A computer algorithm for scoring cow teats based on udder images

In this work, we aimed to develop a computer algorithm for detecting and scoring cow teats according to udder images. In addition, by assessing three teat traits, i.e. the length, thickness, and placements, we scored them according to international standards. By applying the algorithm to 71 cows, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New Zealand journal of agricultural research Jg. 68; H. 7; S. 1696 - 1706
Hauptverfasser: Chuah, Chong Sheng, Nordbø, Øyvind, Ho, Harvey
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 02.12.2025
Schlagworte:
ISSN:0028-8233, 1175-8775, 1175-8775
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this work, we aimed to develop a computer algorithm for detecting and scoring cow teats according to udder images. In addition, by assessing three teat traits, i.e. the length, thickness, and placements, we scored them according to international standards. By applying the algorithm to 71 cows, we were able to detect all four teats in 62 of 71 (85%) cow udder images, and differentiate the front and rear teats in 56 of 62 (92%) udder images. Based on the three teat traits, we scored the teats of 56 cows. The final teat score was given by averaging the three scores for each cow. We discuss the limitations of the algorithm, and also the issues with teat conformation and image-taking itself, e.g. teats not facing perpendicular to the camera. In conclusion, we have developed the first computerised teat scoring system based on cow udder images. Further improvements require tuning parameters of the workflow and the image-taking process.
AbstractList In this work, we aimed to develop a computer algorithm for detecting and scoring cow teats according to udder images. In addition, by assessing three teat traits, i.e. the length, thickness, and placements, we scored them according to international standards. By applying the algorithm to 71 cows, we were able to detect all four teats in 62 of 71 (85%) cow udder images, and differentiate the front and rear teats in 56 of 62 (92%) udder images. Based on the three teat traits, we scored the teats of 56 cows. The final teat score was given by averaging the three scores for each cow. We discuss the limitations of the algorithm, and also the issues with teat conformation and image-taking itself, e.g. teats not facing perpendicular to the camera. In conclusion, we have developed the first computerised teat scoring system based on cow udder images. Further improvements require tuning parameters of the workflow and the image-taking process.
ABSTRACT In this work, we aimed to develop a computer algorithm for detecting and scoring cow teats according to udder images. In addition, by assessing three teat traits, i.e. the length, thickness, and placements, we scored them according to international standards. By applying the algorithm to 71 cows, we were able to detect all four teats in 62 of 71 (85%) cow udder images, and differentiate the front and rear teats in 56 of 62 (92%) udder images. Based on the three teat traits, we scored the teats of 56 cows. The final teat score was given by averaging the three scores for each cow. We discuss the limitations of the algorithm, and also the issues with teat conformation and image‐taking itself, e.g. teats not facing perpendicular to the camera. In conclusion, we have developed the first computerised teat scoring system based on cow udder images. Further improvements require tuning parameters of the workflow and the image‐taking process.
Author Ho, Harvey
Nordbø, Øyvind
Chuah, Chong Sheng
Author_xml – sequence: 1
  givenname: Chong Sheng
  surname: Chuah
  fullname: Chuah, Chong Sheng
  organization: The University of Auckland
– sequence: 2
  givenname: Øyvind
  surname: Nordbø
  fullname: Nordbø, Øyvind
  organization: Norsvin SA
– sequence: 3
  givenname: Harvey
  orcidid: 0000-0002-4160-0737
  surname: Ho
  fullname: Ho, Harvey
  email: harvey.ho@auckland.ac.nz
  organization: The University of Auckland
BookMark eNqNkEtLAzEYRYNUsFZ_gjBLN1PzmMxkEKS12KoU3Og6pHnUyMykJiml_96UqRsXajbhI_dc8p1zMOhcpwG4QnCMIIM3EGLGMCFjDHExxgXCJStOwBChiuasqugADA-Z_BA6A-chfKSxLFg9BJNpJl272UbtM9Gsnbfxvc2M81mQaejW6XmXRS1iyFYiaJW5LtsqleK2FWsdLsCpEU3Ql8d7BN7mD6-zx3z5sniaTZe5JDUrc1xWplY1VVIZgYVURBbEUIWQFLRaGY31qkRViUpDNK1RIQgjBSHQoBWDtCAjcN33brz73OoQeWuD1E0jOu22gRNcIcZqSlCK3vZR6V0IXhsubRTRui56YRuOID9449_e-MEbP3pLNP1Bb3xa1e__5O56bmcbvf8fxJ-nC3w_h-mUqWDSF9gu-W_FzvlG8Sj2jfPGi07atOXvf_gCYKuWpw
CitedBy_id crossref_primary_10_1016_j_agrcom_2025_100099
Cites_doi 10.1109/EUVIP58404.2023.10323076
10.3390/ani12070886
10.3168/jds.2020-19642
10.3168/jds.S0022-0302(04)73464-5
10.1007/978-3-030-72073-5_8
10.1080/09064702.2016.1260153
10.3390/math10173097
10.1017/S175173110800390X
10.3168/jds.2018-14838
10.1016/j.compag.2021.106391
10.3168/jds.S0022-0302(85)81152-8
ContentType Journal Article
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024
2025 The Authors.
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2025 The Authors.
DBID 0YH
24P
AAYXX
CITATION
7S9
L.6
DOI 10.1080/00288233.2024.2412684
DatabaseName Taylor & Francis Open Access
Wiley Online Library Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Journals Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1175-8775
EndPage 1706
ExternalDocumentID 10_1080_00288233_2024_2412684
JAG2BF00006
2412684
Genre Research Article
article
GeographicLocations New Zealand
GeographicLocations_xml – name: New Zealand
GrantInformation_xml – fundername: Research Council of Norway under the BIONÆR program
  grantid: 282252
– fundername: Research Council of Norway under the BIONÆR program
  funderid: 282252
GroupedDBID .7F
.QJ
0BK
0R~
0YH
123
30N
4.4
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACPRK
ACTIO
ADCVX
ADGTB
ADMHG
AEGXH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
DGEBU
DKSSO
EBS
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
J.P
KYCEM
LJTGL
M4Z
NA5
NX0
O9-
OK1
P2P
RIG
RNANH
RNZ
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TNZ
TQWBC
TTHFI
TUROJ
TUS
UT5
UU3
ZGOLN
~S~
07X
24P
2WC
69Q
A8Z
AAOAP
ACUHS
APEBS
APNXG
AURDB
BFWEY
C0.
C1A
CAG
COF
CWRZV
DLOXE
EBD
EJD
ESTFP
HGUVV
I-F
JEPSP
L84
OWHGL
PCLFJ
TR2
UB7
ZY4
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-c3986-267f9d95dcdfa2acd3c43f5d11ca57bfe2eb617616f3e5914a3834330f1b80543
IEDL.DBID 24P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329483600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-8233
1175-8775
IngestDate Fri Nov 14 18:40:09 EST 2025
Sat Nov 29 07:42:24 EST 2025
Tue Nov 18 21:14:33 EST 2025
Tue Nov 25 09:20:32 EST 2025
Mon Oct 20 23:46:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3986-267f9d95dcdfa2acd3c43f5d11ca57bfe2eb617616f3e5914a3834330f1b80543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4160-0737
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1080%2F00288233.2024.2412684
PQID 3271889531
PQPubID 24069
PageCount 11
ParticipantIDs crossref_citationtrail_10_1080_00288233_2024_2412684
informaworld_taylorfrancis_310_1080_00288233_2024_2412684
proquest_miscellaneous_3271889531
wiley_primary_10_1080_00288233_2024_2412684_JAG2BF00006
crossref_primary_10_1080_00288233_2024_2412684
PublicationCentury 2000
PublicationDate 2025-12-02
PublicationDateYYYYMMDD 2025-12-02
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-02
  day: 02
PublicationDecade 2020
PublicationTitle New Zealand journal of agricultural research
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References 2004; 43
2004; 87
2023
2021; 189
2011
2021
2021; 104
2022; 12
2019; 102
2017
2015
2022; 10
2014
2009; 3
1985; 68
2016; 66
Rastogi A (e_1_3_4_14_1) 2017
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
Rasby R. (e_1_3_4_13_1) 2011
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_6_1
e_1_3_4_12_1
e_1_3_4_10_1
e_1_3_4_11_1
e_1_3_4_16_1
e_1_3_4_17_1
e_1_3_4_15_1
Akhloufi MA. (e_1_3_4_4_1) 2014
Berry DP (e_1_3_4_5_1) 2004; 43
References_xml – volume: 104
  start-page: 4529
  issue: 4
  year: 2021
  end-page: 4536
  article-title: Feasibility of the use of deep learning classification of teat‐end condition in Holstein cattle
  publication-title: Journal of Dairy Science
– start-page: 3
  year: 2011
  end-page: 5
  article-title: A guide to udder and teat scoring beef cows
  publication-title: Angus J.
– volume: 66
  start-page: 75
  issue: 2
  year: 2016
  end-page: 83
  article-title: Genetic associations of teat cup attachment failures, incomplete milkings, and handling time in automatic milking systems with milkability, temperament, and udder conformation
  publication-title: Acta Agriculturae Scandinavica, Section A — Animal Science
– volume: 102
  start-page: 1386
  issue: 2
  year: 2019
  end-page: 1396
  article-title: Genetic analysis of udder conformation traits derived from automatic milking system recording in dairy cows
  publication-title: Journal of Dairy Science
– volume: 12
  start-page: 886
  issue: 7
  year: 2022
  article-title: Separable confident transductive learning for dairy cows teat‐end condition classification
  publication-title: Animals
– volume: 43
  start-page: 161
  issue: 2
  year: 2004
  end-page: 176
  article-title: Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows
  publication-title: Irish Journal of Agricultural and Food Research
– volume: 87
  start-page: 3280
  issue: 10
  year: 2004
  end-page: 3289
  article-title: Teat anatomy and its relationship with quarter and udder milk flow characteristics in dairy cows
  publication-title: Journal of Dairy Science
– volume: 3
  start-page: 494
  issue: 4
  year: 2009
  end-page: 500
  article-title: An analysis of the genetic relationship between udder health and udder conformation traits in South African jersey cows
  publication-title: Animal
– volume: 68
  start-page: 2670
  issue: 10
  year: 1985
  end-page: 2683
  article-title: Heritabilities of teat traits and their relationships with milk yield, somatic cell count, and percent Two‐minute Milk1
  publication-title: Journal of Dairy Science
– year: 2023
– volume: 189
  start-page: 106391
  year: 2021
  article-title: Automatic teat detection for rotary milking system based on deep learning algorithms
  publication-title: Computers and Electronics in Agriculture
– start-page: 168
  year: 2014
  end-page: 177
– start-page: 74
  year: 2017
  end-page: 79
  article-title: Real‐time teat detection using haar cascade classifier in smart automatic milking system
  publication-title: In: 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)
– volume: 10
  start-page: 3097
  issue: 17
  year: 2022
  article-title: Optimized deep‐learning‐based method for cattle udder traits classification
  publication-title: Mathematics
– year: 2015
– start-page: 100
  year: 2021
  end-page: 107
– ident: e_1_3_4_3_1
  doi: 10.1109/EUVIP58404.2023.10323076
– volume: 43
  start-page: 161
  issue: 2
  year: 2004
  ident: e_1_3_4_5_1
  article-title: Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows
  publication-title: Irish Journal of Agricultural and Food Research
– ident: e_1_3_4_17_1
  doi: 10.3390/ani12070886
– start-page: 168
  volume-title: Intelligent robots and computer vision XXXI: algorithms and techniques. Vol. 9025
  year: 2014
  ident: e_1_3_4_4_1
– ident: e_1_3_4_12_1
  doi: 10.3168/jds.2020-19642
– ident: e_1_3_4_16_1
  doi: 10.3168/jds.S0022-0302(04)73464-5
– ident: e_1_3_4_9_1
– start-page: 74
  year: 2017
  ident: e_1_3_4_14_1
  article-title: Real-time teat detection using haar cascade classifier in smart automatic milking system
  publication-title: In: 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)
– ident: e_1_3_4_8_1
  doi: 10.1007/978-3-030-72073-5_8
– start-page: 3
  year: 2011
  ident: e_1_3_4_13_1
  article-title: A guide to udder and teat scoring beef cows
  publication-title: Angus J.
– ident: e_1_3_4_6_1
  doi: 10.1080/09064702.2016.1260153
– ident: e_1_3_4_2_1
  doi: 10.3390/math10173097
– ident: e_1_3_4_7_1
  doi: 10.1017/S175173110800390X
– ident: e_1_3_4_11_1
  doi: 10.3168/jds.2018-14838
– ident: e_1_3_4_10_1
  doi: 10.1016/j.compag.2021.106391
– ident: e_1_3_4_15_1
  doi: 10.3168/jds.S0022-0302(85)81152-8
SSID ssj0026489
Score 2.3937194
Snippet In this work, we aimed to develop a computer algorithm for detecting and scoring cow teats according to udder images. In addition, by assessing three teat...
ABSTRACT In this work, we aimed to develop a computer algorithm for detecting and scoring cow teats according to udder images. In addition, by assessing three...
SourceID proquest
crossref
wiley
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1696
SubjectTerms agricultural research
algorithms
cameras
computers
Cow udder
cows
image processing
New Zealand
scoring system
teat
udders
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI54HeDAGzFeChLXIpq0aXNjIGDiMHEACU5VnjBpdGjt4O9j9zGxAwIJzpUj13Hiz4nzmZAT5CQzWuGdYYKnVXEaKJPowFuGXAZCWqGrZhNJv58-Psq7ppqwaMoqMYf2NVFEtVfj4la6aCvi8AU34ELOIbtj0SmEIGQsmSeLDFITzL_OnnrTnEtEqWyJmFGmfcTz3TAz4WmGvHQGgn4FslUkul77h39YJ6sNDKXd2m82yJzLN8lK93ncUHG4LXLepaZp-UDV8Hk0HpQvrxQ0pYWpqvbg8wcFHykLirHQ0lFOJ0hIQgevsEsV2-Th-ur-shc0_RYCw2UqAiYSL62MrbFeMWUsNxH3sQ1Do-JEe8ecBsAjQuG5i2UYKUhvI87PfKhTgH58hyzko9ztEhqlYHjlJIynIAG3WifemlAaKxCC2A6JWjNnpiEjx54YwyyccpbWBsrQQFljoA45nYq91WwcPwnIr3OYldUxiK97lmT8B9njdsIzWHN4kaJyN5qAHHhamkrYvjokqTzhd9pkt90bdlHVc4q9P2i2T5YZtiHGqhp2QBbK8cQdkiXzXg6K8VG1AD4BCIH6xA
  priority: 102
  providerName: Taylor & Francis
Title A computer algorithm for scoring cow teats based on udder images
URI https://www.tandfonline.com/doi/abs/10.1080/00288233.2024.2412684
https://onlinelibrary.wiley.com/doi/abs/10.1080%2F00288233.2024.2412684
https://www.proquest.com/docview/3271889531
Volume 68
WOSCitedRecordID wos001329483600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1175-8775
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026489
  issn: 0028-8233
  databaseCode: TFW
  dateStart: 20150102
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7x6KEcWvoSW1pkpF6DsJ048a0LYkE9IA6g0lPkJ10JstUmC3-_M3msWKkSFeKSizWWM_Z4vrHH3wB8I04yZw3dGeZ0WpUViXG5TaIXxGWgtFe2LTaRn58X19f6Yg1Oh7cwHT_E8sCNLKPdr8nAja1XsuIEokMpMcYT6QE6IuItWYdNzmVOy1ukF8vIS6WFHuiYSWZ4ykMk2__qZsVJrVCYrgDRx3C29UeTty_2J9vwpoekbNytoXewFqr3sDW-mfe0HOEDfB8z15d_YOb2ZjafNr_vGI6X1a7N4MPmB4brpakZ-UXPZhVbEDkJm97hjlV_hKvJyeXxWdLXXkic1IVKhMqj9jrzzkcjjPPSpTJmnnNnstzGIIJF8KO4ijJkmqcGQ91UysPIbYEwUH6CjWpWhR1gaYHqN0FjfwaDcW9tHr3j2nlFcMSPIB2UXbqemJzqY9yWfMlf2imoJAWVvYJGcLAU-9MxczwloB_PZNm0RyKxq19Syidk94dpL9H-6FLFVGG2QDmB3r3QuJWNIG9n-f9GU_4Yn4qjNrdTfX625C68FlSQmPJrxBfYaOaL8BVeuftmWs_3YP3w19leawr4vZz8_AtALP4W
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RqNT2AH2KLdC6Uq9Bje048a1bBCwtXXGgEjfL8QNWgmy1m6V_vzN5rFipEhXiHI3ljD2eh8ffB_CZMMlcaenOMKdqVVYk1uVlEj0nLAOlvSobsol8PC4uLvTZGoz6tzAtPsSy4EaW0ZzXZOBUkF5pi-MYHgqBSR6X--iJCLjkCWxI9DjEZcDl2TL1UrLQPR4zyfRveQhl-1_DrHipFQzTlUj0bjzbOKSjrcf7lZew2QWlbNjuolewFqrX8GJ4OeuAOcIb-DpkriOAYPb6cjqb1Fc3DCfM5q7p4cPPfxjumHrOyDN6Nq3YguBJ2OQGz6z5W_h1dHh-MEo69oXECV2ohKs8aq8z73y03DovnBQx82nqbJaXMfBQYvijUhVFyHQqLSa7UogvMS0LDATFO1ivplXYBiYL1L8NGsezmI77ssyjd6l2XlFA4gcge20b10GTE0PGtUmXCKatggwpyHQKGsD-Uux3i81xn4C-u5SmbooisWUwMeIe2U_9uhu0QLpWsVWYLlCOo38vNB5mA8ibZf6_2Zjvw2P-renuVO8fLPkRno3Of56a05Pxjx14zomemLpt-C6s17NF2IOn7raezGcfGov4C3zdAAM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB5RqCo4lL4QaUvrSr0u6tpe7_pGCk3pQ1EOrcTN8vpBI8EGJRv4-8zsIyJSJaqK82os79gz8409_gbgI3GSudLSnWFOp1VZkViXl0n0nLgMlPaqbJpN5ONxcXamJxtw2r-FafkhVgduZBmNvyYDD1c-rpXFcYSHQmCSx-UhRiIiLnkEWzJDf0scz3KySr2ULHTPx0wy_VseYtn-2zBrUWqNw3QNid7Fs01AGu0-3K88g6cdKGXDdhc9h41QvYCd4fm8I-YIL-FoyFzXAILZi_PZfFr_uWQ4YbZwTQ0ffr5huGPqBaPI6NmsYkuiJ2HTS_RZi1fwe_Tl1_Fp0nVfSJzQhUq4yqP2OvPOR8ut88JJETOfps5meRkDDyXCH5WqKEKmU2kx2ZVCfIppWSAQFHuwWc2qsA9MFqh_GzSOZzEd92WZR-9S7bwiQOIHIHttG9dRk1OHjAuTrhhMWwUZUpDpFDSAw5XYVcvNcZ-AvruUpm4ORWLbwcSIe2Q_9Otu0ALpWsVWYbZEOY77rdDozAaQN8v8b7Mx34df-eemulO9_m_J9_BkcjIyP7-Nf7yBbU7dianYhr-FzXq-DAfw2F3X08X8XWMQtx3u_3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computer+algorithm+for+scoring+cow+teats+based+on+udder+images&rft.jtitle=New+Zealand+journal+of+agricultural+research&rft.au=Chuah%2C+Chong+Sheng&rft.au=Nordb%C3%B8%2C+%C3%98yvind&rft.au=Ho%2C+Harvey&rft.date=2025-12-02&rft.pub=Taylor+%26+Francis&rft.issn=0028-8233&rft.eissn=1175-8775&rft.volume=68&rft.issue=7&rft.spage=1696&rft.epage=1706&rft_id=info:doi/10.1080%2F00288233.2024.2412684&rft.externalDBID=10.1080%252F00288233.2024.2412684&rft.externalDocID=JAG2BF00006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-8233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-8233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-8233&client=summon