/j.jenvman.2024.121253_bib57 article-title: Factors of carbon price volatility in a comparative analysis of the EUA and sCER publication-title: Ann. Oper. Res. doi: 10.1007/s10479-015-1864-y – year: 2021 ident: 10.1016/j.jenvman.2024.121253_bib5 article-title: Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine publication-title: Ann. Oper. Res. doi: 10.1007/s10479-021-04392-7 – volume: 14 start-page: 537 year: 2014 ident: 10.1016/j.jenvman.2024.121253_bib34 article-title: Why the EU ETS needs reforming: an empirical analysis of the impact on company investments publication-title: Clim. Policy doi: 10.1080/14693062.2014.864800 – volume: 8 start-page: 1644 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib28 article-title: Carbon price combination prediction model based on improved variational mode decomposition publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.11.270 – volume: 31 start-page: 1 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib31 article-title: An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks publication-title: ACM Trans. Softw. Eng. Methodol. doi: 10.1145/3506695 – volume: 19 start-page: 1157 year: 2019 ident: 10.1016/j.jenvman.2024.121253_bib24 article-title: How to reach an elusive INDC target: macro-economic implications of carbon taxation and emissions trading in Turkey publication-title: Clim. Pol. doi: 10.1080/14693062.2019.1635875 – volume: 278 start-page: H2039 year: 2000 ident: 10.1016/j.jenvman.2024.121253_bib45 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.2000.278.6.H2039 – year: 1995 ident: 10.1016/j.jenvman.2024.121253_bib10 – volume: 191 start-page: 521 year: 2017 ident: 10.1016/j.jenvman.2024.121253_bib81 article-title: Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.076 – volume: 116 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib23 article-title: A three-stage framework for vertical carbon price interval forecast based on decomposition–integration method publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108204 – volume: 41 start-page: 517 year: 2013 ident: 10.1016/j.jenvman.2024.121253_bib83 article-title: Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology publication-title: Omega doi: 10.1016/j.omega.2012.06.005 – volume: 229 start-page: 775 year: 2019 ident: 10.1016/j.jenvman.2024.121253_bib4 article-title: A decomposition–integration model with dynamic fuzzy reconstruction for crude oil price prediction and the implications for sustainable development publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.393 – volume: 189 year: 2019 ident: 10.1016/j.jenvman.2024.121253_bib12 article-title: Energy price prediction based on independent component analysis and gated recurrent unit neural network publication-title: Energy doi: 10.1016/j.energy.2019.116278 – volume: 214 year: 2021 ident: 10.1016/j.jenvman.2024.121253_bib29 article-title: A new secondary decomposition ensemble learning approach for carbon price forecasting publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2020.106686 – volume: 134 start-page: 168 year: 2016 ident: 10.1016/j.jenvman.2024.121253_bib42 article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.03.056 – volume: 239 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib26 article-title: A new carbon price prediction model publication-title: Energy doi: 10.1016/j.energy.2021.122324 – volume: 306 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib72 article-title: A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118011 – volume: 278 year: 2023 ident: 10.1016/j.jenvman.2024.121253_bib30 article-title: Carbon price forecasting based on secondary decomposition and feature screening publication-title: Energy doi: 10.1016/j.energy.2023.127783 – volume: 45 start-page: 195 year: 2015 ident: 10.1016/j.jenvman.2024.121253_bib82 article-title: Carbon price analysis using empirical mode decomposition publication-title: Comput. Econ. doi: 10.1007/s10614-013-9417-4 – start-page: 1 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib35 article-title: Does economic policy uncertainty outperform macroeconomic factor and financial market uncertainty in forecasting carbon emission price volatility? Evidence from China publication-title: Appl. Econ. – volume: 1 start-page: 481 year: 2011 ident: 10.1016/j.jenvman.2024.121253_bib16 article-title: Predicting the price of EU ETS carbon credits publication-title: Systems Engineering Procedia doi: 10.1016/j.sepro.2011.08.070 – volume: 352 year: 2024 ident: 10.1016/j.jenvman.2024.121253_bib49 article-title: A CNN-LSTM based deep learning model with high accuracy and robustness for carbon price forecasting: a case of Shenzhen's carbon market in China publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2024.120131 – volume: 7 start-page: 40 year: 2019 ident: 10.1016/j.jenvman.2024.121253_bib22 article-title: Research on price forecasting method of China's carbon trading market based on PSO-RBF algorithm publication-title: Systems Science & Control Engineering doi: 10.1080/21642583.2019.1625082 – volume: 243 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib14 article-title: A novel interval decomposition ensemble model for interval carbon price forecasting publication-title: Energy doi: 10.1016/j.energy.2021.123006 – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.jenvman.2024.121253_bib9 article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2018.11.024 – year: 2023 ident: 10.1016/j.jenvman.2024.121253_bib47 article-title: Time-frequency analysis and machine learning models for carbon market forecasting publication-title: Ann. Oper. Res. doi: 10.1007/s10479-023-05443-x – volume: 88 year: 2002 ident: 10.1016/j.jenvman.2024.121253_bib2 article-title: Permutation entropy: a natural complexity measure for time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.174102 – volume: 10 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib68 article-title: Carbon market volatility analysis based on structural breaks: evidence from EU-ETS and China publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2022.973855 – volume: 56 start-page: 180 year: 2008 ident: 10.1016/j.jenvman.2024.121253_bib48 article-title: Dynamic behavior of CO2 spot prices publication-title: J. Environ. Econ. Manag. doi: 10.1016/j.jeem.2008.03.003 – volume: 405 year: 2023 ident: 10.1016/j.jenvman.2024.121253_bib73 article-title: Multi-step carbon price forecasting using a hybrid model based on multivariate decomposition strategy and deep learning algorithms publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.136959 – volume: 181 start-page: 374 year: 2018 ident: 10.1016/j.jenvman.2024.121253_bib50 article-title: How China's current carbon trading policy affects carbon price? An investigation of the Shanghai Emission Trading Scheme pilot publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.01.102 – volume: 135 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib38 article-title: Ultra-short-term Railway traction load prediction based on DWT-TCN-PSO_SVR combined model publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107595 – volume: 13 start-page: 8413 year: 2021 ident: 10.1016/j.jenvman.2024.121253_bib79 article-title: Forecasting carbon price with secondary decomposition algorithm and optimized extreme learning machine publication-title: Sustainability doi: 10.3390/su13158413 – volume: 35 start-page: 429 year: 2008 ident: 10.1016/j.jenvman.2024.121253_bib37 article-title: Climate change and extreme heat events publication-title: Am. J. Prev. Med. doi: 10.1016/j.amepre.2008.08.021 – volume: 13 year: 2023 ident: 10.1016/j.jenvman.2024.121253_bib13 article-title: Carbon price prediction based on decomposition technique and extreme gradient boosting optimized by the grey wolf optimizer algorithm publication-title: Sci. Rep. doi: 10.1038/s41598-023-45524-2 – year: 1999 ident: 10.1016/j.jenvman.2024.121253_bib56 – volume: 172 start-page: 359 year: 2018 ident: 10.1016/j.jenvman.2024.121253_bib25 article-title: Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-free harmony search algorithm publication-title: Optik doi: 10.1016/j.ijleo.2018.07.044 – volume: 1655 year: 2024 ident: 10.1016/j.jenvman.2024.121253_bib11 article-title: Forecasting carbon price using signal processing technology and extreme gradient boosting optimized by the whale optimization algorithm publication-title: Energy Science & Engineering ese3 – volume: 1 start-page: 1 year: 2009 ident: 10.1016/j.jenvman.2024.121253_bib65 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 11 start-page: 79 year: 2023 ident: 10.1016/j.jenvman.2024.121253_bib69 article-title: Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN‐LSTM publication-title: Energy Sci. Eng. doi: 10.1002/ese3.1304 – volume: 12 start-page: 950 year: 2019 ident: 10.1016/j.jenvman.2024.121253_bib78 article-title: Forecasting the carbon price using extreme-point symmetric mode decomposition and extreme learning machine optimized by the grey wolf optimizer algorithm publication-title: Energies doi: 10.3390/en12050950 – volume: 249 year: 2020 ident: 10.1016/j.jenvman.2024.121253_bib36 article-title: Carbon trading volume and price forecasting in China using multiple machine learning models publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119386 – volume: 285 year: 2021 ident: 10.1016/j.jenvman.2024.121253_bib41 article-title: Carbon emissions determinants and forecasting: evidence from G6 countries publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.111988 – volume: 43 start-page: 737 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib43 article-title: Grid search for predicting coronary heart disease by tuning hyper-parameters publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2022.022739 – volume: 139 start-page: 46 year: 2015 ident: 10.1016/j.jenvman.2024.121253_bib62 article-title: Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition publication-title: Environ. Res. doi: 10.1016/j.envres.2015.02.002 – volume: 519 start-page: 140 year: 2019 ident: 10.1016/j.jenvman.2024.121253_bib86 article-title: Carbon price forecasting with variational mode decomposition and optimal combined model publication-title: Phys. Stat. Mech. Appl. doi: 10.1016/j.physa.2018.12.017 – volume: 285 year: 2021 ident: 10.1016/j.jenvman.2024.121253_bib21 article-title: A hybrid model for carbon price forecasting using GARCH and long short-term memory network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116485 – volume: 246 year: 2022 ident: 10.1016/j.jenvman.2024.121253_bib32 article-title: Forecasting energy prices using a novel hybrid model with variational mode decomposition publication-title: Energy doi: 10.1016/j.energy.2022.123366 – volume: 23 start-page: 610 year: 2016 ident: 10.1016/j.jenvman.2024.121253_bib46 article-title: Dispersion entropy: a measure for time-series analysis publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2542881 – volume: 716 year: 2020 ident: 10.1016/j.jenvman.2024.121253_bib66 article-title: Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137117 – volume: 351 year: 2024 ident: 10.1016/j.jenvman.2024.121253_bib39 article-title: A hybrid forecasting approach for China's national carbon emission allowance prices with balanced accuracy and interpretability publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.119873 |
| SSID | ssj0003217 |
| Score | 2.4930174 |
| Snippet | Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 121253 |
| SubjectTerms | Carbon carbon markets Carbon price forecasting Commerce entropy environmental management Forecasting hybrids Improved variational mode decomposition Machine learning Models, Theoretical prediction Seagull optimization algorithm Secondary decomposition |
| Title | Breaking through the limitation of carbon price forecasting: A novel hybrid model based on secondary decomposition and nonlinear integration |
| URI | https://dx.doi.org/10.1016/j.jenvman.2024.121253 https://www.ncbi.nlm.nih.gov/pubmed/38823294 https://www.proquest.com/docview/3063461898 https://www.proquest.com/docview/3206195393 |
| Volume | 362 |
| WOSCitedRecordID | wos001250223600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-8630 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003217 issn: 0301-4797 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLa6DgluEAwG42cyEndVSxOnsc1dQUWA0MTFkMpV5Nju2lIlo38a78Ar8W6cEztJS9nGLrhJK8d27JwvPsfH57MJeRnq2LDAgOWmI9OOlBZtpYRB6tPIQJIJA1UcNsFPTsRwKD83Gr9KLsx6xrNMXFzI8_8qakgDYSN19gbiriqFBPgPQocriB2u_yT4N2AGfnMkKHcED5qWM-QxVdahVvM0x9gsGCUwztBqtSiZz_1Wlq_trDX-gVwud1JOC3WdwXWFBc6fDUbaGYvR6D7kq1iCyNyuGxjV6vegKGW-a_xu8OuQvrITg_PJ-WW_rr5PVF5DT2Vno5W7kU6yrfRilWVsx3X2yhdeMCjGudfR3sURRnUoVknt6gboAuSbwzbzo7gbeANQwW7X4R2d4NwT084Uugb96eATOnX-7T24_9CNVcRiGQw3TXw1CVaTuGr2yH7Ie7LXJPv9D4Phx8oUYGFx5HPV_ppC9uqv7bnMOLps8lMYQaf3yF0vQNp3qLtPGjY7ILdLcvvigBwONgVLveZYPCA_S1hSD0v4tbSGJc1H1MGSFrCkG7B8Tfu0ACV1oKQFKGkBSgoFKlDSLVBSACWtQEk3QPmQfHk3OH37vu1PAmlrJsWyHTCrY55GaS-VseBSGBFobpTkMkwt1yzsmqg3sjD51UEco5sOhhludaB0EHDGDkkTnmcfE4o7cPbgVWsR8yhWQnXjVHKGbpRYhtockagUQaL9K8DTWmbJlRA4Ip2q2LnbJ-a6AqKUb-KNXWfEJoDb64q-KPGQgDLAFT6V2Xy1SGD-z6I4EFJckQc6imvnEup55MBUtZjBfJuFMnpy0948JXfqD_cZaS7nK_uc3NLr5WQxPyZ7fCiO_cfxG9kf9hs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breaking+through+the+limitation+of+carbon+price+forecasting%3A+A+novel+hybrid+model+based+on+secondary+decomposition+and+nonlinear+integration&rft.jtitle=Journal+of+environmental+management&rft.au=Lan%2C+Yuqiao&rft.au=Huangfu%2C+Yubin&rft.au=Huang%2C+Zhehao&rft.au=Zhang%2C+Changhong&rft.date=2024-06-01&rft.issn=0301-4797&rft.volume=362&rft.spage=121253&rft_id=info:doi/10.1016%2Fj.jenvman.2024.121253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jenvman_2024_121253 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon |