Breaking through the limitation of carbon price forecasting: A novel hybrid model based on secondary decomposition and nonlinear integration

Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; sec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management Jg. 362; S. 121253
Hauptverfasser: Lan, Yuqiao, Huangfu, Yubin, Huang, Zhehao, Zhang, Changhong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.06.2024
Schlagworte:
ISSN:0301-4797, 1095-8630, 1095-8630
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool. •Propose a novel secondary decomposition-integration framework.•Compare 18 different hybrid frameworks and single models.•Validate that the secondary decomposition method is superior to the primary decomposition method.•Validate hybrid methods in frameworks are better than single methods.•Validate the effectiveness of the nonlinear integration and optimization method.
AbstractList Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool.
Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool.Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool.
Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate investment risks, and promote green development. In this study, firstly, the IVMD and ICEEMDAN are used to decompose carbon price quadratically; secondly, the Dispersion entropy is used to identify the sequence frequency, and then the SOA-LSSVM model and TCN model are used to predict the high-frequency and low-frequency sequences, respectively; finally, the prediction results are integrated by SOA-GRU. As a result, the hybrid IVMD-ICEEMDAN-SOALSSVM/TCN-SOAGRU model was constructed. This framework consistently performs best under two carbon markets, the CEEX Guangzhou and the EU ETS, compared with 21 comparative models, with MAPEs of 0.42% and 0.83%, respectively. The main contributions are as follows: (1) A novel IVMD-ICEEMDAN secondary decomposition method is proposed, which improves the problem of poorly determining the value of the decomposition modal number K in the traditional VMD method and improves the efficiency of the carbon price sequence decomposition. (2) A hybrid forecasting model of LSSVM and TCN is proposed, effectively capturing the features of different sequences. (3) Optimization for LSSVM and GRU using SOA improves the stability and adaptability of the model. The article provides governments, enterprises, and investors with novel and effective carbon price forecasting tool. •Propose a novel secondary decomposition-integration framework.•Compare 18 different hybrid frameworks and single models.•Validate that the secondary decomposition method is superior to the primary decomposition method.•Validate hybrid methods in frameworks are better than single methods.•Validate the effectiveness of the nonlinear integration and optimization method.
ArticleNumber 121253
Author Huangfu, Yubin
Huang, Zhehao
Zhang, Changhong
Lan, Yuqiao
Author_xml – sequence: 1
  givenname: Yuqiao
  surname: Lan
  fullname: Lan, Yuqiao
  email: 223025200111@smail.swufe.edu.cn
  organization: School of Statistics, Southwestern University of Finance and Economics, Chengdu, China
– sequence: 2
  givenname: Yubin
  orcidid: 0009-0001-5472-5432
  surname: Huangfu
  fullname: Huangfu, Yubin
  email: huangfuyubin20@mails.ucas.ac.cn
  organization: School of Economics and Management, University of Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Zhehao
  orcidid: 0000-0003-4022-3842
  surname: Huang
  fullname: Huang, Zhehao
  email: zhehao.h@gzhu.edu.cn
  organization: Guangzhou Institute of International Finance Guangzhou University Guangzhou, China
– sequence: 4
  givenname: Changhong
  surname: Zhang
  fullname: Zhang, Changhong
  email: edwinzhang@gwu.edu
  organization: Department of Decision Sciences, The George Washington University, WA, DC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38823294$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uEzEUhS1U1KaljwDyks0E_8z4BxaorYAiVWIDa8tj30kcZuxgTyL1HXho3CawYNOu7rV0vmPdc87RSUwREHpNyZISKt5tlhuI-8nGJSOsXVJGWcdfoAUlumuU4OQELQgntGmllmfovJQNIYQzKk_RGVeKcabbBfp9ncH-DHGF53VOu9W6TsBjmMJs55AiTgN2Nvd12-bgAA8pg7Nlrsh7fIVj2sOI1_d9Dh5PyddHbwt4XIECLkVv8z32dZu2qYRHSxt95eIYItiMQ5xhlR8_e4VeDnYscHmcF-jH50_fb26bu29fvt5c3TWOazU3lIMTsm_7rtdCSa28ok56q6VmPUjHGfFtN4DslKNCEKJ5670ER62jVHJ-gd4efLc5_dpBmc0UioNxtBHSrphqIKjuuH6GlAjeCqq0qtI3R-mun8CbmtdUjzd_w66C7iBwOZWSYfgnocQ8lGo25liqeSjVHEqt3If_OHdsZ842jE_SHw801ET3AbIpLkB04ENtcjY-hScc_gAcXsJx
CitedBy_id crossref_primary_10_1080_13547860_2025_2555003
crossref_primary_10_1016_j_strueco_2025_06_007
crossref_primary_10_1371_journal_pone_0322548
crossref_primary_10_1016_j_energy_2025_138377
crossref_primary_10_1016_j_jclepro_2024_144124
crossref_primary_10_1016_j_jenvman_2024_123663
crossref_primary_10_1016_j_jenvman_2025_124237
crossref_primary_10_3390_math13101624
crossref_primary_10_3390_math13030464
crossref_primary_10_1016_j_apenergy_2025_125330
Cites_doi 10.3390/en11071907
10.1016/j.jclepro.2019.118671
10.1016/j.eneco.2017.12.030
10.1016/j.energy.2022.124167
10.1016/j.apenergy.2018.09.118
10.1016/j.apenergy.2009.12.019
10.1016/j.apenergy.2022.119784
10.3390/math11143126
10.1016/j.apenergy.2022.118601
10.1016/j.energy.2020.118294
10.1016/S0140-6736(06)68079-3
10.1016/j.eneco.2011.07.012
10.1016/j.bspc.2014.06.009
10.1098/rspa.1998.0193
10.1016/j.jclepro.2023.139063
10.1016/j.eneco.2018.11.007
10.1016/j.apm.2019.10.022
10.1016/j.jenvman.2023.118962
10.1016/j.jclepro.2018.09.071
10.1016/j.apenergy.2012.03.046
10.1016/j.energy.2021.122324
10.1016/j.eneco.2013.06.017
10.1016/j.eswa.2023.122912
10.1038/s41467-020-15996-1
10.1002/ese3.703
10.1080/1540496X.2019.1663166
10.1007/s10479-015-1864-y
10.1007/s10479-021-04392-7
10.1080/14693062.2014.864800
10.1016/j.egyr.2021.11.270
10.1145/3506695
10.1080/14693062.2019.1635875
10.1152/ajpheart.2000.278.6.H2039
10.1016/j.apenergy.2017.01.076
10.1016/j.asoc.2021.108204
10.1016/j.omega.2012.06.005
10.1016/j.jclepro.2019.04.393
10.1016/j.energy.2019.116278
10.1016/j.knosys.2020.106686
10.1016/j.atmosenv.2016.03.056
10.1016/j.apenergy.2021.118011
10.1016/j.energy.2023.127783
10.1007/s10614-013-9417-4
10.1016/j.sepro.2011.08.070
10.1016/j.jenvman.2024.120131
10.1080/21642583.2019.1625082
10.1016/j.energy.2021.123006
10.1016/j.knosys.2018.11.024
10.1007/s10479-023-05443-x
10.1103/PhysRevLett.88.174102
10.3389/fenvs.2022.973855
10.1016/j.jeem.2008.03.003
10.1016/j.jclepro.2023.136959
10.1016/j.jclepro.2018.01.102
10.1016/j.ijepes.2021.107595
10.3390/su13158413
10.1016/j.amepre.2008.08.021
10.1038/s41598-023-45524-2
10.1016/j.ijleo.2018.07.044
10.1142/S1793536909000047
10.1002/ese3.1304
10.3390/en12050950
10.1016/j.jclepro.2019.119386
10.1016/j.jenvman.2021.111988
10.32604/csse.2022.022739
10.1016/j.envres.2015.02.002
10.1016/j.physa.2018.12.017
10.1016/j.apenergy.2021.116485
10.1016/j.energy.2022.123366
10.1109/LSP.2016.2542881
10.1016/j.scitotenv.2020.137117
10.1016/j.jenvman.2023.119873
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2024.121253
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
ExternalDocumentID 38823294
10_1016_j_jenvman_2024_121253
S0301479724012398
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Fundation of Guangdong
  grantid: 2024A1515012502
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
3EH
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAHBH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYJJ
ABEFU
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABTAH
ABXDB
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AI.
AIDBO
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLECG
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
UHS
UQL
VH1
WH7
WUQ
XPP
XSW
Y6R
YK3
YV5
ZCA
ZMT
ZU3
ZY4
~02
~G-
~KM
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AEGFY
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-13ec67b4b5b968798d81c7da9792be7c320d45fe758c16600934dd7ec1ac11733
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001250223600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-4797
1095-8630
IngestDate Thu Oct 02 22:58:45 EDT 2025
Thu Oct 02 11:03:54 EDT 2025
Wed Feb 19 02:08:03 EST 2025
Sat Nov 29 03:51:54 EST 2025
Tue Nov 18 21:11:14 EST 2025
Wed Jun 26 17:48:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbon price forecasting
Improved variational mode decomposition
Seagull optimization algorithm
Secondary decomposition
Machine learning
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-13ec67b4b5b968798d81c7da9792be7c320d45fe758c16600934dd7ec1ac11733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0001-5472-5432
0000-0003-4022-3842
PMID 38823294
PQID 3063461898
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3206195393
proquest_miscellaneous_3063461898
pubmed_primary_38823294
crossref_primary_10_1016_j_jenvman_2024_121253
crossref_citationtrail_10_1016_j_jenvman_2024_121253
elsevier_sciencedirect_doi_10_1016_j_jenvman_2024_121253
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-Jun
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of environmental management
PublicationTitleAlternate J Environ Manage
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lofgren, Wrake, Hagberg, Roth (bib34) 2014; 14
Torres, Colominas, Schlotthauer, Flandrin (bib59) 2011
Sun, Zhang (bib55) 2022; 253
Chai, Wang, Wang, Wang (bib4) 2019; 229
Liao, Li, Shang, Ma (bib31) 2022; 31
Lu, Ma, Huang, Azimi (bib36) 2020; 249
Mao, Yu (bib39) 2024; 351
Yin, Jiang, Liu, Yu (bib67) 2019; 55
Lu, Gao, Li (bib35) 2022
Zhou, Wang (bib79) 2021; 13
Duan, Zhang, Wang, Feng, Ma (bib11) 2024; 1655
Zhu, Wu, Chen, Liu, Zhou (bib86) 2019; 519
Sun, Huang (bib51) 2020; 207
Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bib7) 2014
Gao, Shao (bib14) 2022; 243
Zhu, Han, Wang, Wu, Zhang, Wei (bib81) 2017; 191
Chevallier (bib6) 2011; 33
Zhang, Cao, Thé, Yu (bib72) 2022; 306
Zhang, Yang, Lu, Wu, Yu, Lin (bib74) 2023; 346
Hao, Wang, Wang, Yang (bib18) 2024; 244
Wang, Tan, Zhang, Pu, Zhang, Zhang (bib61) 2023; 425
Wu, Liu (bib64) 2020; 8
Colominas, Schlotthauer, Torres (bib8) 2014; 14
Ji, Niu, Li, Li, Sun, Zhu (bib23) 2022; 116
Wang, Chau, Qiu, Chen (bib62) 2015; 139
Li, Ning, Yang, Gao (bib27) 2022; 239
Karapinar, Dudu, Geyik, Yakut (bib24) 2019; 19
Sun, Huang (bib53) 2020; 207
Rostaghi, Azami (bib46) 2016; 23
McMichael, Woodruff, Hales (bib40) 2006; 367
Zhu, Wang, Chevallier, Wei (bib82) 2015; 45
Richman, Moorman (bib45) 2000; 278
García-Martos, Rodríguez, Sánchez (bib15) 2013; 101
Dhiman, Kumar (bib9) 2019; 165
Guo, Gu, Liu, Liang, Mo, Fan (bib17) 2020; 11
Sadefo Kamdem, Miano Mukami, Njong (bib47) 2023
Chai, Zhang, Zhang (bib5) 2021
Zhou, Huo, Xu, Li (bib78) 2019; 12
Huang, Dai, Wang, Zhou (bib21) 2021; 285
Li, Zheng, Yang (bib28) 2022; 8
Sun, Huang (bib52) 2020; 243
Suykens, Vandewalle (bib56) 1999
Yang, Chen, Li, Wang (bib66) 2020; 716
Yu, Wang, Liang, Liu, Wang (bib68) 2022; 10
Byun, Cho (bib3) 2013; 40
Zhang, Yang, Wang, Thé, Tan, Yu (bib73) 2023; 405
Zhu, Ye, Wang, He, Zhang, Wei (bib85) 2018; 70
Feng, Duan, Wang, Zhang, Ma (bib13) 2023; 13
Lin, Lu, Tan, Yu (bib32) 2022; 246
Guðbrandsdóttir, Haraldsson (bib16) 2011; 1
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib20) 1998; 454
Sun, Zhang (bib54) 2018; 231
Zhang, Li, Hao, Tan (bib71) 2018; 204
Seifert, Uhrig-Homburg, Wagner (bib48) 2008; 56
Li, Ning, Yang, Gao (bib26) 2022; 239
Wu, Huang (bib65) 2009; 1
Song, Liang, Liu, Song (bib50) 2018; 181
Zhou, Huang, Zhang (bib77) 2022; 311
Tian, Hao (bib58) 2020; 79
Zhou, Yu, Yuan (bib80) 2018; 11
Liu, Jin, Bai, Zhang (bib33) 2023; 11
E, Ye, He, Jin (bib12) 2019; 189
Ma, Wang, Luo, Peng, Li (bib38) 2022; 135
Huang, Hu, Liu, Liu (bib22) 2019; 7
Qi, Cheng, Tan, Feng, Zhou (bib44) 2022; 324
Zhu, Wei (bib83) 2013; 41
Prabu, Thiyaneswaran, Sujatha, Nalini, Rajkumar (bib43) 2022; 43
Niu, Wang, Sun, Li (bib42) 2016; 134
Luber, McGeehin (bib37) 2008; 35
Diebold, Mariano (bib10) 1995
Li, Liu (bib30) 2023; 278
Bandt, Pompe (bib2) 2002; 88
Zhang, Wei (bib75) 2010; 87
Bai, Kolter, Koltun (bib1) 2018
Zhu, Ye, Han, Wang, He, Wei, Xie (bib84) 2019; 78
Tang, Gong, Shen (bib57) 2017; 255
Lee, Park, Sim (bib25) 2018; 172
Yun, Huang, Wu, Yang (bib69) 2023; 11
Shi, Wei, Xu, Zhu, Hu, Tang (bib49) 2024; 352
Li, Jin, Sun, Li (bib29) 2021; 214
Nguyen, Huynh, Nasir (bib41) 2021; 285
Zhu (10.1016/j.jenvman.2024.121253_bib82) 2015; 45
Zhang (10.1016/j.jenvman.2024.121253_bib74) 2023; 346
Karapinar (10.1016/j.jenvman.2024.121253_bib24) 2019; 19
Zhou (10.1016/j.jenvman.2024.121253_bib78) 2019; 12
Lee (10.1016/j.jenvman.2024.121253_bib25) 2018; 172
Chevallier (10.1016/j.jenvman.2024.121253_bib6) 2011; 33
Tang (10.1016/j.jenvman.2024.121253_bib57) 2017; 255
Li (10.1016/j.jenvman.2024.121253_bib27) 2022; 239
Ma (10.1016/j.jenvman.2024.121253_bib38) 2022; 135
Richman (10.1016/j.jenvman.2024.121253_bib45) 2000; 278
Dhiman (10.1016/j.jenvman.2024.121253_bib9) 2019; 165
Nguyen (10.1016/j.jenvman.2024.121253_bib41) 2021; 285
Guðbrandsdóttir (10.1016/j.jenvman.2024.121253_bib16) 2011; 1
Byun (10.1016/j.jenvman.2024.121253_bib3) 2013; 40
Tian (10.1016/j.jenvman.2024.121253_bib58) 2020; 79
Zhu (10.1016/j.jenvman.2024.121253_bib84) 2019; 78
Prabu (10.1016/j.jenvman.2024.121253_bib43) 2022; 43
Torres (10.1016/j.jenvman.2024.121253_bib59) 2011
Hao (10.1016/j.jenvman.2024.121253_bib18) 2024; 244
Wu (10.1016/j.jenvman.2024.121253_bib65) 2009; 1
Zhu (10.1016/j.jenvman.2024.121253_bib81) 2017; 191
Duan (10.1016/j.jenvman.2024.121253_bib11) 2024; 1655
Seifert (10.1016/j.jenvman.2024.121253_bib48) 2008; 56
Zhang (10.1016/j.jenvman.2024.121253_bib73) 2023; 405
Zhu (10.1016/j.jenvman.2024.121253_bib86) 2019; 519
Lu (10.1016/j.jenvman.2024.121253_bib36) 2020; 249
Yin (10.1016/j.jenvman.2024.121253_bib67) 2019; 55
Huang (10.1016/j.jenvman.2024.121253_bib20) 1998; 454
McMichael (10.1016/j.jenvman.2024.121253_bib40) 2006; 367
Sun (10.1016/j.jenvman.2024.121253_bib53) 2020; 207
Shi (10.1016/j.jenvman.2024.121253_bib49) 2024; 352
García-Martos (10.1016/j.jenvman.2024.121253_bib15) 2013; 101
Sadefo Kamdem (10.1016/j.jenvman.2024.121253_bib47) 2023
Li (10.1016/j.jenvman.2024.121253_bib30) 2023; 278
Mao (10.1016/j.jenvman.2024.121253_bib39) 2024; 351
Qi (10.1016/j.jenvman.2024.121253_bib44) 2022; 324
Zhang (10.1016/j.jenvman.2024.121253_bib75) 2010; 87
Suykens (10.1016/j.jenvman.2024.121253_bib56) 1999
Li (10.1016/j.jenvman.2024.121253_bib28) 2022; 8
Lu (10.1016/j.jenvman.2024.121253_bib35) 2022
Song (10.1016/j.jenvman.2024.121253_bib50) 2018; 181
Lin (10.1016/j.jenvman.2024.121253_bib32) 2022; 246
Zhu (10.1016/j.jenvman.2024.121253_bib83) 2013; 41
Zhou (10.1016/j.jenvman.2024.121253_bib80) 2018; 11
Sun (10.1016/j.jenvman.2024.121253_bib51) 2020; 207
Guo (10.1016/j.jenvman.2024.121253_bib17) 2020; 11
Yu (10.1016/j.jenvman.2024.121253_bib68) 2022; 10
Li (10.1016/j.jenvman.2024.121253_bib26) 2022; 239
Feng (10.1016/j.jenvman.2024.121253_bib13) 2023; 13
Zhu (10.1016/j.jenvman.2024.121253_bib85) 2018; 70
Zhou (10.1016/j.jenvman.2024.121253_bib79) 2021; 13
Ji (10.1016/j.jenvman.2024.121253_bib23) 2022; 116
Luber (10.1016/j.jenvman.2024.121253_bib37) 2008; 35
Huang (10.1016/j.jenvman.2024.121253_bib21) 2021; 285
Rostaghi (10.1016/j.jenvman.2024.121253_bib46) 2016; 23
Liao (10.1016/j.jenvman.2024.121253_bib31) 2022; 31
Lofgren (10.1016/j.jenvman.2024.121253_bib34) 2014; 14
Cho (10.1016/j.jenvman.2024.121253_bib7) 2014
Zhou (10.1016/j.jenvman.2024.121253_bib77) 2022; 311
Chai (10.1016/j.jenvman.2024.121253_bib5) 2021
Niu (10.1016/j.jenvman.2024.121253_bib42) 2016; 134
Sun (10.1016/j.jenvman.2024.121253_bib55) 2022; 253
Gao (10.1016/j.jenvman.2024.121253_bib14) 2022; 243
Wang (10.1016/j.jenvman.2024.121253_bib61) 2023; 425
Sun (10.1016/j.jenvman.2024.121253_bib52) 2020; 243
Chai (10.1016/j.jenvman.2024.121253_bib4) 2019; 229
Huang (10.1016/j.jenvman.2024.121253_bib22) 2019; 7
Liu (10.1016/j.jenvman.2024.121253_bib33) 2023; 11
Sun (10.1016/j.jenvman.2024.121253_bib54) 2018; 231
Bandt (10.1016/j.jenvman.2024.121253_bib2) 2002; 88
Li (10.1016/j.jenvman.2024.121253_bib29) 2021; 214
Yun (10.1016/j.jenvman.2024.121253_bib69) 2023; 11
Diebold (10.1016/j.jenvman.2024.121253_bib10) 1995
Zhang (10.1016/j.jenvman.2024.121253_bib71) 2018; 204
Wang (10.1016/j.jenvman.2024.121253_bib62) 2015; 139
Zhang (10.1016/j.jenvman.2024.121253_bib72) 2022; 306
Colominas (10.1016/j.jenvman.2024.121253_bib8) 2014; 14
Wu (10.1016/j.jenvman.2024.121253_bib64) 2020; 8
Bai (10.1016/j.jenvman.2024.121253_bib1) 2018
E (10.1016/j.jenvman.2024.121253_bib12) 2019; 189
Yang (10.1016/j.jenvman.2024.121253_bib66) 2020; 716
References_xml – volume: 101
  start-page: 363
  year: 2013
  end-page: 375
  ident: bib15
  article-title: Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities
  publication-title: Appl. Energy
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: bib65
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 204
  start-page: 958
  year: 2018
  end-page: 964
  ident: bib71
  article-title: A hybrid model using signal processing technology, econometric models and neural network for carbon spot price forecasting
  publication-title: J. Clean. Prod.
– volume: 519
  start-page: 140
  year: 2019
  end-page: 158
  ident: bib86
  article-title: Carbon price forecasting with variational mode decomposition and optimal combined model
  publication-title: Phys. Stat. Mech. Appl.
– volume: 43
  start-page: 737
  year: 2022
  end-page: 749
  ident: bib43
  article-title: Grid search for predicting coronary heart disease by tuning hyper-parameters
  publication-title: Comput. Syst. Sci. Eng.
– volume: 239
  year: 2022
  ident: bib27
  article-title: A new carbon price prediction model
  publication-title: Energy
– volume: 11
  start-page: 79
  year: 2023
  end-page: 96
  ident: bib69
  article-title: Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN‐LSTM
  publication-title: Energy Sci. Eng.
– volume: 12
  start-page: 950
  year: 2019
  ident: bib78
  article-title: Forecasting the carbon price using extreme-point symmetric mode decomposition and extreme learning machine optimized by the grey wolf optimizer algorithm
  publication-title: Energies
– volume: 7
  start-page: 40
  year: 2019
  end-page: 47
  ident: bib22
  article-title: Research on price forecasting method of China's carbon trading market based on PSO-RBF algorithm
  publication-title: Systems Science & Control Engineering
– volume: 172
  start-page: 359
  year: 2018
  end-page: 367
  ident: bib25
  article-title: Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-free harmony search algorithm
  publication-title: Optik
– volume: 285
  year: 2021
  ident: bib41
  article-title: Carbon emissions determinants and forecasting: evidence from G6 countries
  publication-title: J. Environ. Manag.
– start-page: 1
  year: 2022
  end-page: 17
  ident: bib35
  article-title: Does economic policy uncertainty outperform macroeconomic factor and financial market uncertainty in forecasting carbon emission price volatility? Evidence from China
  publication-title: Appl. Econ.
– volume: 13
  year: 2023
  ident: bib13
  article-title: Carbon price prediction based on decomposition technique and extreme gradient boosting optimized by the grey wolf optimizer algorithm
  publication-title: Sci. Rep.
– year: 2023
  ident: bib47
  article-title: Time-frequency analysis and machine learning models for carbon market forecasting
  publication-title: Ann. Oper. Res.
– year: 2018
  ident: bib1
  article-title: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
– volume: 19
  start-page: 1157
  year: 2019
  end-page: 1172
  ident: bib24
  article-title: How to reach an elusive INDC target: macro-economic implications of carbon taxation and emissions trading in Turkey
  publication-title: Clim. Pol.
– volume: 1
  start-page: 481
  year: 2011
  end-page: 489
  ident: bib16
  article-title: Predicting the price of EU ETS carbon credits
  publication-title: Systems Engineering Procedia
– volume: 134
  start-page: 168
  year: 2016
  end-page: 180
  ident: bib42
  article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting
  publication-title: Atmos. Environ.
– volume: 11
  start-page: 1907
  year: 2018
  ident: bib80
  article-title: Predicting the carbon price sequence in the shenzhen emissions exchange using a multiscale ensemble forecasting model based on ensemble empirical mode decomposition
  publication-title: Energies
– volume: 346
  year: 2023
  ident: bib74
  article-title: Predicting carbon futures prices based on a new hybrid machine learning: comparative study of carbon prices in different periods
  publication-title: J. Environ. Manag.
– volume: 278
  year: 2023
  ident: bib30
  article-title: Carbon price forecasting based on secondary decomposition and feature screening
  publication-title: Energy
– volume: 367
  start-page: 859
  year: 2006
  end-page: 869
  ident: bib40
  article-title: Climate change and human health: present and future risks
  publication-title: Lancet
– volume: 231
  start-page: 1354
  year: 2018
  end-page: 1371
  ident: bib54
  article-title: Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm
  publication-title: Appl. Energy
– volume: 79
  start-page: 126
  year: 2020
  end-page: 144
  ident: bib58
  article-title: Point and interval forecasting for carbon price based on an improved analysis-forecast system
  publication-title: Appl. Math. Model.
– volume: 239
  year: 2022
  ident: bib26
  article-title: A new carbon price prediction model
  publication-title: Energy
– volume: 311
  year: 2022
  ident: bib77
  article-title: Carbon price forecasting based on CEEMDAN and LSTM
  publication-title: Appl. Energy
– volume: 243
  year: 2020
  ident: bib52
  article-title: A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network
  publication-title: J. Clean. Prod.
– volume: 253
  year: 2022
  ident: bib55
  article-title: A novel carbon price prediction model based on optimized least square support vector machine combining characteristic-scale decomposition and phase space reconstruction
  publication-title: Energy
– volume: 45
  start-page: 195
  year: 2015
  end-page: 206
  ident: bib82
  article-title: Carbon price analysis using empirical mode decomposition
  publication-title: Comput. Econ.
– volume: 324
  year: 2022
  ident: bib44
  article-title: Predicting China's carbon price based on a multi-scale integrated model
  publication-title: Appl. Energy
– volume: 181
  start-page: 374
  year: 2018
  end-page: 384
  ident: bib50
  article-title: How China's current carbon trading policy affects carbon price? An investigation of the Shanghai Emission Trading Scheme pilot
  publication-title: J. Clean. Prod.
– volume: 207
  year: 2020
  ident: bib51
  article-title: A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network
  publication-title: Energy
– volume: 1655
  year: 2024
  ident: bib11
  article-title: Forecasting carbon price using signal processing technology and extreme gradient boosting optimized by the whale optimization algorithm
  publication-title: Energy Science & Engineering ese3
– volume: 56
  start-page: 180
  year: 2008
  end-page: 194
  ident: bib48
  article-title: Dynamic behavior of CO2 spot prices
  publication-title: J. Environ. Econ. Manag.
– volume: 244
  year: 2024
  ident: bib18
  article-title: A novel interval-valued carbon price analysis and forecasting system based on multi-objective ensemble strategy for carbon trading market
  publication-title: Expert Syst. Appl.
– volume: 55
  start-page: 3433
  year: 2019
  end-page: 3451
  ident: bib67
  article-title: Factors affecting carbon emission trading price: evidence from China
  publication-title: Emerg. Mark. Finance Trade
– volume: 191
  start-page: 521
  year: 2017
  end-page: 530
  ident: bib81
  article-title: Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression
  publication-title: Appl. Energy
– volume: 352
  year: 2024
  ident: bib49
  article-title: A CNN-LSTM based deep learning model with high accuracy and robustness for carbon price forecasting: a case of Shenzhen's carbon market in China
  publication-title: J. Environ. Manag.
– volume: 405
  year: 2023
  ident: bib73
  article-title: Multi-step carbon price forecasting using a hybrid model based on multivariate decomposition strategy and deep learning algorithms
  publication-title: J. Clean. Prod.
– volume: 41
  start-page: 517
  year: 2013
  end-page: 524
  ident: bib83
  article-title: Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology
  publication-title: Omega
– volume: 246
  year: 2022
  ident: bib32
  article-title: Forecasting energy prices using a novel hybrid model with variational mode decomposition
  publication-title: Energy
– year: 1995
  ident: bib10
  article-title: Comparing Predictive Accuracy
– volume: 31
  start-page: 1
  year: 2022
  end-page: 40
  ident: bib31
  article-title: An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks
  publication-title: ACM Trans. Softw. Eng. Methodol.
– volume: 116
  year: 2022
  ident: bib23
  article-title: A three-stage framework for vertical carbon price interval forecast based on decomposition–integration method
  publication-title: Appl. Soft Comput.
– volume: 14
  start-page: 537
  year: 2014
  end-page: 558
  ident: bib34
  article-title: Why the EU ETS needs reforming: an empirical analysis of the impact on company investments
  publication-title: Clim. Policy
– volume: 35
  start-page: 429
  year: 2008
  end-page: 435
  ident: bib37
  article-title: Climate change and extreme heat events
  publication-title: Am. J. Prev. Med.
– volume: 33
  start-page: 1295
  year: 2011
  end-page: 1312
  ident: bib6
  article-title: A model of carbon price interactions with macroeconomic and energy dynamics
  publication-title: Energy Econ.
– volume: 425
  year: 2023
  ident: bib61
  article-title: Carbon market price prediction based on sequence decomposition-reconstruction-dimensionality reduction and improved deep learning model
  publication-title: J. Clean. Prod.
– volume: 70
  start-page: 143
  year: 2018
  end-page: 157
  ident: bib85
  article-title: A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting
  publication-title: Energy Econ.
– volume: 243
  year: 2022
  ident: bib14
  article-title: A novel interval decomposition ensemble model for interval carbon price forecasting
  publication-title: Energy
– volume: 11
  start-page: 3126
  year: 2023
  ident: bib33
  article-title: Prediction and analysis of the price of carbon emission rights in Shanghai: under the background of COVID-19 and the Russia–Ukraine conflict
  publication-title: Mathematics
– volume: 716
  year: 2020
  ident: bib66
  article-title: Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm
  publication-title: Sci. Total Environ.
– volume: 306
  year: 2022
  ident: bib72
  article-title: A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms
  publication-title: Appl. Energy
– start-page: 4144
  year: 2011
  end-page: 4147
  ident: bib59
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
  publication-title: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Presented at the ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 87
  start-page: 1804
  year: 2010
  end-page: 1814
  ident: bib75
  article-title: An overview of current research on EU ETS: evidence from its operating mechanism and economic effect
  publication-title: Appl. Energy
– year: 2014
  ident: bib7
  article-title: Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation
– volume: 135
  year: 2022
  ident: bib38
  article-title: Ultra-short-term Railway traction load prediction based on DWT-TCN-PSO_SVR combined model
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 78
  start-page: 202
  year: 2019
  end-page: 216
  ident: bib84
  article-title: A multiscale analysis for carbon price drivers
  publication-title: Energy Econ.
– volume: 351
  year: 2024
  ident: bib39
  article-title: A hybrid forecasting approach for China's national carbon emission allowance prices with balanced accuracy and interpretability
  publication-title: J. Environ. Manag.
– volume: 139
  start-page: 46
  year: 2015
  end-page: 54
  ident: bib62
  article-title: Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition
  publication-title: Environ. Res.
– volume: 10
  year: 2022
  ident: bib68
  article-title: Carbon market volatility analysis based on structural breaks: evidence from EU-ETS and China
  publication-title: Front. Environ. Sci.
– year: 1999
  ident: bib56
  article-title: Least Squares Support Vector Machine Classifiers
– volume: 229
  start-page: 775
  year: 2019
  end-page: 786
  ident: bib4
  article-title: A decomposition–integration model with dynamic fuzzy reconstruction for crude oil price prediction and the implications for sustainable development
  publication-title: J. Clean. Prod.
– volume: 285
  year: 2021
  ident: bib21
  article-title: A hybrid model for carbon price forecasting using GARCH and long short-term memory network
  publication-title: Appl. Energy
– volume: 214
  year: 2021
  ident: bib29
  article-title: A new secondary decomposition ensemble learning approach for carbon price forecasting
  publication-title: Knowl. Base Syst.
– volume: 14
  start-page: 19
  year: 2014
  end-page: 29
  ident: bib8
  article-title: Improved complete ensemble EMD: a suitable tool for biomedical signal processing
  publication-title: Biomed. Signal Process Control
– volume: 189
  year: 2019
  ident: bib12
  article-title: Energy price prediction based on independent component analysis and gated recurrent unit neural network
  publication-title: Energy
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib20
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. A
– volume: 207
  year: 2020
  ident: bib53
  article-title: A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network
  publication-title: Energy
– volume: 11
  start-page: 2078
  year: 2020
  ident: bib17
  article-title: Assessing the impact of ETS trading profit on emission abatements based on firm-level transactions
  publication-title: Nat. Commun.
– volume: 255
  start-page: 157
  year: 2017
  end-page: 168
  ident: bib57
  article-title: Factors of carbon price volatility in a comparative analysis of the EUA and sCER
  publication-title: Ann. Oper. Res.
– volume: 249
  year: 2020
  ident: bib36
  article-title: Carbon trading volume and price forecasting in China using multiple machine learning models
  publication-title: J. Clean. Prod.
– volume: 23
  start-page: 610
  year: 2016
  end-page: 614
  ident: bib46
  article-title: Dispersion entropy: a measure for time-series analysis
  publication-title: IEEE Signal Process. Lett.
– volume: 8
  start-page: 2708
  year: 2020
  end-page: 2721
  ident: bib64
  article-title: Forecasting the carbon price sequence in the Hubei emissions exchange using a hybrid model based on ensemble empirical mode decomposition
  publication-title: Energy Sci. Eng.
– volume: 88
  year: 2002
  ident: bib2
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
– volume: 165
  start-page: 169
  year: 2019
  end-page: 196
  ident: bib9
  article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl. Base Syst.
– volume: 278
  start-page: H2039
  year: 2000
  end-page: H2049
  ident: bib45
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 8
  start-page: 1644
  year: 2022
  end-page: 1664
  ident: bib28
  article-title: Carbon price combination prediction model based on improved variational mode decomposition
  publication-title: Energy Rep.
– volume: 40
  start-page: 207
  year: 2013
  end-page: 221
  ident: bib3
  article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities
  publication-title: Energy Econ.
– volume: 13
  start-page: 8413
  year: 2021
  ident: bib79
  article-title: Forecasting carbon price with secondary decomposition algorithm and optimized extreme learning machine
  publication-title: Sustainability
– year: 2021
  ident: bib5
  article-title: Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine
  publication-title: Ann. Oper. Res.
– volume: 11
  start-page: 1907
  year: 2018
  ident: 10.1016/j.jenvman.2024.121253_bib80
  article-title: Predicting the carbon price sequence in the shenzhen emissions exchange using a multiscale ensemble forecasting model based on ensemble empirical mode decomposition
  publication-title: Energies
  doi: 10.3390/en11071907
– start-page: 4144
  year: 2011
  ident: 10.1016/j.jenvman.2024.121253_bib59
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
– year: 2014
  ident: 10.1016/j.jenvman.2024.121253_bib7
– volume: 243
  year: 2020
  ident: 10.1016/j.jenvman.2024.121253_bib52
  article-title: A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118671
– volume: 70
  start-page: 143
  year: 2018
  ident: 10.1016/j.jenvman.2024.121253_bib85
  article-title: A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2017.12.030
– volume: 253
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib55
  article-title: A novel carbon price prediction model based on optimized least square support vector machine combining characteristic-scale decomposition and phase space reconstruction
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124167
– volume: 231
  start-page: 1354
  year: 2018
  ident: 10.1016/j.jenvman.2024.121253_bib54
  article-title: Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.118
– volume: 87
  start-page: 1804
  year: 2010
  ident: 10.1016/j.jenvman.2024.121253_bib75
  article-title: An overview of current research on EU ETS: evidence from its operating mechanism and economic effect
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.12.019
– volume: 324
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib44
  article-title: Predicting China's carbon price based on a multi-scale integrated model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119784
– volume: 11
  start-page: 3126
  year: 2023
  ident: 10.1016/j.jenvman.2024.121253_bib33
  article-title: Prediction and analysis of the price of carbon emission rights in Shanghai: under the background of COVID-19 and the Russia–Ukraine conflict
  publication-title: Mathematics
  doi: 10.3390/math11143126
– volume: 311
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib77
  article-title: Carbon price forecasting based on CEEMDAN and LSTM
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118601
– volume: 207
  year: 2020
  ident: 10.1016/j.jenvman.2024.121253_bib51
  article-title: A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118294
– volume: 367
  start-page: 859
  year: 2006
  ident: 10.1016/j.jenvman.2024.121253_bib40
  article-title: Climate change and human health: present and future risks
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68079-3
– volume: 33
  start-page: 1295
  year: 2011
  ident: 10.1016/j.jenvman.2024.121253_bib6
  article-title: A model of carbon price interactions with macroeconomic and energy dynamics
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2011.07.012
– volume: 14
  start-page: 19
  year: 2014
  ident: 10.1016/j.jenvman.2024.121253_bib8
  article-title: Improved complete ensemble EMD: a suitable tool for biomedical signal processing
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2014.06.009
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.jenvman.2024.121253_bib20
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1998.0193
– volume: 425
  year: 2023
  ident: 10.1016/j.jenvman.2024.121253_bib61
  article-title: Carbon market price prediction based on sequence decomposition-reconstruction-dimensionality reduction and improved deep learning model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.139063
– volume: 78
  start-page: 202
  year: 2019
  ident: 10.1016/j.jenvman.2024.121253_bib84
  article-title: A multiscale analysis for carbon price drivers
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2018.11.007
– volume: 79
  start-page: 126
  year: 2020
  ident: 10.1016/j.jenvman.2024.121253_bib58
  article-title: Point and interval forecasting for carbon price based on an improved analysis-forecast system
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.10.022
– volume: 207
  year: 2020
  ident: 10.1016/j.jenvman.2024.121253_bib53
  article-title: A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118294
– volume: 346
  year: 2023
  ident: 10.1016/j.jenvman.2024.121253_bib74
  article-title: Predicting carbon futures prices based on a new hybrid machine learning: comparative study of carbon prices in different periods
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.118962
– volume: 204
  start-page: 958
  year: 2018
  ident: 10.1016/j.jenvman.2024.121253_bib71
  article-title: A hybrid model using signal processing technology, econometric models and neural network for carbon spot price forecasting
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.09.071
– volume: 101
  start-page: 363
  year: 2013
  ident: 10.1016/j.jenvman.2024.121253_bib15
  article-title: Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.03.046
– volume: 239
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib27
  article-title: A new carbon price prediction model
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122324
– volume: 40
  start-page: 207
  year: 2013
  ident: 10.1016/j.jenvman.2024.121253_bib3
  article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2013.06.017
– year: 2018
  ident: 10.1016/j.jenvman.2024.121253_bib1
– volume: 244
  year: 2024
  ident: 10.1016/j.jenvman.2024.121253_bib18
  article-title: A novel interval-valued carbon price analysis and forecasting system based on multi-objective ensemble strategy for carbon trading market
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122912
– volume: 11
  start-page: 2078
  year: 2020
  ident: 10.1016/j.jenvman.2024.121253_bib17
  article-title: Assessing the impact of ETS trading profit on emission abatements based on firm-level transactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15996-1
– volume: 8
  start-page: 2708
  year: 2020
  ident: 10.1016/j.jenvman.2024.121253_bib64
  article-title: Forecasting the carbon price sequence in the Hubei emissions exchange using a hybrid model based on ensemble empirical mode decomposition
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.703
– volume: 55
  start-page: 3433
  year: 2019
  ident: 10.1016/j.jenvman.2024.121253_bib67
  article-title: Factors affecting carbon emission trading price: evidence from China
  publication-title: Emerg. Mark. Finance Trade
  doi: 10.1080/1540496X.2019.1663166
– volume: 255
  start-page: 157
  year: 2017
  ident: 10.1016/j.jenvman.2024.121253_bib57
  article-title: Factors of carbon price volatility in a comparative analysis of the EUA and sCER
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-015-1864-y
– year: 2021
  ident: 10.1016/j.jenvman.2024.121253_bib5
  article-title: Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-021-04392-7
– volume: 14
  start-page: 537
  year: 2014
  ident: 10.1016/j.jenvman.2024.121253_bib34
  article-title: Why the EU ETS needs reforming: an empirical analysis of the impact on company investments
  publication-title: Clim. Policy
  doi: 10.1080/14693062.2014.864800
– volume: 8
  start-page: 1644
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib28
  article-title: Carbon price combination prediction model based on improved variational mode decomposition
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.11.270
– volume: 31
  start-page: 1
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib31
  article-title: An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks
  publication-title: ACM Trans. Softw. Eng. Methodol.
  doi: 10.1145/3506695
– volume: 19
  start-page: 1157
  year: 2019
  ident: 10.1016/j.jenvman.2024.121253_bib24
  article-title: How to reach an elusive INDC target: macro-economic implications of carbon taxation and emissions trading in Turkey
  publication-title: Clim. Pol.
  doi: 10.1080/14693062.2019.1635875
– volume: 278
  start-page: H2039
  year: 2000
  ident: 10.1016/j.jenvman.2024.121253_bib45
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– year: 1995
  ident: 10.1016/j.jenvman.2024.121253_bib10
– volume: 191
  start-page: 521
  year: 2017
  ident: 10.1016/j.jenvman.2024.121253_bib81
  article-title: Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.076
– volume: 116
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib23
  article-title: A three-stage framework for vertical carbon price interval forecast based on decomposition–integration method
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108204
– volume: 41
  start-page: 517
  year: 2013
  ident: 10.1016/j.jenvman.2024.121253_bib83
  article-title: Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology
  publication-title: Omega
  doi: 10.1016/j.omega.2012.06.005
– volume: 229
  start-page: 775
  year: 2019
  ident: 10.1016/j.jenvman.2024.121253_bib4
  article-title: A decomposition–integration model with dynamic fuzzy reconstruction for crude oil price prediction and the implications for sustainable development
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.393
– volume: 189
  year: 2019
  ident: 10.1016/j.jenvman.2024.121253_bib12
  article-title: Energy price prediction based on independent component analysis and gated recurrent unit neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116278
– volume: 214
  year: 2021
  ident: 10.1016/j.jenvman.2024.121253_bib29
  article-title: A new secondary decomposition ensemble learning approach for carbon price forecasting
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2020.106686
– volume: 134
  start-page: 168
  year: 2016
  ident: 10.1016/j.jenvman.2024.121253_bib42
  article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.03.056
– volume: 239
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib26
  article-title: A new carbon price prediction model
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122324
– volume: 306
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib72
  article-title: A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118011
– volume: 278
  year: 2023
  ident: 10.1016/j.jenvman.2024.121253_bib30
  article-title: Carbon price forecasting based on secondary decomposition and feature screening
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127783
– volume: 45
  start-page: 195
  year: 2015
  ident: 10.1016/j.jenvman.2024.121253_bib82
  article-title: Carbon price analysis using empirical mode decomposition
  publication-title: Comput. Econ.
  doi: 10.1007/s10614-013-9417-4
– start-page: 1
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib35
  article-title: Does economic policy uncertainty outperform macroeconomic factor and financial market uncertainty in forecasting carbon emission price volatility? Evidence from China
  publication-title: Appl. Econ.
– volume: 1
  start-page: 481
  year: 2011
  ident: 10.1016/j.jenvman.2024.121253_bib16
  article-title: Predicting the price of EU ETS carbon credits
  publication-title: Systems Engineering Procedia
  doi: 10.1016/j.sepro.2011.08.070
– volume: 352
  year: 2024
  ident: 10.1016/j.jenvman.2024.121253_bib49
  article-title: A CNN-LSTM based deep learning model with high accuracy and robustness for carbon price forecasting: a case of Shenzhen's carbon market in China
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2024.120131
– volume: 7
  start-page: 40
  year: 2019
  ident: 10.1016/j.jenvman.2024.121253_bib22
  article-title: Research on price forecasting method of China's carbon trading market based on PSO-RBF algorithm
  publication-title: Systems Science & Control Engineering
  doi: 10.1080/21642583.2019.1625082
– volume: 243
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib14
  article-title: A novel interval decomposition ensemble model for interval carbon price forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.123006
– volume: 165
  start-page: 169
  year: 2019
  ident: 10.1016/j.jenvman.2024.121253_bib9
  article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2018.11.024
– year: 2023
  ident: 10.1016/j.jenvman.2024.121253_bib47
  article-title: Time-frequency analysis and machine learning models for carbon market forecasting
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-023-05443-x
– volume: 88
  year: 2002
  ident: 10.1016/j.jenvman.2024.121253_bib2
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.174102
– volume: 10
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib68
  article-title: Carbon market volatility analysis based on structural breaks: evidence from EU-ETS and China
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2022.973855
– volume: 56
  start-page: 180
  year: 2008
  ident: 10.1016/j.jenvman.2024.121253_bib48
  article-title: Dynamic behavior of CO2 spot prices
  publication-title: J. Environ. Econ. Manag.
  doi: 10.1016/j.jeem.2008.03.003
– volume: 405
  year: 2023
  ident: 10.1016/j.jenvman.2024.121253_bib73
  article-title: Multi-step carbon price forecasting using a hybrid model based on multivariate decomposition strategy and deep learning algorithms
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.136959
– volume: 181
  start-page: 374
  year: 2018
  ident: 10.1016/j.jenvman.2024.121253_bib50
  article-title: How China's current carbon trading policy affects carbon price? An investigation of the Shanghai Emission Trading Scheme pilot
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.01.102
– volume: 135
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib38
  article-title: Ultra-short-term Railway traction load prediction based on DWT-TCN-PSO_SVR combined model
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107595
– volume: 13
  start-page: 8413
  year: 2021
  ident: 10.1016/j.jenvman.2024.121253_bib79
  article-title: Forecasting carbon price with secondary decomposition algorithm and optimized extreme learning machine
  publication-title: Sustainability
  doi: 10.3390/su13158413
– volume: 35
  start-page: 429
  year: 2008
  ident: 10.1016/j.jenvman.2024.121253_bib37
  article-title: Climate change and extreme heat events
  publication-title: Am. J. Prev. Med.
  doi: 10.1016/j.amepre.2008.08.021
– volume: 13
  year: 2023
  ident: 10.1016/j.jenvman.2024.121253_bib13
  article-title: Carbon price prediction based on decomposition technique and extreme gradient boosting optimized by the grey wolf optimizer algorithm
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-45524-2
– year: 1999
  ident: 10.1016/j.jenvman.2024.121253_bib56
– volume: 172
  start-page: 359
  year: 2018
  ident: 10.1016/j.jenvman.2024.121253_bib25
  article-title: Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-free harmony search algorithm
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.07.044
– volume: 1655
  year: 2024
  ident: 10.1016/j.jenvman.2024.121253_bib11
  article-title: Forecasting carbon price using signal processing technology and extreme gradient boosting optimized by the whale optimization algorithm
  publication-title: Energy Science & Engineering ese3
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.jenvman.2024.121253_bib65
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 11
  start-page: 79
  year: 2023
  ident: 10.1016/j.jenvman.2024.121253_bib69
  article-title: Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN‐LSTM
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.1304
– volume: 12
  start-page: 950
  year: 2019
  ident: 10.1016/j.jenvman.2024.121253_bib78
  article-title: Forecasting the carbon price using extreme-point symmetric mode decomposition and extreme learning machine optimized by the grey wolf optimizer algorithm
  publication-title: Energies
  doi: 10.3390/en12050950
– volume: 249
  year: 2020
  ident: 10.1016/j.jenvman.2024.121253_bib36
  article-title: Carbon trading volume and price forecasting in China using multiple machine learning models
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119386
– volume: 285
  year: 2021
  ident: 10.1016/j.jenvman.2024.121253_bib41
  article-title: Carbon emissions determinants and forecasting: evidence from G6 countries
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.111988
– volume: 43
  start-page: 737
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib43
  article-title: Grid search for predicting coronary heart disease by tuning hyper-parameters
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2022.022739
– volume: 139
  start-page: 46
  year: 2015
  ident: 10.1016/j.jenvman.2024.121253_bib62
  article-title: Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2015.02.002
– volume: 519
  start-page: 140
  year: 2019
  ident: 10.1016/j.jenvman.2024.121253_bib86
  article-title: Carbon price forecasting with variational mode decomposition and optimal combined model
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2018.12.017
– volume: 285
  year: 2021
  ident: 10.1016/j.jenvman.2024.121253_bib21
  article-title: A hybrid model for carbon price forecasting using GARCH and long short-term memory network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116485
– volume: 246
  year: 2022
  ident: 10.1016/j.jenvman.2024.121253_bib32
  article-title: Forecasting energy prices using a novel hybrid model with variational mode decomposition
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123366
– volume: 23
  start-page: 610
  year: 2016
  ident: 10.1016/j.jenvman.2024.121253_bib46
  article-title: Dispersion entropy: a measure for time-series analysis
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2542881
– volume: 716
  year: 2020
  ident: 10.1016/j.jenvman.2024.121253_bib66
  article-title: Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137117
– volume: 351
  year: 2024
  ident: 10.1016/j.jenvman.2024.121253_bib39
  article-title: A hybrid forecasting approach for China's national carbon emission allowance prices with balanced accuracy and interpretability
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.119873
SSID ssj0003217
Score 2.4930174
Snippet Carbon trading is one of the pivotal means of carbon emission reduction. Accurate prediction of carbon prices can stabilize the carbon market, mitigate...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121253
SubjectTerms Carbon
carbon markets
Carbon price forecasting
Commerce
entropy
environmental management
Forecasting
hybrids
Improved variational mode decomposition
Machine learning
Models, Theoretical
prediction
Seagull optimization algorithm
Secondary decomposition
Title Breaking through the limitation of carbon price forecasting: A novel hybrid model based on secondary decomposition and nonlinear integration
URI https://dx.doi.org/10.1016/j.jenvman.2024.121253
https://www.ncbi.nlm.nih.gov/pubmed/38823294
https://www.proquest.com/docview/3063461898
https://www.proquest.com/docview/3206195393
Volume 362
WOSCitedRecordID wos001250223600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLa6DgluEAwG42cyEndVSxOnsc1dQUWA0MTFkMpV5Nju2lIlo38a78Ar8W6cEztJS9nGLrhJK8d27JwvPsfH57MJeRnq2LDAgOWmI9OOlBZtpYRB6tPIQJIJA1UcNsFPTsRwKD83Gr9KLsx6xrNMXFzI8_8qakgDYSN19gbiriqFBPgPQocriB2u_yT4N2AGfnMkKHcED5qWM-QxVdahVvM0x9gsGCUwztBqtSiZz_1Wlq_trDX-gVwud1JOC3WdwXWFBc6fDUbaGYvR6D7kq1iCyNyuGxjV6vegKGW-a_xu8OuQvrITg_PJ-WW_rr5PVF5DT2Vno5W7kU6yrfRilWVsx3X2yhdeMCjGudfR3sURRnUoVknt6gboAuSbwzbzo7gbeANQwW7X4R2d4NwT084Uugb96eATOnX-7T24_9CNVcRiGQw3TXw1CVaTuGr2yH7Ie7LXJPv9D4Phx8oUYGFx5HPV_ppC9uqv7bnMOLps8lMYQaf3yF0vQNp3qLtPGjY7ILdLcvvigBwONgVLveZYPCA_S1hSD0v4tbSGJc1H1MGSFrCkG7B8Tfu0ACV1oKQFKGkBSgoFKlDSLVBSACWtQEk3QPmQfHk3OH37vu1PAmlrJsWyHTCrY55GaS-VseBSGBFobpTkMkwt1yzsmqg3sjD51UEco5sOhhludaB0EHDGDkkTnmcfE4o7cPbgVWsR8yhWQnXjVHKGbpRYhtockagUQaL9K8DTWmbJlRA4Ip2q2LnbJ-a6AqKUb-KNXWfEJoDb64q-KPGQgDLAFT6V2Xy1SGD-z6I4EFJckQc6imvnEup55MBUtZjBfJuFMnpy0948JXfqD_cZaS7nK_uc3NLr5WQxPyZ7fCiO_cfxG9kf9hs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breaking+through+the+limitation+of+carbon+price+forecasting%3A+A+novel+hybrid+model+based+on+secondary+decomposition+and+nonlinear+integration&rft.jtitle=Journal+of+environmental+management&rft.au=Lan%2C+Yuqiao&rft.au=Huangfu%2C+Yubin&rft.au=Huang%2C+Zhehao&rft.au=Zhang%2C+Changhong&rft.date=2024-06-01&rft.issn=0301-4797&rft.volume=362&rft.spage=121253&rft_id=info:doi/10.1016%2Fj.jenvman.2024.121253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jenvman_2024_121253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon