State of the Art on Neural Rendering
Efficient rendering of photo‐realistic virtual worlds is a long standing effort of computer graphics. Modern graphics techniques have succeeded in synthesizing photo‐realistic images from hand‐crafted scene representations. However, the automatic generation of shape, materials, lighting, and other a...
Uloženo v:
| Vydáno v: | Computer graphics forum Ročník 39; číslo 2; s. 701 - 727 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Blackwell Publishing Ltd
01.05.2020
|
| Témata: | |
| ISSN: | 0167-7055, 1467-8659 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Efficient rendering of photo‐realistic virtual worlds is a long standing effort of computer graphics. Modern graphics techniques have succeeded in synthesizing photo‐realistic images from hand‐crafted scene representations. However, the automatic generation of shape, materials, lighting, and other aspects of scenes remains a challenging problem that, if solved, would make photo‐realistic computer graphics more widely accessible. Concurrently, progress in computer vision and machine learning have given rise to a new approach to image synthesis and editing, namely deep generative models. Neural rendering is a new and rapidly emerging field that combines generative machine learning techniques with physical knowledge from computer graphics, e.g., by the integration of differentiable rendering into network training. With a plethora of applications in computer graphics and vision, neural rendering is poised to become a new area in the graphics community, yet no survey of this emerging field exists. This state‐of‐the‐art report summarizes the recent trends and applications of neural rendering. We focus on approaches that combine classic computer graphics techniques with deep generative models to obtain controllable and photorealistic outputs. Starting with an overview of the underlying computer graphics and machine learning concepts, we discuss critical aspects of neural rendering approaches. Specifically, our emphasis is on the type of control, i.e., how the control is provided, which parts of the pipeline are learned, explicit vs. implicit control, generalization, and stochastic vs. deterministic synthesis. The second half of this state‐of‐the‐art report is focused on the many important use cases for the described algorithms such as novel view synthesis, semantic photo manipulation, facial and body reenactment, relighting, free‐viewpoint video, and the creation of photo‐realistic avatars for virtual and augmented reality telepresence. Finally, we conclude with a discussion of the social implications of such technology and investigate open research problems. |
|---|---|
| AbstractList | Efficient rendering of photo‐realistic virtual worlds is a long standing effort of computer graphics. Modern graphics techniques have succeeded in synthesizing photo‐realistic images from hand‐crafted scene representations. However, the automatic generation of shape, materials, lighting, and other aspects of scenes remains a challenging problem that, if solved, would make photo‐realistic computer graphics more widely accessible. Concurrently, progress in computer vision and machine learning have given rise to a new approach to image synthesis and editing, namely deep generative models. Neural rendering is a new and rapidly emerging field that combines generative machine learning techniques with physical knowledge from computer graphics, e.g., by the integration of differentiable rendering into network training. With a plethora of applications in computer graphics and vision, neural rendering is poised to become a new area in the graphics community, yet no survey of this emerging field exists. This state‐of‐the‐art report summarizes the recent trends and applications of neural rendering. We focus on approaches that combine classic computer graphics techniques with deep generative models to obtain controllable and photorealistic outputs. Starting with an overview of the underlying computer graphics and machine learning concepts, we discuss critical aspects of neural rendering approaches. Specifically, our emphasis is on the type of control, i.e., how the control is provided, which parts of the pipeline are learned, explicit vs. implicit control, generalization, and stochastic vs. deterministic synthesis. The second half of this state‐of‐the‐art report is focused on the many important use cases for the described algorithms such as novel view synthesis, semantic photo manipulation, facial and body reenactment, relighting, free‐viewpoint video, and the creation of photo‐realistic avatars for virtual and augmented reality telepresence. Finally, we conclude with a discussion of the social implications of such technology and investigate open research problems. |
| Author | Saragih, J. Sitzmann, V. Pandey, R. Thies, J. Martin‐Brualla, R. Agrawala, M. Zollhöfer, M. Lombardi, S. Nießner, M. Theobalt, C. Zhu, J.‐Y. Fanello, S. Shechtman, E. Tewari, A. Fried, O. Wetzstein, G. Goldman, D. B Simon, T. Sunkavalli, K. |
| Author_xml | – sequence: 1 givenname: A. surname: Tewari fullname: Tewari, A. email: atewari@mpi-inf.mpg.de organization: MPI Informatics – sequence: 2 givenname: O. surname: Fried fullname: Fried, O. email: ohad@stanford.edu organization: Stanford University – sequence: 3 givenname: J. surname: Thies fullname: Thies, J. email: justus.thies@tum.de organization: Technical University of Munich – sequence: 4 givenname: V. surname: Sitzmann fullname: Sitzmann, V. email: sitzmann@cs.stanford.edu organization: Stanford University – sequence: 5 givenname: S. surname: Lombardi fullname: Lombardi, S. email: stephen.a.lombardi@gmail.com organization: Facebook Reality Labs – sequence: 6 givenname: K. surname: Sunkavalli fullname: Sunkavalli, K. email: sunkaval@adobe.com organization: Adobe Research – sequence: 7 givenname: R. surname: Martin‐Brualla fullname: Martin‐Brualla, R. email: rmbrualla@google.com organization: Google Inc – sequence: 8 givenname: T. surname: Simon fullname: Simon, T. email: tomas.simon@oculus.com organization: Facebook Reality Labs – sequence: 9 givenname: J. surname: Saragih fullname: Saragih, J. email: jason.saragih@oculus.com organization: Facebook Reality Labs – sequence: 10 givenname: M. surname: Nießner fullname: Nießner, M. email: niessner@tum.de organization: Technical University of Munich – sequence: 11 givenname: R. surname: Pandey fullname: Pandey, R. email: rohitpandey@google.com organization: Google Inc – sequence: 12 givenname: S. surname: Fanello fullname: Fanello, S. email: seanfa@google.com organization: Google Inc – sequence: 13 givenname: G. surname: Wetzstein fullname: Wetzstein, G. email: gordon.wetzstein@stanford.edu organization: Stanford University – sequence: 14 givenname: J.‐Y. surname: Zhu fullname: Zhu, J.‐Y. email: junyanz@cs.cmu.edu organization: Adobe Research – sequence: 15 givenname: C. surname: Theobalt fullname: Theobalt, C. email: theobalt@mpi-inf.mpg.de organization: MPI Informatics – sequence: 16 givenname: M. surname: Agrawala fullname: Agrawala, M. email: maneesh@cs.stanford.edu organization: Stanford University – sequence: 17 givenname: E. surname: Shechtman fullname: Shechtman, E. email: elishe@adobe.com organization: Adobe Research – sequence: 18 givenname: D. B surname: Goldman fullname: Goldman, D. B email: danbgoldman@gmail.com organization: Google Inc – sequence: 19 givenname: M. surname: Zollhöfer fullname: Zollhöfer, M. email: zollhoefer@cs.stanford.edu organization: Facebook Reality Labs |
| BookMark | eNp9kE9PAjEQxRuDiYAe_Aab6MXDwrTbdtsjIYImRBP_nJtSZnHJ2mJ3CeHbW8WTic5l5vB7b2begPR88EjIJYURTTV262pEOTB2QvqUyzJXUuge6QNNcwlCnJFB224AgJdS9Mn1c2c7zEKVdW-YTWKXBZ894C7aJntCv8JY-_U5Oa1s0-LFTx-S19nty_QuXzzO76eTRe4KrVi-FFxQypyzYNFxEFKg0toJ5RQUQDVSW_GV5pWjSxRuqcp0FgIgVwXXshiSq6PvNoaPHbad2YRd9GmlYZwxLUEKSNTNkXIxtG3Eymxj_W7jwVAwXyGYFIL5DiGx41-sq9PDdfBdtHXzn2JfN3j429pM57Oj4hN9IWwX |
| CitedBy_id | crossref_primary_10_1145_3687974 crossref_primary_10_1080_10447318_2025_2530090 crossref_primary_10_1109_TVCG_2022_3141943 crossref_primary_10_3389_fcomp_2022_871808 crossref_primary_10_3390_rs15143585 crossref_primary_10_1109_TPAMI_2023_3315068 crossref_primary_10_3389_fnbot_2025_1630728 crossref_primary_10_1111_cgf_14456 crossref_primary_10_1117_1_JEI_33_3_033006 crossref_primary_10_1007_s10791_025_09628_9 crossref_primary_10_1111_cgf_14578 crossref_primary_10_1109_TVCG_2024_3368443 crossref_primary_10_1111_cgf_14339 crossref_primary_10_1145_3550454_3555452 crossref_primary_10_1109_JOE_2022_3194899 crossref_primary_10_1145_3550454_3555451 crossref_primary_10_1016_j_displa_2024_102773 crossref_primary_10_1145_3450626_3459765 crossref_primary_10_1109_LRA_2024_3444671 crossref_primary_10_1109_MC_2021_3084656 crossref_primary_10_1109_TVCG_2022_3167896 crossref_primary_10_1145_3478513_3480559 crossref_primary_10_1145_3446328 crossref_primary_10_1109_COMST_2024_3392642 crossref_primary_10_1111_cgf_14342 crossref_primary_10_1111_cgf_14465 crossref_primary_10_1145_3550454_3555458 crossref_primary_10_1109_ACCESS_2022_3172492 crossref_primary_10_1111_cgf_14502 crossref_primary_10_1145_3528223_3530122 crossref_primary_10_1109_TVCG_2020_3023573 crossref_primary_10_1111_cgf_14505 crossref_primary_10_1111_cgf_14507 crossref_primary_10_1109_TVCG_2020_3030456 crossref_primary_10_1007_s11263_021_01563_8 crossref_primary_10_1145_3386569_3392475 crossref_primary_10_1016_j_jksuci_2024_102222 crossref_primary_10_1145_3450626_3459756 crossref_primary_10_1016_j_molp_2024_09_004 crossref_primary_10_1145_3675808 crossref_primary_10_1111_cgf_14675 crossref_primary_10_1145_3449063 crossref_primary_10_1007_s41095_022_0301_9 crossref_primary_10_1007_s11263_025_02403_9 crossref_primary_10_1109_TVCG_2021_3114769 crossref_primary_10_1145_3450626_3459785 crossref_primary_10_1016_j_gmod_2023_101199 crossref_primary_10_1109_ACCESS_2025_3541780 crossref_primary_10_1145_3451260 crossref_primary_10_1049_cvi2_12321 crossref_primary_10_1016_j_cag_2023_08_024 crossref_primary_10_1111_cgf_14283 crossref_primary_10_1145_3478513_3480497 crossref_primary_10_1109_TVCG_2023_3297721 crossref_primary_10_1016_j_cviu_2022_103440 crossref_primary_10_2478_amns_2025_1108 crossref_primary_10_1111_cgf_14202 crossref_primary_10_1016_j_cag_2025_104361 crossref_primary_10_1145_3592134 crossref_primary_10_1109_TPAMI_2022_3232502 crossref_primary_10_1007_s11263_023_01903_w crossref_primary_10_1145_3450626_3459849 crossref_primary_10_1111_cgf_15062 crossref_primary_10_1109_TPAMI_2021_3136301 crossref_primary_10_1145_3478513_3480487 crossref_primary_10_1007_s11633_022_1400_x crossref_primary_10_1109_TPAMI_2025_3563398 crossref_primary_10_1364_OE_567809 crossref_primary_10_1145_3522735 crossref_primary_10_1145_3528223_3530153 crossref_primary_10_1145_3414685_3417770 crossref_primary_10_1016_j_tics_2021_11_008 crossref_primary_10_3390_electronics12204301 crossref_primary_10_1109_TVCG_2022_3204608 crossref_primary_10_1111_phor_12498 crossref_primary_10_1145_3414685_3417814 crossref_primary_10_1145_3450626_3459848 crossref_primary_10_1145_3478513_3480528 crossref_primary_10_1111_cgf_15071 crossref_primary_10_1049_cvi2_12189 crossref_primary_10_1111_cgf_15194 crossref_primary_10_1111_cgf_15198 crossref_primary_10_1007_s11042_024_19699_3 crossref_primary_10_1007_s11263_021_01471_x crossref_primary_10_1145_3476576_3476609 crossref_primary_10_1145_3585512 crossref_primary_10_1145_3476576_3476729 crossref_primary_10_1111_cgf_14145 crossref_primary_10_1145_3550454_3555497 crossref_primary_10_1109_JPROC_2021_3049196 crossref_primary_10_1145_3690390 crossref_primary_10_1109_TPAMI_2023_3335311 crossref_primary_10_3390_app13127278 crossref_primary_10_1109_TAES_2023_3303856 crossref_primary_10_1145_3414685_3417804 crossref_primary_10_1145_3414685_3417767 crossref_primary_10_1145_3528223_3530169 crossref_primary_10_1145_3731163 crossref_primary_10_3390_app14062530 crossref_primary_10_1007_s41095_021_0248_2 crossref_primary_10_1088_2516_1091_ac5b13 crossref_primary_10_1111_cgf_142626 crossref_primary_10_1109_TPAMI_2023_3298850 crossref_primary_10_1007_s00371_024_03501_4 crossref_primary_10_1016_j_autcon_2024_105517 crossref_primary_10_1109_TMM_2024_3443637 crossref_primary_10_1145_3658160 crossref_primary_10_1109_TVCG_2022_3226689 crossref_primary_10_3390_app12147212 crossref_primary_10_1007_s00371_022_02562_7 crossref_primary_10_1111_cgf_14480 crossref_primary_10_1177_14771535221148736 crossref_primary_10_1007_s11633_022_1411_7 crossref_primary_10_3390_biomimetics6010016 crossref_primary_10_1007_s00371_022_02518_x crossref_primary_10_1145_3476576_3476749 crossref_primary_10_1111_cgf_14646 crossref_primary_10_1109_TVCG_2022_3209963 crossref_primary_10_1145_3585499 crossref_primary_10_1109_TMM_2025_3535368 crossref_primary_10_1145_3414685_3417821 |
| Cites_doi | 10.1109/CVPR.2018.00659 10.1145/2984511.2984517 10.1145/37402.37422 10.1145/882262.882343 10.1109/ICCV.2019.00882 10.1145/3306305.3332370 10.1145/237170.237200 10.1111/cgf.13632 10.1145/3272127.3275075 10.1109/ACCESS.2019.2905015 10.1109/ICCV.2019.00955 10.1109/CVPR.2016.90 10.1109/ICCV.2019.01065 10.1109/CVPR.2010.5539957 10.1109/CVPR.2018.00070 10.1109/CVPR.2018.00020 10.1109/CVPR.2018.00923 10.1109/IROS.2018.8593800 10.1145/3072959.3073601 10.1109/CVPR.2018.00918 10.1109/ICCV.2017.167 10.1109/CVPR.2019.00453 10.1109/ICCV.2019.00729 10.1007/BF01679684 10.1126/science.aar6170 10.1145/1276377.1276382 10.1145/3197517.3201313 10.1126/science.1127647 10.1145/3306346.3323008 10.1007/978-3-030-01252-6_7 10.1145/3306346.3323027 10.1109/CVPR.2017.723 10.1111/cgf.13633 10.1561/0600000023 10.1109/ICCV.2019.00009 10.1109/CVPR.2019.00882 10.1109/CVMP.2009.18 10.1111/j.1467-8659.2006.00960.x 10.1007/978-3-030-01219-9_8 10.1007/978-3-319-46478-7_51 10.1145/3197517.3201401 10.21437/Interspeech.2018-1929 10.1109/CVPR.2018.00359 10.1007/978-3-030-01231-1_36 10.1109/CVPR.2016.265 10.1109/CVPR.2018.00013 10.1109/ICCV.2017.310 10.1109/ICCV.2019.00466 10.1109/CVPR.2016.595 10.1145/3306346.3323007 10.1007/BFb0094775 10.1145/360825.360839 10.1145/3306346.3323028 10.1109/CVPR.2019.00242 10.1207/s15516709cog0901_7 10.1145/1618452.1618470 10.1109/TCOM.1983.1095851 10.1109/CVPR.2008.4587842 10.1145/3130800.3130801 10.1145/2487228.2487238 10.1109/CVPR.2015.7298965 10.1109/CVPR.2019.00994 10.1109/CVPR.2017.578 10.1109/ICCV.2019.01017 10.1007/978-3-319-24574-4_28 10.1145/3333002 10.1145/3197517.3201378 10.1111/cgf.13225 10.1007/978-3-030-01261-8_41 10.1145/1576246.1531330 10.1109/CVPR.2018.00652 10.1145/3355089.3356571 10.1109/CVPR.2018.00018 10.1007/978-3-319-46475-6_43 10.1111/1467-8659.t01-1-00712 10.1145/3240508.3240536 10.1109/CVPR.2017.19 10.1109/CVPR.2019.00023 10.1109/TIFS.2019.2916364 10.1145/882262.882269 10.1109/CVPR.2017.241 10.1007/978-3-030-01219-9_11 10.1109/CVPR.2015.7298761 10.1016/j.image.2003.07.001 10.1146/annurev-statistics-010814-020120 10.1109/TPAMI.2007.60 10.1109/TMM.2014.2368696 10.1145/3197517.3201283 10.1109/CVPR.2018.00870 10.1109/ICCV.2019.00467 10.1109/TIP.2003.819861 10.1109/TPAMI.2012.213 10.1109/CVPR.2018.00984 10.1007/978-3-319-46484-8_38 10.1109/CVPR.2018.00068 10.1007/978-3-030-01219-9_5 10.1109/CVPR.2019.00247 10.1145/2897824.2925974 10.1145/3272127.3275084 10.1145/383259.383296 10.1109/ICCV.1999.790383 10.1145/3306346.3323030 10.1145/357290.357293 10.1109/TPAMI.2014.2377712 10.1145/3306346.3323013 10.1109/CVPR.2018.00916 10.1145/2897824.2925969 10.1145/3306346.3323035 10.1109/CVPR.2019.00459 10.1109/ISACV.2018.8354080 10.1109/TVCG.2010.233 10.1109/CVPR.2018.00882 10.1007/978-1-4842-4427-2 10.1109/ICCV.2019.00239 10.1109/CVPR.2019.00254 10.1145/2980179.2982420 10.1007/978-3-319-46487-9_40 10.1109/ICCV.2003.1238630 10.1145/3272127.3275099 10.1109/TIFS.2017.2699942 10.1145/1597990.1598050 10.1109/CVPR.2017.18 10.1145/358876.358882 10.1109/MSP.2017.2765202 10.1109/ICCV.2019.00282 10.1109/ICCV.2017.244 10.1145/3306346.3323020 10.1109/CVPR.2016.262 10.1145/383259.383295 10.1145/3272127.3275043 10.1109/CVPR.2017.728 10.1145/3197517.3201323 10.1145/15886.15902 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s) Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2020 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2020 The Author(s) Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2020 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1111/cgf.14022 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 727 |
| ExternalDocumentID | 10_1111_cgf_14022 CGF14022 |
| Genre | article |
| GrantInformation_xml | – fundername: ERC Starting Grant Scan2CAD funderid: 804724 – fundername: Okawa Research Grant – fundername: Google, Sony, a TUM‐IAS Rudolf Mößbauer Fellowship – fundername: Brown Institute for Media Innovation – fundername: Sloan Fellowship – fundername: ERC Consolidator Grant 4DRepLy funderid: 770784 – fundername: NSF funderid: IIS 1553333; CMMI 1839974 |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3982-b545112cca0aec40565e899c58c803019e1af4d94fc1be5cb87016e00e4834963 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 336 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548709600054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sun Jul 13 04:38:27 EDT 2025 Tue Nov 18 21:58:46 EST 2025 Sat Nov 29 03:41:18 EST 2025 Wed Jan 22 16:34:48 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3982-b545112cca0aec40565e899c58c803019e1af4d94fc1be5cb87016e00e4834963 |
| Notes | Equal contribution. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | http://hdl.handle.net/21.11116/0000-0007-E114-4 |
| PQID | 2422960650 |
| PQPubID | 30877 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_2422960650 crossref_primary_10_1111_cgf_14022 crossref_citationtrail_10_1111_cgf_14022 wiley_primary_10_1111_cgf_14022_CGF14022 |
| PublicationCentury | 2000 |
| PublicationDate | May 2020 2020-05-00 20200501 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationYear | 2020 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2015; 34 2018; 360 1975; 18 2014; 27 2011; 17 2016; 35 2007; 29 2017; 30 2014; 3 1982; 1 2001 2017; 36 2000 2006; 25 1987 1986 2018; 37 2007; 26 2018; 35 2015; 2 2019; 7 2015; 17 2012 2010 1995; 14 2019; 1 1985; 9 1980; 23 1983; 31 2009 1998 2019; 38 2008 1996 2007 2003 1992 2006; 313 2012; 35 2011; 6 2009; 28 1999 2013; 32 2004; 19 2020 2004; 13 2017; 12 2019 2014; 37 2018 2017 2016 2015 2014 2013 2018; 15 2003; 22 1966 e_1_2_11_93_2 e_1_2_11_200_2 e_1_2_11_70_2 e_1_2_11_223_2 e_1_2_11_55_2 e_1_2_11_78_2 e_1_2_11_32_2 e_1_2_11_125_2 e_1_2_11_148_2 e_1_2_11_4_2 e_1_2_11_29_2 e_1_2_11_140_2 e_1_2_11_163_2 e_1_2_11_81_2 e_1_2_11_211_2 e_1_2_11_43_2 e_1_2_11_66_2 e_1_2_11_89_2 e_1_2_11_197_2 e_1_2_11_17_2 e_1_2_11_113_2 e_1_2_11_159_2 e_1_2_11_136_2 e_1_2_11_151_2 e_1_2_11_174_2 e_1_2_11_208_2 e_1_2_11_92_2 e_1_2_11_201_2 e_1_2_11_224_2 Goodfellow I. (e_1_2_11_71_2) 2014; 27 e_1_2_11_31_2 e_1_2_11_54_2 e_1_2_11_77_2 e_1_2_11_187_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_103_2 e_1_2_11_149_2 e_1_2_11_126_2 e_1_2_11_164_2 e_1_2_11_141_2 e_1_2_11_190_2 e_1_2_11_80_2 e_1_2_11_212_2 e_1_2_11_65_2 e_1_2_11_198_2 e_1_2_11_88_2 e_1_2_11_42_2 e_1_2_11_114_2 e_1_2_11_137_2 e_1_2_11_16_2 e_1_2_11_39_2 e_1_2_11_175_2 e_1_2_11_152_2 e_1_2_11_209_2 e_1_2_11_180_2 e_1_2_11_225_2 e_1_2_11_202_2 e_1_2_11_188_2 e_1_2_11_57_2 Bau D. (e_1_2_11_20_2) 2019; 38 e_1_2_11_34_2 e_1_2_11_72_2 e_1_2_11_11_2 e_1_2_11_139_2 e_1_2_11_95_2 e_1_2_11_104_2 e_1_2_11_127_2 e_1_2_11_2_2 e_1_2_11_69_2 e_1_2_11_142_2 e_1_2_11_165_2 McGuire M. (e_1_2_11_131_2) 2014; 3 e_1_2_11_60_2 e_1_2_11_191_2 e_1_2_11_213_2 e_1_2_11_45_2 e_1_2_11_68_2 e_1_2_11_199_2 e_1_2_11_22_2 e_1_2_11_83_2 e_1_2_11_138_2 e_1_2_11_115_2 e_1_2_11_19_2 e_1_2_11_153_2 e_1_2_11_176_2 e_1_2_11_130_2 Szeliski R. (e_1_2_11_186_2) 2010 e_1_2_11_181_2 e_1_2_11_203_2 e_1_2_11_226_2 e_1_2_11_56_2 e_1_2_11_79_2 e_1_2_11_189_2 e_1_2_11_117_2 e_1_2_11_33_2 e_1_2_11_94_2 e_1_2_11_10_2 e_1_2_11_3_2 e_1_2_11_105_2 Radford A. (e_1_2_11_166_2) 2019; 1 e_1_2_11_120_2 e_1_2_11_143_2 e_1_2_11_82_2 Kalantari N. K. (e_1_2_11_98_2) 2015; 34 e_1_2_11_192_2 Deschaintre V. (e_1_2_11_46_2) 2019; 38 e_1_2_11_214_2 e_1_2_11_44_2 e_1_2_11_67_2 e_1_2_11_128_2 e_1_2_11_21_2 e_1_2_11_116_2 e_1_2_11_177_2 e_1_2_11_18_2 e_1_2_11_154_2 e_1_2_11_182_2 e_1_2_11_204_2 e_1_2_11_13_2 e_1_2_11_118_2 e_1_2_11_51_2 e_1_2_11_97_2 e_1_2_11_74_2 e_1_2_11_25_2 e_1_2_11_121_2 e_1_2_11_144_2 e_1_2_11_167_2 e_1_2_11_48_2 e_1_2_11_216_2 e_1_2_11_193_2 e_1_2_11_215_2 e_1_2_11_230_2 e_1_2_11_24_2 e_1_2_11_62_2 e_1_2_11_85_2 e_1_2_11_106_2 e_1_2_11_129_2 e_1_2_11_8_2 e_1_2_11_36_2 e_1_2_11_155_2 e_1_2_11_178_2 e_1_2_11_59_2 e_1_2_11_132_2 e_1_2_11_227_2 e_1_2_11_170_2 e_1_2_11_220_2 e_1_2_11_183_2 e_1_2_11_35_2 e_1_2_11_50_2 e_1_2_11_73_2 e_1_2_11_96_2 e_1_2_11_12_2 e_1_2_11_119_2 e_1_2_11_168_2 e_1_2_11_47_2 e_1_2_11_145_2 Zollhöfer M. (e_1_2_11_229_2) 2018; 37 e_1_2_11_217_2 e_1_2_11_160_2 e_1_2_11_194_2 e_1_2_11_231_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_61_2 e_1_2_11_107_2 e_1_2_11_84_2 e_1_2_11_179_2 e_1_2_11_58_2 e_1_2_11_110_2 e_1_2_11_133_2 e_1_2_11_156_2 e_1_2_11_205_2 e_1_2_11_228_2 e_1_2_11_171_2 e_1_2_11_221_2 e_1_2_11_91_2 e_1_2_11_184_2 e_1_2_11_30_2 e_1_2_11_76_2 e_1_2_11_99_2 e_1_2_11_53_2 e_1_2_11_6_2 e_1_2_11_27_2 e_1_2_11_146_2 e_1_2_11_169_2 e_1_2_11_100_2 e_1_2_11_123_2 e_1_2_11_218_2 e_1_2_11_161_2 Kar A. (e_1_2_11_102_2) 2017; 30 e_1_2_11_195_2 e_1_2_11_232_2 e_1_2_11_87_2 e_1_2_11_41_2 e_1_2_11_64_2 e_1_2_11_108_2 e_1_2_11_15_2 e_1_2_11_157_2 e_1_2_11_134_2 e_1_2_11_38_2 e_1_2_11_111_2 e_1_2_11_172_2 e_1_2_11_206_2 Marschner S. R. (e_1_2_11_122_2) 1998 e_1_2_11_222_2 e_1_2_11_90_2 e_1_2_11_185_2 e_1_2_11_52_2 e_1_2_11_75_2 e_1_2_11_124_2 e_1_2_11_26_2 e_1_2_11_147_2 e_1_2_11_49_2 e_1_2_11_101_2 e_1_2_11_219_2 e_1_2_11_162_2 e_1_2_11_210_2 e_1_2_11_196_2 e_1_2_11_40_2 e_1_2_11_86_2 e_1_2_11_7_2 e_1_2_11_63_2 e_1_2_11_109_2 e_1_2_11_135_2 e_1_2_11_158_2 e_1_2_11_14_2 e_1_2_11_37_2 e_1_2_11_112_2 e_1_2_11_207_2 e_1_2_11_173_2 e_1_2_11_150_2 |
| References_xml | – volume: 37 start-page: 1670 issue: 8 year: 2014 end-page: 1687 article-title: Shape, illumination, and reflectance from shading publication-title: IEEE transactions on pattern analysis and machine intelligence – volume: 6 start-page: 1 year: 2011 end-page: 183 article-title: Camera models and fundamental concepts used in geometric computer vision publication-title: Found. Trends. Comput. Graph. Vis. – year: 1966 – volume: 38 issue: 6 year: 2019 article-title: The relightables: Volumetric performance capture of humans with realistic relighting publication-title: ACM Trans. Graph. – volume: 37 start-page: 231:1 issue: 6 year: 2018 end-page: 231:12 article-title: Warp‐guided gans for single‐photo facial animation publication-title: ACM Trans. Graph. – volume: 35 start-page: 1397 issue: 6 year: 2012 end-page: 1409 article-title: Guided image filtering publication-title: IEEE transactions on pattern analysis and machine intelligence – volume: 38 start-page: 219 issue: 2 year: 2019 end-page: 233 article-title: Deep video‐based performance cloning publication-title: Comput. Graph. Forum – year: 2014 – volume: 38 issue: 4 year: 2019 article-title: Semantic photo manipulation with a generative image prior publication-title: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) – year: 1998 – start-page: 231:1 end-page: 231:11 – volume: 22 start-page: 759 issue: 3 year: 2003 end-page: 769 article-title: A data‐driven reflectance model publication-title: ACM Trans. Graph. – volume: 23 start-page: 343 issue: 6 year: 1980 end-page: 349 article-title: An improved illumination model for shaded display publication-title: Commun. ACM – volume: 35 start-page: 53 issue: 1 year: 2018 end-page: 65 article-title: Generative adversarial networks: An overview publication-title: IEEE Signal Processing Magazine – start-page: 145 year: 2019 end-page: 154 – volume: 15 start-page: 144 year: 2018 end-page: 159 article-title: Noiseprint: A cnn‐based camera model fingerprint publication-title: IEEE Transactions on Information Forensics and Security – volume: 17 start-page: 1273 year: 2011 end-page: 1285 article-title: Cg2real: Improving the realism of computer generated images using a large collection of photographs publication-title: IEEE Trans. Vis. Comput. Graph. – start-page: 4460 year: 2019 end-page: 4470 – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE transactions on image processing – volume: 17 start-page: 157 year: 2015 end-page: 170 article-title: Towards practical self‐embedding for jpeg‐compressed digital images publication-title: IEEE Transactions on Multimedia – year: 2019 – volume: 37 start-page: 126:1 issue: 4 year: 2018 end-page: 126:13 article-title: Deep image‐based relighting from optimal sparse samples publication-title: ACM Trans. Graph. – volume: 37 issue: 2 year: 2018 article-title: State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications publication-title: Computer Graphics Forum (Eurographics State of the Art Reports 2018) – start-page: 234 year: 2015 end-page: 241 – volume: 3 start-page: 73 issue: 4 year: 2014 end-page: 85 article-title: Efficient GPU screen‐space ray tracing publication-title: Journal of Computer Graphics Techniques (JCGT) – start-page: 118 year: 2018 end-page: 129 – volume: 28 issue: 5 year: 2009 article-title: Sketch2photo: internet image montage publication-title: ACM Transactions on Graphics (TOG) – volume: 37 start-page: 255:1 issue: 6 year: 2018 end-page: 255:14 article-title: Lookingood: Enhancing performance capture with real‐time neural re‐rendering publication-title: ACM Trans. Graph. – year: 2007 – volume: 37 start-page: 258 issue: 6 year: 2018 end-page: 1 article-title: pagan: real‐time avatars using dynamic textures publication-title: ACM Trans. Graph. – start-page: 6296 year: 2018 end-page: 6305 – volume: 1 issue: 8 year: 2019 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog – volume: 38 start-page: 67:1 issue: 4 year: 2019 end-page: 67:16 article-title: Vr facial animation via multiview image translation publication-title: ACM Trans. Graph. – year: 2016 – year: 1992 – year: 2010 – start-page: 8789 year: 2018 end-page: 8797 – volume: 34 issue: 4 year: 2015 article-title: A Machine Learning Approach for Filtering Monte Carlo Noise publication-title: ACM Transactions on Graphics (TOG) (Proceedings of SIGGRAPH 2015) – volume: 38 start-page: 1 issue: 2 year: 2019 end-page: 10 article-title: Neural BTF compression and interpolation publication-title: Computer Graphics Forum (Proc. Eurographics) – start-page: 7891 year: 2018 end-page: 7901 – start-page: 1 year: 2008 end-page: 8 – start-page: 2 year: 2000 end-page: 13 – volume: 37 start-page: 68:1 issue: 4 year: 2018 end-page: 68:13 article-title: Deep appearance models for face rendering publication-title: ACM Trans. Graph. – volume: 32 start-page: 30:1 issue: 3 year: 2013 end-page: 30:12 article-title: Depth synthesis and local warps for plausible image‐based navigation publication-title: ACM Trans. Graph. – start-page: 448 year: 2009 end-page: 455 – volume: 26 issue: 3 year: 2007 article-title: Scene completion using millions of photographs publication-title: ACM Transactions on Graphics (TOG) – volume: 25 start-page: 407 issue: 3 year: 2006 end-page: 413 article-title: Semantic photo synthesis publication-title: Computer Graphics Forum – volume: 9 start-page: 147 issue: 1 year: 1985 end-page: 169 article-title: A learning algorithm for boltzmann machines publication-title: Cognitive science – year: 2013 – volume: 38 start-page: 65:1 issue: 4 year: 2019 end-page: 65:14 article-title: Neural volumes: Learning dynamic renderable volumes from images publication-title: ACM Trans. Graph. – year: 2009 – volume: 29 start-page: 463 issue: 3 year: 2007 end-page: 476 article-title: Space‐time completion of video publication-title: Pattern Analysis and Machine Intelligence, IEEE Transactions on – volume: 36 start-page: 65 issue: 4 year: 2017 end-page: 78 article-title: Deep shading: Convolutional neural networks for screen space shading publication-title: Comput. Graph. Forum – year: 2001 – volume: 38 start-page: 68:1 issue: 4 year: 2019 end-page: 68:14 article-title: Text‐based editing of talking‐head video publication-title: ACM Trans. Graph. – start-page: 163 year: 1987 end-page: 169 – year: 2018 – volume: 30 start-page: 365 year: 2017 end-page: 376 article-title: Learning a multi‐view stereo machine publication-title: Advances in Neural Information Processing Systems – start-page: 1 year: 2018 end-page: 8 – volume: 14 start-page: 227 issue: 3 year: 1995 end-page: 251 article-title: Generalization of the lambertian model and implications for machine vision publication-title: Int. J. Comput. Vision – volume: 18 start-page: 311 issue: 6 year: 1975 end-page: 317 article-title: Illumination for computer generated pictures publication-title: Commun. ACM – volume: 27 start-page: 2672 year: 2014 end-page: 2680 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – volume: 38 issue: 4 year: 2019 article-title: Single image portrait relighting publication-title: ACM Trans. Graph. – volume: 36 start-page: 98:1 issue: 4 year: 2017 end-page: 98:12 article-title: Interactive reconstruction of monte carlo image sequences using a recurrent denoising autoencoder publication-title: ACM Trans. Graph. – volume: 38 issue: 4 year: 2019 article-title: Deep reflectance fields: High‐quality facial reflectance field inference from color gradient illumination publication-title: ACM Trans. Graph. – volume: 31 start-page: 532 issue: 4 year: 1983 end-page: 540 article-title: The laplacian pyramid as a compact image code publication-title: IEEE Transactions on communications – volume: 37 issue: 4 year: 2018 article-title: Single‐image svbrdf capture with a rendering‐aware deep network publication-title: ACM Transactions on Graphics (TOG) – volume: 12 start-page: 2144 year: 2017 end-page: 2158 article-title: Multi‐scale difference map fusion for tamper localization using binary ranking hashing publication-title: IEEE Transactions on Information Forensics and Security – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 article-title: Reducing the dimensionality of data with neural networks publication-title: science – volume: 22 start-page: 641 year: 2003 end-page: 650 article-title: Reanimating faces in images and video publication-title: Computer graphics forum – year: 2015 – volume: 7 start-page: 36322 year: 2019 end-page: 36333 article-title: Recent progress on generative adversarial networks (gans): A survey publication-title: IEEE Access – volume: 37 start-page: 163:1 issue: 4 year: 2018 end-page: 163:14 article-title: Deep video portraits publication-title: ACM Trans. Graph. – start-page: 72 year: 2018 end-page: 87 – volume: 37 start-page: 257:1 issue: 6 year: 2018 end-page: 257:15 article-title: Deep blending for free‐viewpoint image‐based rendering publication-title: ACM Trans. Graph. – volume: 38 start-page: 66:1 issue: 4 year: 2019 end-page: 66:12 article-title: Deferred neural rendering: Image synthesis using neural textures publication-title: ACM Trans. Graph. – volume: 19 start-page: 1 issue: 1 year: 2004 end-page: 28 article-title: A survey on image‐based renderingâĂŤrepresentation, sampling and compression publication-title: Signal Processing: Image Communication – volume: 1 start-page: 7 issue: 1 year: 1982 end-page: 24 article-title: A reflectance model for computer graphics publication-title: ACM Trans. Graph. – year: 2003 – start-page: 165 year: 2019 end-page: 174 – year: 2000 – year: 1996 – volume: 38 issue: 5 year: 2019 article-title: Neural rendering and reenactment of human actor videos publication-title: ACM Trans. Graph. – volume: 38 start-page: 78:1 issue: 4 year: 2019 end-page: 78:14 article-title: Multi‐view relighting using a geometry‐aware network publication-title: ACM Trans. Graph. – start-page: 269 year: 2018 – start-page: 143 year: 1986 end-page: 150 – start-page: 100 year: 2009 end-page: 108 – year: 2012 – start-page: 1398 year: 2003 end-page: 1402 – volume: 35 issue: 4 year: 2016 article-title: Let there be color!: joint end‐to‐end learning of global and local image priors for automatic image colorization with simultaneous classification publication-title: ACM Transactions on Graphics (TOG) – volume: 22 start-page: 313 issue: 3 year: 2003 end-page: 318 article-title: Poisson image editing publication-title: ACM Transactions on graphics (TOG) – volume: 360 start-page: 1204 issue: 6394 year: 2018 end-page: 1210 article-title: Neural scene representation and rendering publication-title: Science – year: 2020 – start-page: 4797 year: 2016 end-page: 4805 – year: 2017 – start-page: 119 year: 2018 end-page: 135 – volume: 2 start-page: 361 year: 2015 end-page: 385 article-title: Learning deep generative models publication-title: Annual Review of Statistics and Its Application – volume: 38 issue: 4 year: 2019 article-title: Flexible svbrdf capture with a multi‐image deep network publication-title: Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) – volume: 37 start-page: 65:1 issue: 4 year: 2018 end-page: 65:12 article-title: Stereo magnification: Learning view synthesis using multiplane images publication-title: ACM Trans. Graph. – year: 1999 – volume: 38 start-page: 76:1 issue: 4 year: 2019 end-page: 76:13 article-title: Deep view synthesis from sparse photometric images publication-title: ACM Trans. Graph. – ident: e_1_2_11_175_2 doi: 10.1109/CVPR.2018.00659 – ident: e_1_2_11_140_2 – ident: e_1_2_11_185_2 – ident: e_1_2_11_224_2 – ident: e_1_2_11_9_2 – ident: e_1_2_11_144_2 doi: 10.1145/2984511.2984517 – ident: e_1_2_11_168_2 – ident: e_1_2_11_61_2 – ident: e_1_2_11_123_2 – ident: e_1_2_11_30_2 – ident: e_1_2_11_110_2 doi: 10.1145/37402.37422 – ident: e_1_2_11_134_2 doi: 10.1145/882262.882343 – ident: e_1_2_11_199_2 – ident: e_1_2_11_130_2 doi: 10.1109/ICCV.2019.00882 – ident: e_1_2_11_94_2 – ident: e_1_2_11_155_2 doi: 10.1145/3306305.3332370 – ident: e_1_2_11_67_2 doi: 10.1145/237170.237200 – ident: e_1_2_11_156_2 – ident: e_1_2_11_89_2 – volume: 34 issue: 4 year: 2015 ident: e_1_2_11_98_2 article-title: A Machine Learning Approach for Filtering Monte Carlo Noise publication-title: ACM Transactions on Graphics (TOG) (Proceedings of SIGGRAPH 2015) – ident: e_1_2_11_142_2 – ident: e_1_2_11_108_2 – ident: e_1_2_11_5_2 doi: 10.1111/cgf.13632 – volume: 37 issue: 2 year: 2018 ident: e_1_2_11_229_2 article-title: State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications publication-title: Computer Graphics Forum (Eurographics State of the Art Reports 2018) – ident: e_1_2_11_32_2 – ident: e_1_2_11_141_2 doi: 10.1145/3272127.3275075 – volume-title: Computer vision: algorithms and applications year: 2010 ident: e_1_2_11_186_2 – ident: e_1_2_11_159_2 doi: 10.1109/ACCESS.2019.2905015 – ident: e_1_2_11_227_2 doi: 10.1109/ICCV.2019.00955 – ident: e_1_2_11_209_2 – ident: e_1_2_11_86_2 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_11_118_2 – ident: e_1_2_11_112_2 doi: 10.1109/ICCV.2019.01065 – ident: e_1_2_11_79_2 – ident: e_1_2_11_225_2 doi: 10.1109/CVPR.2010.5539957 – ident: e_1_2_11_211_2 doi: 10.1109/CVPR.2018.00070 – ident: e_1_2_11_182_2 doi: 10.1109/CVPR.2018.00020 – volume-title: Inverse rendering for computer graphics year: 1998 ident: e_1_2_11_122_2 – ident: e_1_2_11_60_2 doi: 10.1109/CVPR.2018.00923 – ident: e_1_2_11_56_2 – ident: e_1_2_11_191_2 doi: 10.1109/IROS.2018.8593800 – ident: e_1_2_11_34_2 doi: 10.1145/3072959.3073601 – ident: e_1_2_11_160_2 doi: 10.1109/CVPR.2018.00918 – ident: e_1_2_11_74_2 doi: 10.1109/ICCV.2017.167 – ident: e_1_2_11_103_2 doi: 10.1109/CVPR.2019.00453 – ident: e_1_2_11_195_2 – ident: e_1_2_11_85_2 – ident: e_1_2_11_106_2 – ident: e_1_2_11_70_2 – ident: e_1_2_11_221_2 doi: 10.1109/ICCV.2019.00729 – ident: e_1_2_11_147_2 doi: 10.1007/BF01679684 – ident: e_1_2_11_59_2 doi: 10.1126/science.aar6170 – ident: e_1_2_11_75_2 doi: 10.1145/1276377.1276382 – ident: e_1_2_11_215_2 – ident: e_1_2_11_214_2 doi: 10.1145/3197517.3201313 – ident: e_1_2_11_82_2 doi: 10.1126/science.1127647 – ident: e_1_2_11_23_2 – ident: e_1_2_11_169_2 doi: 10.1145/3306346.3323008 – ident: e_1_2_11_78_2 doi: 10.1007/978-3-030-01252-6_7 – ident: e_1_2_11_128_2 doi: 10.1145/3306346.3323027 – ident: e_1_2_11_176_2 doi: 10.1109/CVPR.2017.723 – ident: e_1_2_11_164_2 doi: 10.1111/cgf.13633 – ident: e_1_2_11_178_2 doi: 10.1561/0600000023 – ident: e_1_2_11_162_2 doi: 10.1109/ICCV.2019.00009 – volume: 1 issue: 8 year: 2019 ident: e_1_2_11_166_2 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog – ident: e_1_2_11_146_2 – ident: e_1_2_11_104_2 doi: 10.1109/CVPR.2019.00882 – ident: e_1_2_11_150_2 – ident: e_1_2_11_24_2 – ident: e_1_2_11_145_2 – ident: e_1_2_11_65_2 doi: 10.1109/CVMP.2009.18 – ident: e_1_2_11_91_2 doi: 10.1111/j.1467-8659.2006.00960.x – ident: e_1_2_11_189_2 – ident: e_1_2_11_49_2 – ident: e_1_2_11_51_2 – ident: e_1_2_11_138_2 doi: 10.1007/978-3-030-01219-9_8 – ident: e_1_2_11_201_2 doi: 10.1007/978-3-319-46478-7_51 – ident: e_1_2_11_194_2 – ident: e_1_2_11_117_2 doi: 10.1145/3197517.3201401 – ident: e_1_2_11_35_2 doi: 10.21437/Interspeech.2018-1929 – ident: e_1_2_11_179_2 doi: 10.1109/CVPR.2018.00359 – ident: e_1_2_11_187_2 doi: 10.1007/978-3-030-01231-1_36 – ident: e_1_2_11_42_2 – volume: 30 start-page: 365 year: 2017 ident: e_1_2_11_102_2 article-title: Learning a multi‐view stereo machine publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_11_66_2 doi: 10.1109/CVPR.2016.265 – ident: e_1_2_11_87_2 – ident: e_1_2_11_174_2 – ident: e_1_2_11_125_2 doi: 10.1109/CVPR.2018.00013 – ident: e_1_2_11_219_2 doi: 10.1109/ICCV.2017.310 – ident: e_1_2_11_120_2 – ident: e_1_2_11_165_2 – ident: e_1_2_11_7_2 doi: 10.1109/ICCV.2019.00466 – ident: e_1_2_11_127_2 – ident: e_1_2_11_33_2 – ident: e_1_2_11_63_2 doi: 10.1109/CVPR.2016.595 – ident: e_1_2_11_212_2 doi: 10.1145/3306346.3323007 – ident: e_1_2_11_136_2 doi: 10.1007/BFb0094775 – ident: e_1_2_11_153_2 doi: 10.1145/360825.360839 – ident: e_1_2_11_64_2 doi: 10.1145/3306346.3323028 – ident: e_1_2_11_52_2 – ident: e_1_2_11_111_2 – ident: e_1_2_11_22_2 doi: 10.1109/CVPR.2019.00242 – ident: e_1_2_11_184_2 – ident: e_1_2_11_2_2 doi: 10.1207/s15516709cog0901_7 – ident: e_1_2_11_29_2 doi: 10.1145/1618452.1618470 – ident: e_1_2_11_39_2 – ident: e_1_2_11_205_2 – ident: e_1_2_11_8_2 doi: 10.1109/TCOM.1983.1095851 – ident: e_1_2_11_170_2 doi: 10.1109/CVPR.2008.4587842 – ident: e_1_2_11_48_2 doi: 10.1145/3130800.3130801 – ident: e_1_2_11_31_2 doi: 10.1145/2487228.2487238 – ident: e_1_2_11_114_2 doi: 10.1109/CVPR.2015.7298965 – ident: e_1_2_11_157_2 doi: 10.1109/CVPR.2019.00994 – ident: e_1_2_11_183_2 doi: 10.1109/CVPR.2017.578 – ident: e_1_2_11_210_2 doi: 10.1109/ICCV.2019.01017 – ident: e_1_2_11_163_2 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_11_96_2 – ident: e_1_2_11_121_2 doi: 10.1145/3333002 – ident: e_1_2_11_45_2 doi: 10.1145/3197517.3201378 – ident: e_1_2_11_137_2 doi: 10.1111/cgf.13225 – ident: e_1_2_11_203_2 doi: 10.1007/978-3-030-01261-8_41 – ident: e_1_2_11_19_2 doi: 10.1145/1576246.1531330 – ident: e_1_2_11_16_2 doi: 10.1109/CVPR.2018.00652 – ident: e_1_2_11_68_2 doi: 10.1145/3355089.3356571 – ident: e_1_2_11_107_2 – ident: e_1_2_11_135_2 doi: 10.1109/CVPR.2018.00018 – ident: e_1_2_11_90_2 doi: 10.1007/978-3-319-46475-6_43 – ident: e_1_2_11_10_2 doi: 10.1111/1467-8659.t01-1-00712 – ident: e_1_2_11_230_2 doi: 10.1145/3240508.3240536 – ident: e_1_2_11_28_2 – ident: e_1_2_11_119_2 doi: 10.1109/CVPR.2017.19 – ident: e_1_2_11_154_2 doi: 10.1109/CVPR.2019.00023 – ident: e_1_2_11_38_2 doi: 10.1109/TIFS.2019.2916364 – ident: e_1_2_11_151_2 doi: 10.1145/882262.882269 – ident: e_1_2_11_177_2 doi: 10.1109/CVPR.2017.241 – ident: e_1_2_11_14_2 – volume: 38 issue: 4 year: 2019 ident: e_1_2_11_46_2 article-title: Flexible svbrdf capture with a multi‐image deep network publication-title: Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) – ident: e_1_2_11_77_2 doi: 10.1007/978-3-030-01219-9_11 – volume: 38 issue: 4 year: 2019 ident: e_1_2_11_20_2 article-title: Semantic photo manipulation with a generative image prior publication-title: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) – ident: e_1_2_11_105_2 – ident: e_1_2_11_53_2 doi: 10.1109/CVPR.2015.7298761 – ident: e_1_2_11_220_2 doi: 10.1016/j.image.2003.07.001 – ident: e_1_2_11_172_2 – ident: e_1_2_11_167_2 doi: 10.1146/annurev-statistics-010814-020120 – ident: e_1_2_11_206_2 – ident: e_1_2_11_207_2 doi: 10.1109/TPAMI.2007.60 – ident: e_1_2_11_97_2 doi: 10.1109/TMM.2014.2368696 – ident: e_1_2_11_204_2 – ident: e_1_2_11_188_2 – ident: e_1_2_11_101_2 doi: 10.1145/3197517.3201283 – ident: e_1_2_11_25_2 doi: 10.1109/CVPR.2018.00870 – ident: e_1_2_11_6_2 – ident: e_1_2_11_171_2 doi: 10.1109/ICCV.2019.00467 – ident: e_1_2_11_200_2 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_11_83_2 doi: 10.1109/TPAMI.2012.213 – ident: e_1_2_11_197_2 doi: 10.1109/CVPR.2018.00984 – ident: e_1_2_11_44_2 doi: 10.1007/978-3-319-46484-8_38 – ident: e_1_2_11_69_2 – ident: e_1_2_11_41_2 – ident: e_1_2_11_223_2 doi: 10.1109/CVPR.2018.00068 – ident: e_1_2_11_100_2 – volume: 3 start-page: 73 issue: 4 year: 2014 ident: e_1_2_11_131_2 article-title: Efficient GPU screen‐space ray tracing publication-title: Journal of Computer Graphics Techniques (JCGT) – ident: e_1_2_11_113_2 doi: 10.1007/978-3-030-01219-9_5 – ident: e_1_2_11_198_2 – ident: e_1_2_11_47_2 – ident: e_1_2_11_62_2 doi: 10.1109/CVPR.2019.00247 – volume: 27 start-page: 2672 year: 2014 ident: e_1_2_11_71_2 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_11_88_2 doi: 10.1145/2897824.2925974 – ident: e_1_2_11_80_2 doi: 10.1145/3272127.3275084 – ident: e_1_2_11_12_2 – ident: e_1_2_11_57_2 doi: 10.1145/383259.383296 – ident: e_1_2_11_58_2 doi: 10.1109/ICCV.1999.790383 – ident: e_1_2_11_208_2 doi: 10.1145/3306346.3323030 – ident: e_1_2_11_109_2 – ident: e_1_2_11_37_2 – ident: e_1_2_11_132_2 – ident: e_1_2_11_232_2 – ident: e_1_2_11_36_2 doi: 10.1145/357290.357293 – ident: e_1_2_11_115_2 – ident: e_1_2_11_15_2 doi: 10.1109/TPAMI.2014.2377712 – ident: e_1_2_11_84_2 – ident: e_1_2_11_129_2 – ident: e_1_2_11_4_2 – ident: e_1_2_11_152_2 doi: 10.1145/3306346.3323013 – ident: e_1_2_11_27_2 doi: 10.1109/CVPR.2018.00916 – ident: e_1_2_11_231_2 – ident: e_1_2_11_50_2 doi: 10.1145/2897824.2925969 – ident: e_1_2_11_3_2 – ident: e_1_2_11_192_2 doi: 10.1145/3306346.3323035 – ident: e_1_2_11_133_2 doi: 10.1109/CVPR.2019.00459 – ident: e_1_2_11_143_2 doi: 10.1109/ISACV.2018.8354080 – ident: e_1_2_11_161_2 – ident: e_1_2_11_92_2 doi: 10.1109/TVCG.2010.233 – ident: e_1_2_11_180_2 – ident: e_1_2_11_213_2 doi: 10.1109/CVPR.2018.00882 – ident: e_1_2_11_40_2 – ident: e_1_2_11_148_2 – ident: e_1_2_11_73_2 doi: 10.1007/978-1-4842-4427-2 – ident: e_1_2_11_173_2 doi: 10.1109/ICCV.2019.00239 – ident: e_1_2_11_181_2 doi: 10.1109/CVPR.2019.00254 – ident: e_1_2_11_54_2 – ident: e_1_2_11_81_2 doi: 10.1145/2980179.2982420 – ident: e_1_2_11_217_2 – ident: e_1_2_11_149_2 – ident: e_1_2_11_222_2 doi: 10.1007/978-3-319-46487-9_40 – ident: e_1_2_11_13_2 doi: 10.1109/ICCV.2003.1238630 – ident: e_1_2_11_124_2 doi: 10.1145/3272127.3275099 – ident: e_1_2_11_190_2 – ident: e_1_2_11_218_2 doi: 10.1109/TIFS.2017.2699942 – ident: e_1_2_11_26_2 – ident: e_1_2_11_158_2 – ident: e_1_2_11_126_2 doi: 10.1145/1597990.1598050 – ident: e_1_2_11_11_2 – ident: e_1_2_11_18_2 doi: 10.1109/CVPR.2017.18 – ident: e_1_2_11_202_2 doi: 10.1145/358876.358882 – ident: e_1_2_11_43_2 doi: 10.1109/MSP.2017.2765202 – ident: e_1_2_11_196_2 – ident: e_1_2_11_21_2 doi: 10.1109/ICCV.2019.00282 – ident: e_1_2_11_17_2 – ident: e_1_2_11_226_2 doi: 10.1109/ICCV.2017.244 – ident: e_1_2_11_55_2 – ident: e_1_2_11_116_2 doi: 10.1145/3306346.3323020 – ident: e_1_2_11_193_2 doi: 10.1109/CVPR.2016.262 – ident: e_1_2_11_139_2 – ident: e_1_2_11_76_2 doi: 10.1145/383259.383295 – ident: e_1_2_11_72_2 doi: 10.1145/3272127.3275043 – ident: e_1_2_11_216_2 doi: 10.1109/CVPR.2017.728 – ident: e_1_2_11_93_2 – ident: e_1_2_11_99_2 – ident: e_1_2_11_228_2 doi: 10.1145/3197517.3201323 – ident: e_1_2_11_95_2 doi: 10.1145/15886.15902 |
| SSID | ssj0004765 |
| Score | 2.697214 |
| Snippet | Efficient rendering of photo‐realistic virtual worlds is a long standing effort of computer graphics. Modern graphics techniques have succeeded in synthesizing... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 701 |
| SubjectTerms | Algorithms Augmented reality Avatars Computer graphics Computer vision Machine learning Rendering Stability Synthesis Virtual reality |
| Title | State of the Art on Neural Rendering |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.14022 https://www.proquest.com/docview/2422960650 |
| Volume | 39 |
| WOSCitedRecordID | wos000548709600054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL3U1oUufIvVKkG6cBOYPCYPXEk1uihFipXuwsxkRgRJpa1-v_dOk7aCguAuiztJZjIn95x5nAHoykDGhYkQaVyjQAmEdIX0uGsSmuaLUxnZGfznfjwYJONx-tiA63ovzMIfYjngRsiw_2sCuJCzNZCrF4MwxxS0AS0f-23YhNbtMBv1V9si44jX1t5kGlMZC9FCnmXh7-loxTHXmapNNdnuv15yD3YqhuncLLrEPjR0eQDba76Dh9C1FNOZGAfpH0U6k9Ihmw4sN7Rny2HYEYyyu6feg1sdl-CqIEWeLDl5jfn4SZjQColYxDWqKcUTlZDwSbUnTFikoVGe1FxJhKoXacY0DSgiEI-hWU5KfQIOZ6JgAtObiYowZEIkBoVNnBaCFSqWog1XdavlqvISpyMt3vJaU2DFc1vxNlwuQ98XBho_BXXqps8rDM1yJA8-6SvO8HG2kX-_Qd67z-zF6d9Dz2DLJ_FsVy92oDmffuhz2FSf89fZ9KLqTF8RPMjh |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwGP2Ym6A-eBfntcgefCmkW9ML-CLTOrEOGZvsLSRpIoJ0sk1_v1-ydpugIPjWhy9tk-b0OyeXE4CGaIkw0wEijSoUKC0uXC486urITPOFsQjsDP5zGna70XAYP1XgqtwLM_OHmA-4GWTY_7UBuBmQXkK5fNGIc8xBK1DzsRvRKtRueskgXeyLDANaensb15jCWcis5JkX_p6PFiRzmaraXJNs_e8tt2Gz4JjO9axT7EBF5buwseQ8uAcNSzKdkXaQAJpIZ5Q7xqgDy_Xs6XIYtg-D5Lbf7rjFgQmubMXIlAU1bmNN_CiEK4lULKAK9ZSkkYyM9ImVx7Wfxb6WnlBUCgSrFyhClBlSRCgeQDUf5eoQHEp4RjgmOB1kvk84jzRKmzDOOMlkKHgdLstmY7JwEzeHWryxUlVgxZmteB0u5qHvMwuNn4JOyrZnBYomDOlD0ygsSvBxtpV_vwFr3yX24ujvoeew1uk_piy97z4cw3rTSGm7lvEEqtPxhzqFVfk5fZ2Mz4qe9QUwSMzR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3MTUQf_BanU4vswZdCujX9AF9ksyqOMYaTvYUkTYYg3dimv9-brN0mKAi-9eGmbdKc3nPycQJQF00RpjpApFGFAqXJhcuFR10dmWm-MBaBncF_7YTdbjQcxr0S3BZ7YRb-EMsBN4MM-782AFeTVK-hXI404hxz0AZUfBoHCMtKu58MOqt9kWFAC29v4xqTOwuZlTzLwt_z0YpkrlNVm2uSvf-95T7s5hzTuVt0igMoqewQdtacB4-gbkmmM9YOEkAT6Ywzxxh1YLm-PV0Ow45hkNy_tB7d_MAEVzZjZMqCGrexBn4UwpVEKhZQhXpK0khGRvrEyuPaT2NfS08oKgWC1QsUIcoMKSIUT6CcjTN1Cg4lPCUcE5wOUt8nnEcapU0Yp5ykMhS8CjdFszGZu4mbQy3eWaEqsOLMVrwK18vQycJC46egWtH2LEfRjCF9aBiFRQk-zrby7zdgrYfEXpz9PfQKtnrthHWeus_nsN0wStouZaxBeT79UBewKT_nb7PpZd6xvgAE1MxM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+the+Art+on+Neural+Rendering&rft.jtitle=Computer+graphics+forum&rft.au=Tewari%2C+A.&rft.au=Fried%2C+O.&rft.au=Thies%2C+J.&rft.au=Sitzmann%2C+V.&rft.date=2020-05-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=39&rft.issue=2&rft.spage=701&rft.epage=727&rft_id=info:doi/10.1111%2Fcgf.14022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_14022 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |