Segmentation of coronary calcifications with a domain knowledge-based lightweight 3D convolutional neural network

Cardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery calcifications are critical biomarkers for cardiovascular disease, and their quantification via non-contrast computed tomography is a widely accepted and heavil...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers in biology and medicine Ročník 196; číslo Pt B; s. 110798
Hlavní autori: Santos, Rui, Castro, Rui, Baeza, Rúben, Nunes, Fábio, Filipe, Vítor M., Renna, Francesco, Paredes, Hugo, Fontes-Carvalho, Ricardo, Pedrosa, João
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Ltd 01.09.2025
Predmet:
ISSN:0010-4825, 1879-0534, 1879-0534
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery calcifications are critical biomarkers for cardiovascular disease, and their quantification via non-contrast computed tomography is a widely accepted and heavily employed technique for risk assessment. Manual segmentation of these calcifications is a time-consuming task, subject to variability. State-of-the-art methods often employ convolutional neural networks for an automated approach. However, there is a lack of studies that perform these segmentations with 3D architectures that can gather important and necessary anatomical context to distinguish the different coronary arteries. This paper proposes a novel and automated approach that uses a lightweight three-dimensional convolutional neural network to perform efficient and accurate segmentations and calcium scoring. Results show that this method achieves Dice score coefficients of 0.93 ± 0.02, 0.93 ± 0.03, 0.84 ± 0.02, 0.63 ± 0.06 and 0.89 ± 0.03 for the foreground, left anterior descending artery (LAD), left circumflex artery (LCX), left main artery (LM) and right coronary artery (RCA) calcifications, respectively, outperforming other state-of-the-art architectures. An external cohort validation also showed the generalization of this method’s performance and how it can be applied in different clinical scenarios. In conclusion, the proposed lightweight 3D convolutional neural network demonstrates high efficiency and accuracy, outperforming state-of-the-art methods and showcasing robust generalization potential. •3D lightweight CNN with a domain knowledge-based starting point to accurately segment coronary calcifications.•Methodology that outperforms state-of-the-art architectures.•External validation dataset that demonstrates model’s generalization to unseen cases.
AbstractList Cardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery calcifications are critical biomarkers for cardiovascular disease, and their quantification via non-contrast computed tomography is a widely accepted and heavily employed technique for risk assessment. Manual segmentation of these calcifications is a time-consuming task, subject to variability. State-of-the-art methods often employ convolutional neural networks for an automated approach. However, there is a lack of studies that perform these segmentations with 3D architectures that can gather important and necessary anatomical context to distinguish the different coronary arteries. This paper proposes a novel and automated approach that uses a lightweight three-dimensional convolutional neural network to perform efficient and accurate segmentations and calcium scoring. Results show that this method achieves Dice score coefficients of 0.93 ± 0.02, 0.93 ± 0.03, 0.84 ± 0.02, 0.63 ± 0.06 and 0.89 ± 0.03 for the foreground, left anterior descending artery (LAD), left circumflex artery (LCX), left main artery (LM) and right coronary artery (RCA) calcifications, respectively, outperforming other state-of-the-art architectures. An external cohort validation also showed the generalization of this method's performance and how it can be applied in different clinical scenarios. In conclusion, the proposed lightweight 3D convolutional neural network demonstrates high efficiency and accuracy, outperforming state-of-the-art methods and showcasing robust generalization potential.Cardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery calcifications are critical biomarkers for cardiovascular disease, and their quantification via non-contrast computed tomography is a widely accepted and heavily employed technique for risk assessment. Manual segmentation of these calcifications is a time-consuming task, subject to variability. State-of-the-art methods often employ convolutional neural networks for an automated approach. However, there is a lack of studies that perform these segmentations with 3D architectures that can gather important and necessary anatomical context to distinguish the different coronary arteries. This paper proposes a novel and automated approach that uses a lightweight three-dimensional convolutional neural network to perform efficient and accurate segmentations and calcium scoring. Results show that this method achieves Dice score coefficients of 0.93 ± 0.02, 0.93 ± 0.03, 0.84 ± 0.02, 0.63 ± 0.06 and 0.89 ± 0.03 for the foreground, left anterior descending artery (LAD), left circumflex artery (LCX), left main artery (LM) and right coronary artery (RCA) calcifications, respectively, outperforming other state-of-the-art architectures. An external cohort validation also showed the generalization of this method's performance and how it can be applied in different clinical scenarios. In conclusion, the proposed lightweight 3D convolutional neural network demonstrates high efficiency and accuracy, outperforming state-of-the-art methods and showcasing robust generalization potential.
Cardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery calcifications are critical biomarkers for cardiovascular disease, and their quantification via non-contrast computed tomography is a widely accepted and heavily employed technique for risk assessment. Manual segmentation of these calcifications is a time-consuming task, subject to variability. State-of-the-art methods often employ convolutional neural networks for an automated approach. However, there is a lack of studies that perform these segmentations with 3D architectures that can gather important and necessary anatomical context to distinguish the different coronary arteries. This paper proposes a novel and automated approach that uses a lightweight three-dimensional convolutional neural network to perform efficient and accurate segmentations and calcium scoring. Results show that this method achieves Dice score coefficients of 0.93 ± 0.02, 0.93 ± 0.03, 0.84 ± 0.02, 0.63 ± 0.06 and 0.89 ± 0.03 for the foreground, left anterior descending artery (LAD), left circumflex artery (LCX), left main artery (LM) and right coronary artery (RCA) calcifications, respectively, outperforming other state-of-the-art architectures. An external cohort validation also showed the generalization of this method’s performance and how it can be applied in different clinical scenarios. In conclusion, the proposed lightweight 3D convolutional neural network demonstrates high efficiency and accuracy, outperforming state-of-the-art methods and showcasing robust generalization potential. •3D lightweight CNN with a domain knowledge-based starting point to accurately segment coronary calcifications.•Methodology that outperforms state-of-the-art architectures.•External validation dataset that demonstrates model’s generalization to unseen cases.
AbstractCardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery calcifications are critical biomarkers for cardiovascular disease, and their quantification via non-contrast computed tomography is a widely accepted and heavily employed technique for risk assessment. Manual segmentation of these calcifications is a time-consuming task, subject to variability. State-of-the-art methods often employ convolutional neural networks for an automated approach. However, there is a lack of studies that perform these segmentations with 3D architectures that can gather important and necessary anatomical context to distinguish the different coronary arteries. This paper proposes a novel and automated approach that uses a lightweight three-dimensional convolutional neural network to perform efficient and accurate segmentations and calcium scoring. Results show that this method achieves Dice score coefficients of 0.93 ± 0.02, 0.93 ± 0.03, 0.84 ± 0.02, 0.63 ± 0.06 and 0.89 ± 0.03 for the foreground, left anterior descending artery (LAD), left circumflex artery (LCX), left main artery (LM) and right coronary artery (RCA) calcifications, respectively, outperforming other state-of-the-art architectures. An external cohort validation also showed the generalization of this method’s performance and how it can be applied in different clinical scenarios. In conclusion, the proposed lightweight 3D convolutional neural network demonstrates high efficiency and accuracy, outperforming state-of-the-art methods and showcasing robust generalization potential.
Cardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery calcifications are critical biomarkers for cardiovascular disease, and their quantification via non-contrast computed tomography is a widely accepted and heavily employed technique for risk assessment. Manual segmentation of these calcifications is a time-consuming task, subject to variability. State-of-the-art methods often employ convolutional neural networks for an automated approach. However, there is a lack of studies that perform these segmentations with 3D architectures that can gather important and necessary anatomical context to distinguish the different coronary arteries. This paper proposes a novel and automated approach that uses a lightweight three-dimensional convolutional neural network to perform efficient and accurate segmentations and calcium scoring. Results show that this method achieves Dice score coefficients of 0.93 ± 0.02, 0.93 ± 0.03, 0.84 ± 0.02, 0.63 ± 0.06 and 0.89 ± 0.03 for the foreground, left anterior descending artery (LAD), left circumflex artery (LCX), left main artery (LM) and right coronary artery (RCA) calcifications, respectively, outperforming other state-of-the-art architectures. An external cohort validation also showed the generalization of this method's performance and how it can be applied in different clinical scenarios. In conclusion, the proposed lightweight 3D convolutional neural network demonstrates high efficiency and accuracy, outperforming state-of-the-art methods and showcasing robust generalization potential.
ArticleNumber 110798
Author Baeza, Rúben
Renna, Francesco
Pedrosa, João
Fontes-Carvalho, Ricardo
Filipe, Vítor M.
Castro, Rui
Paredes, Hugo
Santos, Rui
Nunes, Fábio
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0002-9107-2215
  surname: Santos
  fullname: Santos, Rui
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, 4200-465, Portugal
– sequence: 2
  givenname: Rui
  orcidid: 0009-0008-5289-185X
  surname: Castro
  fullname: Castro, Rui
  email: rui.p.castro@inesctec.pt
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, 4200-465, Portugal
– sequence: 3
  givenname: Rúben
  surname: Baeza
  fullname: Baeza, Rúben
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, 4200-465, Portugal
– sequence: 4
  givenname: Fábio
  surname: Nunes
  fullname: Nunes, Fábio
  organization: Unidade Local de Saúde de Gaia e Espinho (ULSGE), Vila Nova de Gaia, 4434-502, Portugal
– sequence: 5
  givenname: Vítor M.
  surname: Filipe
  fullname: Filipe, Vítor M.
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, 4200-465, Portugal
– sequence: 6
  givenname: Francesco
  orcidid: 0000-0002-8243-8350
  surname: Renna
  fullname: Renna, Francesco
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, 4200-465, Portugal
– sequence: 7
  givenname: Hugo
  surname: Paredes
  fullname: Paredes, Hugo
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, 4200-465, Portugal
– sequence: 8
  givenname: Ricardo
  surname: Fontes-Carvalho
  fullname: Fontes-Carvalho, Ricardo
  organization: Unidade Local de Saúde de Gaia e Espinho (ULSGE), Vila Nova de Gaia, 4434-502, Portugal
– sequence: 9
  givenname: João
  orcidid: 0000-0002-7588-8927
  surname: Pedrosa
  fullname: Pedrosa, João
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, 4200-465, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40752403$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFv4C8ZJPh-pHXBgEtL6kSi8LacpybqWcce2onHfXf43QKSEhI3fha8jlHvuc7Iyc-eCSEMlgzYNXb7dqEcd_ZMGK_5sDLNWNQt80zsmJN3RZQCnlCVgAMCtnw8pScpbQFAAkCXpBTCXXJ831Fbq9xM6Kf9GSDp2GgJsTgdbynRjtjB2seXhI92OmGatqHUVtPdz4cHPYbLDqdsKfObm6mAy4nFZc5xN8FNy9O7ajHOT6M6RDi7iV5PmiX8NXjPCc_P3_6cfG1uPr-5dvFh6vCiLZpir6X7cBB9FAyaRpWV40YpJaiM9jXRnScD5IJ3nChm9YYDdDVPW-HCitoQYhz8uaYu4_hdsY0qdEmg85pj2FOSnBRtpWomczS14_SucuNqn20Y65A_a4pC5qjwMSQUsThj4SBWoiorfpLRC1E1JFItn48WjHvemcxqmQs-ryEjWgm1Qf7lJB3_4QYZ31m43Z4j2kb5piLToqpxBWo6wX8wp2XwJhs6xzw_v8BT_vDLyVKxLw
Cites_doi 10.1038/s41467-021-20966-2
10.1038/s41592-020-01008-z
10.1186/s13244-024-01827-0
10.1016/j.media.2016.04.004
10.1016/j.diii.2021.05.004
10.1007/s10554-010-9581-8
10.1109/TMI.2017.2769839
10.1109/TMI.2019.2899534
10.1016/j.media.2022.102562
10.1016/j.csbj.2022.03.025
10.1016/0735-1097(90)90282-T
10.1186/s12880-022-00907-1
10.2214/AJR.09.3047
10.15171/jcvtr.2016.25
10.1038/s41746-021-00460-1
10.1049/ipr2.12110
10.1038/s41598-024-60584-8
10.2215/CJN.03871106
10.1007/s00330-022-09028-3
10.1016/j.recesp.2016.09.006
10.1109/TMI.2015.2412651
10.1161/CIRCULATIONAHA.105.591792
10.1109/ICCVW60793.2023.00272
10.1007/s00330-019-06223-7
10.1109/CVPR.2018.00745
10.1093/ehjci/jeab119
10.3348/kjr.2021.0148
ContentType Journal Article
Copyright 2025 The Authors
The Authors
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2025 The Authors
– notice: The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.compbiomed.2025.110798
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 110798
ExternalDocumentID 40752403
10_1016_j_compbiomed_2025_110798
S0010482525011497
1_s2_0_S0010482525011497
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
6I.
AAFTH
9DU
AAYXX
AFFHD
CITATION
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
7X8
ID FETCH-LOGICAL-c3988-dd49f203d0514c817683f4a43bced7c3b22f4132823a89cca00b7d29f6e609033
ISSN 0010-4825
1879-0534
IngestDate Sat Nov 01 15:08:54 EDT 2025
Thu Sep 04 05:01:53 EDT 2025
Sat Nov 29 06:51:23 EST 2025
Sat Oct 11 16:50:56 EDT 2025
Sat Oct 04 15:00:19 EDT 2025
Sat Oct 11 07:37:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords 3D CNN
Coronary calcification
Dilated convolution
Cardiac CT
Lightweight
Calcium scoring
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3988-dd49f203d0514c817683f4a43bced7c3b22f4132823a89cca00b7d29f6e609033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8243-8350
0000-0002-7588-8927
0009-0008-5289-185X
0000-0002-9107-2215
OpenAccessLink https://dx.doi.org/10.1016/j.compbiomed.2025.110798
PMID 40752403
PQID 3235963714
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3235963714
pubmed_primary_40752403
crossref_primary_10_1016_j_compbiomed_2025_110798
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_110798
elsevier_clinicalkeyesjournals_1_s2_0_S0010482525011497
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_110798
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jacobs, Isgum, Gondrie, Mali, van Ginneken, Prokop, van der Graaf (b6) 2010; 194
Ladeiras-Lopes, Sampaio, Bettencourt, Fontes-Carvalho, Ferreira, Leite-Moreira, Gama (b23) 2017; 70
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (b34) 2016
Gogin, Viti, Nicodème, Ohana, Talbot, Gencer, Mekukosokeng, Caramella, Diascorn, Airaud (b18) 2021; 102
Foldyna, Eslami, Scholtz, Baltrusaitis, Lu, Massaro, D’Agostino, Ferencik, Aerts, O’Donnell (b28) 2019; 29
Dai, Woo, Liu, Marques, Engstrom, Greer, Crozier, Dowling, Chandra (b24) 2022; 82
Gaziano (b2) 2005; 112
Pang, Liang, Huang, Chen, Li, Li, Huang, Wang (b38) 2023
Xie, Wang, Yu, Anandkumar, Alvarez, Luo (b37) 2021; 34
Williams, Shaw, Raggi, Morris, Vaccarino, Liu, Weinstein, Mosler, Tseng, Flores (b9) 2008; 1
Winkel, Suryanarayana, Ali, Görich, Buß, Mendoza, Schwemmer, Sharma, Schoepf, Rapaka (b47) 2022; 23
Kim, Jung, Choi (b17) 2019
Dattani, Samborska, Ritchie, Roser (b1) 2023
Ronneberger, Fischer, Brox (b31) 2015
Zeleznik, Foldyna, Eslami, Weiss, Alexander, Taron, Parmar, Alvi, Banerji, Uno (b35) 2021; 12
Shadmi, Mazo, Bregman-Amitai, Elnekave (b12) 2018
Lessmann, van Ginneken, Zreik, de Jong, de Vos, Viergever, Išgum (b13) 2018; 37
Santos, Baeza, Filipe, Renna, Paredes, Pedrosa (b22) 2024
van der Bijl, de Bruin, Geleijns, Bax, Schuijf, de Roos, Kroft (b7) 2010; 26
Hong, Tzeng, Yin, Wu, Hsu, Lu, Liu, Wu (b43) 2022; 20
Mohammadi, Hedjazi, Sajjadian, Ghoroubi, Mohammadi, Erfani (b27) 2016; 8
Ning, Zhang, Li, Zhang (b45) 2021; 15
Yee (b42) 2024
Hoori, Al-Kindi, Hu, Song, Wu, Lee, Tashtish, Fu, Gilkeson, Rajagopalan (b10) 2024; 14
J. Li, A. Li, J. Fang, Y. Hou, C. Song, H. Yang, J. Wang, H. Liu, J. Liu, Combating Coronary Calcium Scoring Bias for Non-gated CT by Semantic Learning on Gated CT, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 2583–2591.
McCullough (b3) 2007; 2
Golub, Termeie, Kristo, Schroeder, Lakshmanan, Shafter, Hussein, Verghese, Aldana-Bitar, Manubolu (b30) 2023; 16
Mo, Bos, Kavousi, Leening, Bron (b40) 2024
Eng, Chute, Khandwala, Rajpurkar, Long, Shleifer, Khalaf, Sandhu, Rodriguez, Maron (b14) 2021; 4
Yee (b20) 2024
Föllmer, Tsogias, Biavati, Schulze, Bosserdt, Hövermann, Stober, Samek, Kofoed, Maurovich-Horvat (b19) 2024; 15
Hecht (b5) 2015; 8
Milletari, Navab, Ahmadi (b29) 2016
de Vos, Wolterink, Leiner, de Jong, Lessmann, Išgum (b21) 2019; 38
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (b36) 2021; 18
Wolterink, Leiner, de Vos, van Hamersvelt, Viergever, Išgum (b15) 2016; 34
Baeza, Santos, Nunes, Mancio, Fontes-Carvalho, Coimbra, Renna, Pedrosa (b26) 2022
Obisesan, Osei, Uddin, Dzaye, Blaha (b4) 2021; 3
Graves, Dantas, Da Silva, Assunção, Bordignom, Marin, do Val, Nomura, Gutierrez (b41) 2024; vol. 12927
Agatston, Janowitz, Hildner, Zusmer, Viamonte, Detrano (b8) 1990; 15
Ihdayhid, Lan, Williams, Newby, Flack, Kwok, Joyner, Gera, Dembo, Adler (b16) 2023; 33
Henriksson, Sandstedt, Nowik, Persson (b50) 2024
Lee, Kim, Kang, Koo, Kang, Kim, Yang (b49) 2021; 22
Yu (b25) 2015
Park, Kim, Chang, Leng, Zhong, Baskaran (b48) 2025
Yu, Qian, Sun, Nie, Zheng, Han, Shi, Zheng, Yang (b46) 2022; 22
Wolterink, Leiner, Takx, Viergever, Išgum (b11) 2015; 34
Shadmi, Mazo, Bregman-Amitai, Elnekave (b33) 2018
Ning, Zhang, Xi, Guo, Liu, Zhang (b44) 2021
Shadmi (10.1016/j.compbiomed.2025.110798_b12) 2018
Ning (10.1016/j.compbiomed.2025.110798_b44) 2021
Ning (10.1016/j.compbiomed.2025.110798_b45) 2021; 15
Park (10.1016/j.compbiomed.2025.110798_b48) 2025
Milletari (10.1016/j.compbiomed.2025.110798_b29) 2016
Hecht (10.1016/j.compbiomed.2025.110798_b5) 2015; 8
Ronneberger (10.1016/j.compbiomed.2025.110798_b31) 2015
Foldyna (10.1016/j.compbiomed.2025.110798_b28) 2019; 29
van der Bijl (10.1016/j.compbiomed.2025.110798_b7) 2010; 26
Kim (10.1016/j.compbiomed.2025.110798_b17) 2019
Baeza (10.1016/j.compbiomed.2025.110798_b26) 2022
10.1016/j.compbiomed.2025.110798_b39
Yu (10.1016/j.compbiomed.2025.110798_b25) 2015
Lee (10.1016/j.compbiomed.2025.110798_b49) 2021; 22
Henriksson (10.1016/j.compbiomed.2025.110798_b50) 2024
Xie (10.1016/j.compbiomed.2025.110798_b37) 2021; 34
Yee (10.1016/j.compbiomed.2025.110798_b42) 2024
Mohammadi (10.1016/j.compbiomed.2025.110798_b27) 2016; 8
Yee (10.1016/j.compbiomed.2025.110798_b20) 2024
Shadmi (10.1016/j.compbiomed.2025.110798_b33) 2018
Ihdayhid (10.1016/j.compbiomed.2025.110798_b16) 2023; 33
Ladeiras-Lopes (10.1016/j.compbiomed.2025.110798_b23) 2017; 70
Pang (10.1016/j.compbiomed.2025.110798_b38) 2023
Dai (10.1016/j.compbiomed.2025.110798_b24) 2022; 82
10.1016/j.compbiomed.2025.110798_b32
Dattani (10.1016/j.compbiomed.2025.110798_b1) 2023
Graves (10.1016/j.compbiomed.2025.110798_b41) 2024; vol. 12927
Golub (10.1016/j.compbiomed.2025.110798_b30) 2023; 16
Mo (10.1016/j.compbiomed.2025.110798_b40) 2024
Agatston (10.1016/j.compbiomed.2025.110798_b8) 1990; 15
Wolterink (10.1016/j.compbiomed.2025.110798_b11) 2015; 34
Winkel (10.1016/j.compbiomed.2025.110798_b47) 2022; 23
Yu (10.1016/j.compbiomed.2025.110798_b46) 2022; 22
McCullough (10.1016/j.compbiomed.2025.110798_b3) 2007; 2
Gaziano (10.1016/j.compbiomed.2025.110798_b2) 2005; 112
de Vos (10.1016/j.compbiomed.2025.110798_b21) 2019; 38
Wolterink (10.1016/j.compbiomed.2025.110798_b15) 2016; 34
Hoori (10.1016/j.compbiomed.2025.110798_b10) 2024; 14
Santos (10.1016/j.compbiomed.2025.110798_b22) 2024
Çiçek (10.1016/j.compbiomed.2025.110798_b34) 2016
Föllmer (10.1016/j.compbiomed.2025.110798_b19) 2024; 15
Isensee (10.1016/j.compbiomed.2025.110798_b36) 2021; 18
Gogin (10.1016/j.compbiomed.2025.110798_b18) 2021; 102
Obisesan (10.1016/j.compbiomed.2025.110798_b4) 2021; 3
Hong (10.1016/j.compbiomed.2025.110798_b43) 2022; 20
Zeleznik (10.1016/j.compbiomed.2025.110798_b35) 2021; 12
Eng (10.1016/j.compbiomed.2025.110798_b14) 2021; 4
Jacobs (10.1016/j.compbiomed.2025.110798_b6) 2010; 194
Williams (10.1016/j.compbiomed.2025.110798_b9) 2008; 1
Lessmann (10.1016/j.compbiomed.2025.110798_b13) 2018; 37
References_xml – volume: 82
  year: 2022
  ident: b24
  article-title: CAN3D: Fast 3D medical image segmentation via compact context aggregation
  publication-title: Med. Image Anal.
– volume: 22
  start-page: 177
  year: 2022
  ident: b46
  article-title: Automated total and vessel-specific coronary artery calcium (CAC) quantification on chest CT: direct comparison with CAC scoring on non-contrast cardiac CT
  publication-title: BMC Med. Imaging
– volume: 15
  start-page: 1359
  year: 2021
  end-page: 1370
  ident: b45
  article-title: Towards accurate coronary artery calcium segmentation with multi-scale attention mechanism
  publication-title: IET Image Process.
– volume: 29
  start-page: 6140
  year: 2019
  end-page: 6148
  ident: b28
  article-title: Density and morphology of coronary artery calcium for the prediction of cardiovascular events: insights from the framingham heart study
  publication-title: Eur. Radiol.
– volume: 15
  start-page: 827
  year: 1990
  end-page: 832
  ident: b8
  article-title: Quantification of coronary artery calcium using ultrafast computed tomography
  publication-title: J. Am. Coll. Cardiol.
– volume: 34
  start-page: 12077
  year: 2021
  end-page: 12090
  ident: b37
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 1764
  year: 2021
  ident: b49
  article-title: Fully automatic coronary calcium score software empowered by artificial intelligence technology: validation study using three CT cohorts
  publication-title: Korean J. Radiol.
– start-page: 157
  year: 2022
  end-page: 167
  ident: b26
  article-title: A generalization study of automatic pericardial segmentation in computed tomography images
  publication-title: International Conference on Wireless Mobile Communication and Healthcare
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  ident: b36
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nature Methods
– volume: 4
  start-page: 88
  year: 2021
  ident: b14
  article-title: Automated coronary calcium scoring using deep learning with multicenter external validation
  publication-title: NPJ Digit. Med.
– volume: 3
  year: 2021
  ident: b4
  article-title: An update on coronary artery calcium interpretation at chest and cardiac CT
  publication-title: Radiol.: Cardiothorac. Imaging
– start-page: 24
  year: 2018
  end-page: 28
  ident: b33
  article-title: Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging
– start-page: 1
  year: 2025
  end-page: 5
  ident: b48
  article-title: RICAU-net: residual-block inspired coordinate attention U-Net for segmentation of small and sparse calcium lesions in cardiac CT
  publication-title: 2025 IEEE 22nd International Symposium on Biomedical Imaging
– volume: 1
  start-page: 61
  year: 2008
  end-page: 69
  ident: b9
  article-title: Prognostic value of number and site of calcified coronary lesions compared with the total score
  publication-title: JACC: Cardiovasc. Imaging
– year: 2023
  ident: b38
  article-title: Slim UNETR: Scale hybrid transformers to efficient 3D medical image segmentation under limited computational resources
  publication-title: IEEE Trans. Med. Imaging
– volume: 15
  start-page: 1
  year: 2024
  end-page: 12
  ident: b19
  article-title: Automated segment-level coronary artery calcium scoring on non-contrast CT: a multi-task deep-learning approach
  publication-title: Insights Into Imaging
– start-page: 225
  year: 2024
  end-page: 229
  ident: b20
  article-title: An optimized semantic segmentation deep learning model for automated coronary artery calcification prediction
  publication-title: 2024 IEEE 5th International Conference on Pattern Recognition and Machine Learning
– start-page: 24
  year: 2018
  end-page: 28
  ident: b12
  article-title: Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging
– volume: 12
  start-page: 715
  year: 2021
  ident: b35
  article-title: Deep convolutional neural networks to predict cardiovascular risk from computed tomography
  publication-title: Nat. Commun.
– start-page: 565
  year: 2016
  end-page: 571
  ident: b29
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
– start-page: 424
  year: 2016
  end-page: 432
  ident: b34
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19
– volume: 194
  start-page: 1244
  year: 2010
  end-page: 1249
  ident: b6
  article-title: Coronary artery calcification scoring in low-dose ungated CT screening for lung cancer: interscan agreement
  publication-title: Am. J. Roentgenol.
– volume: 112
  start-page: 3547
  year: 2005
  end-page: 3553
  ident: b2
  article-title: Cardiovascular disease in the developing world and its cost-effective management
  publication-title: Circulation
– volume: 102
  start-page: 683
  year: 2021
  end-page: 690
  ident: b18
  article-title: Automatic coronary artery calcium scoring from unenhanced-ECG-gated CT using deep learning
  publication-title: Diagn. Interv. Imaging
– volume: vol. 12927
  start-page: 156
  year: 2024
  end-page: 162
  ident: b41
  article-title: Enhancing calcium score quantification in cardiac images through robust mediastinum segmentation
  publication-title: Medical Imaging 2024: Computer-Aided Diagnosis
– start-page: 1
  year: 2024
  end-page: 10
  ident: b50
  article-title: Automated AI-based coronary calcium scoring using retrospective CT data from SCAPIS is accurate and correlates with expert scoring
  publication-title: Eur. Radiol.
– year: 2015
  ident: b25
  article-title: Multi-scale context aggregation by dilated convolutions
– reference: J. Li, A. Li, J. Fang, Y. Hou, C. Song, H. Yang, J. Wang, H. Liu, J. Liu, Combating Coronary Calcium Scoring Bias for Non-gated CT by Semantic Learning on Gated CT, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 2583–2591.
– start-page: 1462
  year: 2021
  end-page: 1467
  ident: b44
  article-title: Cac-emvt: Efficient coronary artery calcium segmentation with multi-scale vision transformers
  publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine
– volume: 37
  start-page: 615
  year: 2018
  end-page: 625
  ident: b13
  article-title: Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions
  publication-title: IEEE Trans. Med. Imaging
– start-page: 346
  year: 2024
  end-page: 351
  ident: b22
  article-title: Lightweight 3D CNN for the segmentation of coronary calcifications and calcium scoring
  publication-title: 2024 IEEE 22nd Mediterranean Electrotechnical Conference
– volume: 8
  start-page: 119
  year: 2016
  ident: b27
  article-title: Study of the normal heart size in northwest part of Iranian population: a cadaveric study
  publication-title: J. Cardiovasc. Thorac. Res.
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– volume: 16
  start-page: 98
  year: 2023
  end-page: 117
  ident: b30
  article-title: Major global coronary artery calcium guidelines
  publication-title: Cardiovasc. Imaging
– start-page: 225
  year: 2024
  end-page: 229
  ident: b42
  article-title: An optimized semantic segmentation deep learning model for automated coronary artery calcification prediction
  publication-title: 2024 IEEE 5th International Conference on Pattern Recognition and Machine Learning
– volume: 26
  start-page: 473
  year: 2010
  end-page: 482
  ident: b7
  article-title: Assessment of coronary artery calcium by using volumetric 320-row multi-detector computed tomography: comparison of 0.5 mm with 3.0 mm slice reconstructions
  publication-title: Int. J. Cardiovasc. Imaging
– volume: 23
  start-page: 846
  year: 2022
  end-page: 854
  ident: b47
  article-title: Deep learning for vessel-specific coronary artery calcium scoring: validation on a multi-centre dataset
  publication-title: Eur. Hear. Journal- Cardiovasc. Imaging
– volume: 34
  start-page: 123
  year: 2016
  end-page: 136
  ident: b15
  article-title: Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks
  publication-title: Med. Image Anal.
– volume: 20
  start-page: 1681
  year: 2022
  end-page: 1690
  ident: b43
  article-title: Automated coronary artery calcium scoring using nested U-Net and focal loss
  publication-title: Comput. Struct. Biotechnol. J.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b31
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18
– volume: 14
  start-page: 11134
  year: 2024
  ident: b10
  article-title: Enhancing cardiovascular risk prediction through AI-enabled calcium-omics
  publication-title: Sci. Rep.
– start-page: 122
  year: 2024
  end-page: 131
  ident: b40
  article-title: Coronary artery calcium scoring from non-contrast cardiac CT using deep learning with external validation
  publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart
– volume: 70
  start-page: 331
  year: 2017
  end-page: 337
  ident: b23
  article-title: The ratio between visceral and subcutaneous abdominal fat assessed by computed tomography is an independent predictor of mortality and cardiac events
  publication-title: Rev. EspaÑola de Cardiol. ( Engl. Ed.)
– volume: 33
  start-page: 321
  year: 2023
  end-page: 329
  ident: b16
  article-title: Evaluation of an artificial intelligence coronary artery calcium scoring model from computed tomography
  publication-title: Eur. Radiol.
– start-page: 1351
  year: 2019
  end-page: 1353
  ident: b17
  article-title: Automatic CAC voxel classification with multi-scale CNN architecture
  publication-title: 2019 International Conference on Information and Communication Technology Convergence
– volume: 2
  start-page: 611
  year: 2007
  end-page: 616
  ident: b3
  article-title: Coronary artery disease
  publication-title: Clin. J. Am. Soc. Nephrol.
– volume: 34
  start-page: 1867
  year: 2015
  end-page: 1878
  ident: b11
  article-title: Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection
  publication-title: IEEE Trans. Med. Imaging
– year: 2023
  ident: b1
  article-title: Cardiovascular diseases
  publication-title: Our World Data
– volume: 8
  start-page: 579
  year: 2015
  end-page: 596
  ident: b5
  article-title: Coronary artery calcium scanning: past, present, and future
  publication-title: JACC: Cardiovasc. Imaging
– volume: 38
  start-page: 2127
  year: 2019
  end-page: 2138
  ident: b21
  article-title: Direct automatic coronary calcium scoring in cardiac and chest CT
  publication-title: IEEE Trans. Med. Imaging
– volume: 12
  start-page: 715
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110798_b35
  article-title: Deep convolutional neural networks to predict cardiovascular risk from computed tomography
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20966-2
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110798_b36
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nature Methods
  doi: 10.1038/s41592-020-01008-z
– start-page: 225
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110798_b20
  article-title: An optimized semantic segmentation deep learning model for automated coronary artery calcification prediction
– start-page: 157
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110798_b26
  article-title: A generalization study of automatic pericardial segmentation in computed tomography images
– volume: 15
  start-page: 1
  issue: 1
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110798_b19
  article-title: Automated segment-level coronary artery calcium scoring on non-contrast CT: a multi-task deep-learning approach
  publication-title: Insights Into Imaging
  doi: 10.1186/s13244-024-01827-0
– start-page: 346
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110798_b22
  article-title: Lightweight 3D CNN for the segmentation of coronary calcifications and calcium scoring
– volume: 1
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.compbiomed.2025.110798_b9
  article-title: Prognostic value of number and site of calcified coronary lesions compared with the total score
  publication-title: JACC: Cardiovasc. Imaging
– volume: 34
  start-page: 123
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110798_b15
  article-title: Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.04.004
– volume: 102
  start-page: 683
  issue: 11
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110798_b18
  article-title: Automatic coronary artery calcium scoring from unenhanced-ECG-gated CT using deep learning
  publication-title: Diagn. Interv. Imaging
  doi: 10.1016/j.diii.2021.05.004
– volume: 26
  start-page: 473
  year: 2010
  ident: 10.1016/j.compbiomed.2025.110798_b7
  article-title: Assessment of coronary artery calcium by using volumetric 320-row multi-detector computed tomography: comparison of 0.5 mm with 3.0 mm slice reconstructions
  publication-title: Int. J. Cardiovasc. Imaging
  doi: 10.1007/s10554-010-9581-8
– volume: 37
  start-page: 615
  issue: 2
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110798_b13
  article-title: Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2769839
– volume: 38
  start-page: 2127
  issue: 9
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110798_b21
  article-title: Direct automatic coronary calcium scoring in cardiac and chest CT
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2899534
– volume: 82
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110798_b24
  article-title: CAN3D: Fast 3D medical image segmentation via compact context aggregation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102562
– volume: 16
  start-page: 98
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110798_b30
  article-title: Major global coronary artery calcium guidelines
  publication-title: Cardiovasc. Imaging
– volume: 20
  start-page: 1681
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110798_b43
  article-title: Automated coronary artery calcium scoring using nested U-Net and focal loss
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.03.025
– year: 2023
  ident: 10.1016/j.compbiomed.2025.110798_b38
  article-title: Slim UNETR: Scale hybrid transformers to efficient 3D medical image segmentation under limited computational resources
  publication-title: IEEE Trans. Med. Imaging
– volume: 15
  start-page: 827
  issue: 4
  year: 1990
  ident: 10.1016/j.compbiomed.2025.110798_b8
  article-title: Quantification of coronary artery calcium using ultrafast computed tomography
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/0735-1097(90)90282-T
– volume: 22
  start-page: 177
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110798_b46
  article-title: Automated total and vessel-specific coronary artery calcium (CAC) quantification on chest CT: direct comparison with CAC scoring on non-contrast cardiac CT
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-022-00907-1
– start-page: 24
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110798_b12
  article-title: Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT
– start-page: 1462
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110798_b44
  article-title: Cac-emvt: Efficient coronary artery calcium segmentation with multi-scale vision transformers
– start-page: 24
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110798_b33
  article-title: Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT
– volume: 194
  start-page: 1244
  issue: 5
  year: 2010
  ident: 10.1016/j.compbiomed.2025.110798_b6
  article-title: Coronary artery calcification scoring in low-dose ungated CT screening for lung cancer: interscan agreement
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.09.3047
– volume: 8
  start-page: 119
  issue: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110798_b27
  article-title: Study of the normal heart size in northwest part of Iranian population: a cadaveric study
  publication-title: J. Cardiovasc. Thorac. Res.
  doi: 10.15171/jcvtr.2016.25
– volume: 34
  start-page: 12077
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110798_b37
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 579
  issue: 5
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110798_b5
  article-title: Coronary artery calcium scanning: past, present, and future
  publication-title: JACC: Cardiovasc. Imaging
– start-page: 122
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110798_b40
  article-title: Coronary artery calcium scoring from non-contrast cardiac CT using deep learning with external validation
– volume: 4
  start-page: 88
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110798_b14
  article-title: Automated coronary calcium scoring using deep learning with multicenter external validation
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-021-00460-1
– volume: 15
  start-page: 1359
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110798_b45
  article-title: Towards accurate coronary artery calcium segmentation with multi-scale attention mechanism
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12110
– volume: 14
  start-page: 11134
  issue: 1
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110798_b10
  article-title: Enhancing cardiovascular risk prediction through AI-enabled calcium-omics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-60584-8
– volume: 2
  start-page: 611
  issue: 3
  year: 2007
  ident: 10.1016/j.compbiomed.2025.110798_b3
  article-title: Coronary artery disease
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.03871106
– year: 2015
  ident: 10.1016/j.compbiomed.2025.110798_b25
– start-page: 1
  year: 2025
  ident: 10.1016/j.compbiomed.2025.110798_b48
  article-title: RICAU-net: residual-block inspired coordinate attention U-Net for segmentation of small and sparse calcium lesions in cardiac CT
– volume: 33
  start-page: 321
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110798_b16
  article-title: Evaluation of an artificial intelligence coronary artery calcium scoring model from computed tomography
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-022-09028-3
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110798_b31
  article-title: U-net: Convolutional networks for biomedical image segmentation
– start-page: 1351
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110798_b17
  article-title: Automatic CAC voxel classification with multi-scale CNN architecture
– volume: 3
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110798_b4
  article-title: An update on coronary artery calcium interpretation at chest and cardiac CT
  publication-title: Radiol.: Cardiothorac. Imaging
– start-page: 565
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110798_b29
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
– year: 2023
  ident: 10.1016/j.compbiomed.2025.110798_b1
  article-title: Cardiovascular diseases
  publication-title: Our World Data
– volume: 70
  start-page: 331
  issue: 5
  year: 2017
  ident: 10.1016/j.compbiomed.2025.110798_b23
  article-title: The ratio between visceral and subcutaneous abdominal fat assessed by computed tomography is an independent predictor of mortality and cardiac events
  publication-title: Rev. EspaÑola de Cardiol. ( Engl. Ed.)
  doi: 10.1016/j.recesp.2016.09.006
– start-page: 424
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110798_b34
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
– volume: 34
  start-page: 1867
  issue: 9
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110798_b11
  article-title: Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2412651
– volume: 112
  start-page: 3547
  issue: 23
  year: 2005
  ident: 10.1016/j.compbiomed.2025.110798_b2
  article-title: Cardiovascular disease in the developing world and its cost-effective management
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.591792
– start-page: 225
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110798_b42
  article-title: An optimized semantic segmentation deep learning model for automated coronary artery calcification prediction
– ident: 10.1016/j.compbiomed.2025.110798_b39
  doi: 10.1109/ICCVW60793.2023.00272
– volume: 29
  start-page: 6140
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110798_b28
  article-title: Density and morphology of coronary artery calcium for the prediction of cardiovascular events: insights from the framingham heart study
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06223-7
– ident: 10.1016/j.compbiomed.2025.110798_b32
  doi: 10.1109/CVPR.2018.00745
– volume: vol. 12927
  start-page: 156
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110798_b41
  article-title: Enhancing calcium score quantification in cardiac images through robust mediastinum segmentation
– volume: 23
  start-page: 846
  issue: 6
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110798_b47
  article-title: Deep learning for vessel-specific coronary artery calcium scoring: validation on a multi-centre dataset
  publication-title: Eur. Hear. Journal- Cardiovasc. Imaging
  doi: 10.1093/ehjci/jeab119
– volume: 22
  start-page: 1764
  issue: 11
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110798_b49
  article-title: Fully automatic coronary calcium score software empowered by artificial intelligence technology: validation study using three CT cohorts
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2021.0148
– start-page: 1
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110798_b50
  article-title: Automated AI-based coronary calcium scoring using retrospective CT data from SCAPIS is accurate and correlates with expert scoring
  publication-title: Eur. Radiol.
SSID ssj0004030
Score 2.419655
Snippet Cardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery calcifications are...
AbstractCardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 110798
SubjectTerms 3D CNN
Calcinosis - diagnostic imaging
Calcium scoring
Cardiac CT
Convolutional Neural Networks
Coronary Artery Disease - diagnostic imaging
Coronary calcification
Coronary Vessels - diagnostic imaging
Dilated convolution
Female
Humans
Imaging, Three-Dimensional - methods
Internal Medicine
Lightweight
Male
Middle Aged
Other
Tomography, X-Ray Computed
Vascular Calcification - diagnostic imaging
Title Segmentation of coronary calcifications with a domain knowledge-based lightweight 3D convolutional neural network
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525011497
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482525011497
https://dx.doi.org/10.1016/j.compbiomed.2025.110798
https://www.ncbi.nlm.nih.gov/pubmed/40752403
https://www.proquest.com/docview/3235963714
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpO8Zexu7LLkWDvQUHW7Jrmz2lbcquYZBu5E3IllxSWjuLk67s_-1_7ejiS9IGssFenCAiW9H3Weeic44QegtaRSLSzHMyGQjHBwXWiTknjgxIoLbFZKAd-t8_h6NRNJnEXzud31UuzNVFmOfR9XU8-69QQxuArVJn_wLu-qbQAN8BdLgC7HDdCvixPLu0CUW5CRqfFzrnFtDQAXg2-M1ktfVEccmnea_2rTlKronehTLaf2q_aY8e6-B0O2rAVBXB1B86hLyt31aHROgo23aBp_U9_LE6vNh4eZbTZiOkXJi8m1bjIZe_jIarNvUPB0mTvDZa2oMGTvR-v5eYoLLKi0GCOkyrXplBHgBVgpWVOW6vrcpSNSdWW0ndNNyQA8Ylca5gnJk6Bn311H77Hu3S28OjT55Tkr7rjHXFIhgI6IZgK5rg4bWS3B4rCXPZjZ_uoD0SBjHIh73Bh-HkY5Og61KTC2X_pA0pM4GGt49xk560yQ7S-tDpA3TfGjJ4YAj4EHVk_gjd_WJhfox-tHmIiwxXPMSrPMSKh5hjw0O8xkPc4iGmx3iFh9jwEFsePkHfToanR-8de76Hk9IY3loh_DgjLhWqBn8aeWD50sznPk1SKcKUJoRkoGORiFAexbDUuG4SChJnB_JAuRfpU7SbF7l8jrAbJjzwMh4IKfyEhhEPwI6PQuEl1CNJ1kVeNZtsZsq4sCq-8Zw1CDCFADMIdFFcTTur0pRBsDLg2BZ9w9v6ytIuFCXbxKEuelf3tEqwUW63fO6bih8M5ITa_OO5LJYlo4TClKj6nF30zBCnngkf7AZVl_PFP4_6JbrXvNWv0O5ivpSv0Z30ajEt5_toJ5xE-_al-APM_e3f
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+coronary+calcifications+with+a+domain+knowledge-based+lightweight+3D+convolutional+neural+network&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Santos%2C+Rui&rft.au=Castro%2C+Rui&rft.au=Baeza%2C+R%C3%BAben&rft.au=Nunes%2C+F%C3%A1bio&rft.date=2025-09-01&rft.issn=0010-4825&rft.volume=196&rft.spage=110798&rft.epage=110798&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.110798&rft.externalDBID=ECK1-s2.0-S0010482525011497&rft.externalDocID=1_s2_0_S0010482525011497
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482525X00135%2Fcov150h.gif