Forecasting Shifts in Europe's Renewable and Fossil Fuel Markets Using Deep Learning Methods

ABSTRACT Accurate forecasts of renewable and nonrenewable energy output are essential for meeting global energy needs and resolving environmental issues. Energy sources like the sun and wind are variable, making forecasting difficult. Changes in weather, demand, and energy policy exacerbate this unp...

Full description

Saved in:
Bibliographic Details
Published in:Energy science & engineering Vol. 13; no. 1; pp. 119 - 139
Main Authors: Liu, Yonghong, Saleem, Muhammad S., Rashid, Javed, Ahmad, Sajjad, Faheem, Muhammad
Format: Journal Article
Language:English
Published: London John Wiley & Sons, Inc 01.01.2025
Wiley
Subjects:
ISSN:2050-0505, 2050-0505
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Accurate forecasts of renewable and nonrenewable energy output are essential for meeting global energy needs and resolving environmental issues. Energy sources like the sun and wind are variable, making forecasting difficult. Changes in weather, demand, and energy policy exacerbate this unpredictability. These challenges will be addressed by the bidirectional gated recurrent unit (Bi‐GRU) model, which forecasts power‐generating outcomes more efficiently. The investigation is done over a health data set from 2000 to 2023, including the energy states of the United Kingdom, Finland, Germany, and Switzerland. The comparison of our model (Bi‐GRU) performance with other popular models, including bidirectional long short‐term memory (Bi‐LSTM), ensemble techniques combining convolutional neural networks (CNN) and Bi‐LSTM, and CNNs, make the study more interesting. The performance remains better with a mean absolute percentage error (MAPE) of 2.75%, root mean square error (RMSE) of 0.0414, mean squared error (MSE) of 0.0017, and authentify that Bi‐GRU performs much better than others. This model's superior prediction accuracy significantly enhances our ability to forecast renewable and nonrenewable energy outputs in European states, contributing to more effective energy management strategies. This study employs a bidirectional gated recurrent unit model to enhance the accuracy of energy output predictions for renewable and nonrenewable sources across the United Kingdom, Finland, Germany, and Switzerland. The findings reveal critical insights into energy production trends up to 2030, guiding strategic planning for energy management in Europe's transition toward sustainability.
AbstractList ABSTRACT Accurate forecasts of renewable and nonrenewable energy output are essential for meeting global energy needs and resolving environmental issues. Energy sources like the sun and wind are variable, making forecasting difficult. Changes in weather, demand, and energy policy exacerbate this unpredictability. These challenges will be addressed by the bidirectional gated recurrent unit (Bi‐GRU) model, which forecasts power‐generating outcomes more efficiently. The investigation is done over a health data set from 2000 to 2023, including the energy states of the United Kingdom, Finland, Germany, and Switzerland. The comparison of our model (Bi‐GRU) performance with other popular models, including bidirectional long short‐term memory (Bi‐LSTM), ensemble techniques combining convolutional neural networks (CNN) and Bi‐LSTM, and CNNs, make the study more interesting. The performance remains better with a mean absolute percentage error (MAPE) of 2.75%, root mean square error (RMSE) of 0.0414, mean squared error (MSE) of 0.0017, and authentify that Bi‐GRU performs much better than others. This model's superior prediction accuracy significantly enhances our ability to forecast renewable and nonrenewable energy outputs in European states, contributing to more effective energy management strategies.
ABSTRACT Accurate forecasts of renewable and nonrenewable energy output are essential for meeting global energy needs and resolving environmental issues. Energy sources like the sun and wind are variable, making forecasting difficult. Changes in weather, demand, and energy policy exacerbate this unpredictability. These challenges will be addressed by the bidirectional gated recurrent unit (Bi‐GRU) model, which forecasts power‐generating outcomes more efficiently. The investigation is done over a health data set from 2000 to 2023, including the energy states of the United Kingdom, Finland, Germany, and Switzerland. The comparison of our model (Bi‐GRU) performance with other popular models, including bidirectional long short‐term memory (Bi‐LSTM), ensemble techniques combining convolutional neural networks (CNN) and Bi‐LSTM, and CNNs, make the study more interesting. The performance remains better with a mean absolute percentage error (MAPE) of 2.75%, root mean square error (RMSE) of 0.0414, mean squared error (MSE) of 0.0017, and authentify that Bi‐GRU performs much better than others. This model's superior prediction accuracy significantly enhances our ability to forecast renewable and nonrenewable energy outputs in European states, contributing to more effective energy management strategies. This study employs a bidirectional gated recurrent unit model to enhance the accuracy of energy output predictions for renewable and nonrenewable sources across the United Kingdom, Finland, Germany, and Switzerland. The findings reveal critical insights into energy production trends up to 2030, guiding strategic planning for energy management in Europe's transition toward sustainability.
Accurate forecasts of renewable and nonrenewable energy output are essential for meeting global energy needs and resolving environmental issues. Energy sources like the sun and wind are variable, making forecasting difficult. Changes in weather, demand, and energy policy exacerbate this unpredictability. These challenges will be addressed by the bidirectional gated recurrent unit (Bi‐GRU) model, which forecasts power‐generating outcomes more efficiently. The investigation is done over a health data set from 2000 to 2023, including the energy states of the United Kingdom, Finland, Germany, and Switzerland. The comparison of our model (Bi‐GRU) performance with other popular models, including bidirectional long short‐term memory (Bi‐LSTM), ensemble techniques combining convolutional neural networks (CNN) and Bi‐LSTM, and CNNs, make the study more interesting. The performance remains better with a mean absolute percentage error (MAPE) of 2.75%, root mean square error (RMSE) of 0.0414, mean squared error (MSE) of 0.0017, and authentify that Bi‐GRU performs much better than others. This model's superior prediction accuracy significantly enhances our ability to forecast renewable and nonrenewable energy outputs in European states, contributing to more effective energy management strategies.
Author Liu, Yonghong
Faheem, Muhammad
Ahmad, Sajjad
Rashid, Javed
Saleem, Muhammad S.
Author_xml – sequence: 1
  givenname: Yonghong
  surname: Liu
  fullname: Liu, Yonghong
  organization: Chengdu University
– sequence: 2
  givenname: Muhammad S.
  surname: Saleem
  fullname: Saleem, Muhammad S.
  organization: University of Okara
– sequence: 3
  givenname: Javed
  orcidid: 0000-0003-3416-9720
  surname: Rashid
  fullname: Rashid, Javed
  organization: University of Okara
– sequence: 4
  givenname: Sajjad
  surname: Ahmad
  fullname: Ahmad, Sajjad
  organization: University of Okara
– sequence: 5
  givenname: Muhammad
  surname: Faheem
  fullname: Faheem, Muhammad
  email: muhammad.faheem@uwasa.fi
  organization: VTT Technical Research Centre of Finland Ltd
BookMark eNp1kc1qGzEUhUVJoKmbRd9A0EXpwrE0kjwzy5LYacChECe7gLgj3bHlTiVXGhPy9tHYLpSQLIR-OOfcD51P5MQHj4R84eyCM1ZMMKG44HXFP5Czgik2zkud_Hf-SM5T2jDGuOSyZvyMPM5DRAOpd35Fl2vX9ok6T2e7GLb4LdE79PgETYcUvKXzkJLr6HyHHb2F-Buz-iEN1ivELV0gRD_cbrFfB5s-k9MWuoTnx31EHuaz-8uf48Wv65vLH4uxERl23EpWSwvcKqFKgBLqSirbWgtlXYipEaJUUDU1sAqmRdVYyUzmL5tS2dIUUzEiN4dcG2Cjt9H9gfisAzi9fwhxpSH2znSoATBPYkJMWSuNVJBntty2hteNtaLKWV8PWdsY_u4w9XoTdtFnfC24KhWTVYYakclBZWL-koitNq6H3gXfR3Cd5kwPjeihET00kh3fXzn-cb6lPaY_uQ6f3xfq2XIm9o4XsISbPg
CitedBy_id crossref_primary_10_1016_j_rser_2025_116207
Cites_doi 10.1016/j.cosrev.2018.08.001
10.1016/j.eswa.2022.119293
10.3390/en17051053
10.1016/j.saa.2023.123402
10.1109/ACCESS.2023.3279719
10.3390/en14248240
10.32604/csse.2023.037735
10.3390/en15062243
10.1080/02286203.2020.1767840
10.1109/ACCESS.2024.3358339
10.1007/s40747-023-01265-3
10.1016/j.enganabound.2023.01.007
10.1080/00051144.2022.2118101
10.1016/j.egyr.2022.06.079
10.61435/ijred.2024.60156
10.1049/gtd2.13103
10.1016/j.asoc.2020.106216
10.1016/j.aej.2024.02.004
10.1051/e3sconf/202450101023
10.3390/math11030676
10.1016/j.dib.2024.110212
10.1007/s00607-023-01164-y
10.1002/aesr.202300160
10.1016/j.dib.2024.110461
10.1109/ACCESS.2024.3355448
10.3390/en17020352
10.1016/j.eswa.2023.121207
10.1049/blc2.12081
10.3390/su16072894
10.1016/j.bdr.2023.100407
10.3390/math10152666
ContentType Journal Article
Copyright 2024 The Author(s). published by Society of Chemical Industry and John Wiley & Sons Ltd.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Society of Chemical Industry and John Wiley & Sons Ltd.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KR7
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/ese3.1981
DatabaseName Wiley Online Library Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
ProQuest One
ProQuest Central
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-0505
EndPage 139
ExternalDocumentID oai_doaj_org_article_aaeda103360f4c45a535f1dfc19bdd38
10_1002_ese3_1981
ESE31981
Genre article
GeographicLocations United Kingdom--UK
Switzerland
Germany
GeographicLocations_xml – name: Switzerland
– name: United Kingdom--UK
– name: Germany
GrantInformation_xml – fundername: The authors received no specific funding for this work.
GroupedDBID 0R~
1OC
24P
31~
5VS
8-1
8FE
8FG
8FH
AAHHS
AAZKR
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D-9
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IGS
ITC
KQ8
L6V
L8X
LK5
M7R
M7S
M~E
O9-
OK1
PCBAR
PIMPY
PROAC
PTHSS
TUS
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IVC
PHGZM
PHGZT
PQGLB
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
KR7
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c3981-f4094da1d5357aa7a9845dfdda79236c3375a8b9a08a628bd40c4147b75d7c263
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001362753300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-0505
IngestDate Fri Oct 03 12:37:31 EDT 2025
Sat Aug 23 13:08:44 EDT 2025
Tue Nov 18 21:36:18 EST 2025
Sat Nov 29 07:07:32 EST 2025
Tue Jan 21 09:50:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3981-f4094da1d5357aa7a9845dfdda79236c3375a8b9a08a628bd40c4147b75d7c263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3416-9720
OpenAccessLink https://www.proquest.com/docview/3157504892?pq-origsite=%requestingapplication%
PQID 3157504892
PQPubID 2034362
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_aaeda103360f4c45a535f1dfc19bdd38
proquest_journals_3157504892
crossref_citationtrail_10_1002_ese3_1981
crossref_primary_10_1002_ese3_1981
wiley_primary_10_1002_ese3_1981_ESE31981
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Energy science & engineering
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2023; 11
2023; 34
2024; 304
2023; 105
2023; 148
2024; 53
2024; 54
2024; 10
2024; 11
2024; 12
2024
2024; 13
2024; 16
2024; 17
2024; 18
2021; 14
2023; 64
2023; 47
2024; 6
2024; 5
2024; 91
2022; 8
2020; 91
2023; 215
2022; 15
2018; 30
2022; 10
2024; 235
2021; 41
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
e_1_2_12_38_1
e_1_2_12_39_1
e_1_2_12_20_1
e_1_2_12_21_1
e_1_2_12_22_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_29_1
Freedman B. (e_1_2_12_3_1) 2024; 11
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 304
  year: 2024
  article-title: Prediction of Soluble Solids Content Using Near‐Infrared Spectra and Optical Properties of Intact Apple and Pulp Applying Plsr and CNN
  publication-title: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy
– volume: 105
  start-page: 1623
  year: 2023
  end-page: 1645
  article-title: Energy Generation Forecasting: Elevating Performance With Machine and Deep Learning
  publication-title: Computing
– volume: 105
  start-page: 1623
  issue: 8
  year: 2023
  end-page: 1645
  article-title: Energy Generation Forecasting: Elevating Performance With Machine and Deep Learning
  publication-title: Computing
– volume: 18
  start-page: 625
  year: 2024
  end-page: 638
  article-title: ‘A Lightweight Smartcontracts Framework for Blockchain‐Based Securecommunication in Smart Grid Applications’
  publication-title: IET Generation, Transmission and Distribution
– volume: 235
  year: 2024
  article-title: A New Framework for Electricity Price Forecasting via Multi‐Head Self‐Attention and CNN‐Based Techniques in the Competitive Electricity Market
  publication-title: Expert Systems With Applications
– volume: 41
  start-page: 311
  issue: 4
  year: 2021
  end-page: 323
  article-title: Forecasting of Solar and Wind Power Using LSTM RNN for Load Frequency Control in Isolated Microgrid
  publication-title: International Journal of Modelling and Simulation
– volume: 54
  issue: 3
  year: 2024
  article-title: Multilayer Cyberattacks Identification and Classification Using Machine Learning in Internet of Blockchain (IoBC)‐Based Energy Networks
  publication-title: Data in Brief
– volume: 12
  start-page: 17915
  year: 2024
  end-page: 17925
  article-title: Neural Networks Forecast Models Comparison for the Solar Energy Generation in Amazon Basin
  publication-title: IEEE Access
– volume: 5
  year: 2024
  article-title: Intelligent Modeling and Optimization of Solar Plant Production Integration in the Smart Grid Using Machine Learning Models
  publication-title: Advanced Energy and Sustainability Research
– year: 2024
– volume: 13
  start-page: 608
  issue: 4
  year: 2024
  end-page: 617
  article-title: Evaluating the Performance of the Anwaralardh Photovoltaic Power Generation Plant in Jordan: Comparative Analysis Using Artificial Neural Networks and Multiple Linear Regression Modeling
  publication-title: International Journal of Renewable Energy Development
– volume: 11
  issue: 5
  year: 2024
  article-title: Renewable and Non‐Renewable Energy Sources
  publication-title: Environmental Science
– volume: 14
  start-page: 8240
  issue: 24
  year: 2021
  article-title: Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review
  publication-title: Energies
– volume: 53
  issue: 4
  year: 2024
  article-title: Cyberattack Patterns in Blockchain‐Based Communication Networks for Distributed Renewable Energy Systems: A Study on Big Datasets
  publication-title: Data in Brief
– volume: 16
  start-page: 2894
  issue: 7
  year: 2024
  article-title: A Comparative Study of AI Methods on Renewable Energy Prediction for Smart Grids: Case of Turkey
  publication-title: Sustainability
– volume: 47
  start-page: 1267
  issue: 1
  year: 2023
  end-page: 1281
  article-title: Predictive Multimodal Deep Learning‐Based Sustainable Renewable and Non‐Renewable Energy Utilization
  publication-title: Computer Systems Science and Engineering
– volume: 10
  start-page: 2666
  issue: 15
  year: 2022
  article-title: Hybrid Deep Learning Applied on Saudi Smart Grids for Short‐Term Load Forecasting
  publication-title: Mathematics
– volume: 17
  start-page: 352
  issue: 2
  year: 2024
  article-title: Predicting Steam Turbine Power Generation: A Comparison of Long Short‐Term Memory and Willans Line Model
  publication-title: Energies
– volume: 8
  start-page: 8574
  year: 2022
  end-page: 8588
  article-title: Ultra‐Short‐Term Wind Power Prediction Based on PVMD‐ESMA‐DELM
  publication-title: Energy Reports
– volume: 91
  year: 2020
  article-title: ‘Autonomic Performance Prediction Framework for Data Warehouse Queries Using Lazy Learning Approach’
  publication-title: Applied Soft Computing
– volume: 30
  start-page: 1
  year: 2018
  end-page: 30
  article-title: ‘Smart Grid Communication and Information Technologies in the Perspective of Industry 4.0: Opportunities and Challenges’
  publication-title: Computer Science Review
– volume: 6
  start-page: 1
  year: 2024
  end-page: 15
  article-title: A Blockchain‐Based Resilient Andsecure Framework for Events Monitoring and Control Indistributed Renewable Energy Systems
  publication-title: IET Blockchain
– volume: 215
  year: 2023
  article-title: A Customized Residual Neural Network and Bi‐Directional Gated Recurrent Unit‐Based Automatic Speech Recognition Model
  publication-title: Expert Systems With Applications
– volume: 11
  start-page: 62865
  issue: 5
  year: 2023
  end-page: 62878
  article-title: ‘A MapReduce Based Approach for Secure Batch Satellite Image Encryption’
  publication-title: IEEE Access
– volume: 12
  start-page: 19553
  year: 2024
  end-page: 19568
  article-title: Multi‐Task Learning of the Patchtcn‐TST Model for Short‐Term Multi‐Load Energy Forecasting Considering Indoor Environments in a Smart Building
  publication-title: IEEE Access
– volume: 10
  start-page: 2249
  issue: 2
  year: 2024
  end-page: 2269
  article-title: Cloud‐Load Forecasting via Decomposition‐Aided Attention Recurrent Neural Network Tuned by Modified Particle Swarm Optimization
  publication-title: Complex & Intelligent Systems
– volume: 17
  start-page: 1053
  issue: 5
  year: 2024
  article-title: Deep Learning for Wind and Solar Energy Forecasting in Hydrogen Production
  publication-title: Energies
– volume: 148
  start-page: 366
  year: 2023
  end-page: 375
  article-title: Evaluating Various Machine Learning Algorithms for Automated Inspection of Culverts
  publication-title: Engineering Analysis With Boundary Elements
– volume: 34
  year: 2023
  article-title: A Large Comparison of Normalization Methods on Time Series
  publication-title: Big Data Research
– volume: 91
  start-page: 222
  year: 2024
  end-page: 236
  article-title: Efficient Solar Power Generation Forecasting for Greenhouses: A Hybrid Deep Learning Approach
  publication-title: Alexandria Engineering Journal
– volume: 11
  start-page: 676
  issue: 3
  year: 2023
  article-title: Solar Energy Production Forecasting Based on a Hybrid CNN‐LSTM‐Transformer Model
  publication-title: Mathematics
– volume: 64
  start-page: 127
  issue: 1
  year: 2023
  end-page: 144
  article-title: Hybrid Power Generation Forecasting Using CNN Based BILSTM Method for Renewable Energy Systems
  publication-title: Automatika
– volume: 15
  start-page: 2243
  issue: 6
  year: 2022
  article-title: An Hour‐Ahead PV Power Forecasting Method Based on an RNN‐LSTM Model for Three Different PV Plants
  publication-title: Energies
– ident: e_1_2_12_40_1
  doi: 10.1016/j.cosrev.2018.08.001
– ident: e_1_2_12_9_1
  doi: 10.1016/j.eswa.2022.119293
– ident: e_1_2_12_21_1
  doi: 10.3390/en17051053
– ident: e_1_2_12_11_1
  doi: 10.1016/j.saa.2023.123402
– ident: e_1_2_12_39_1
  doi: 10.1109/ACCESS.2023.3279719
– ident: e_1_2_12_2_1
  doi: 10.3390/en14248240
– ident: e_1_2_12_15_1
  doi: 10.32604/csse.2023.037735
– ident: e_1_2_12_28_1
  doi: 10.3390/en15062243
– ident: e_1_2_12_22_1
  doi: 10.1080/02286203.2020.1767840
– ident: e_1_2_12_26_1
  doi: 10.1109/ACCESS.2024.3358339
– ident: e_1_2_12_16_1
  doi: 10.1007/s40747-023-01265-3
– ident: e_1_2_12_35_1
– ident: e_1_2_12_32_1
  doi: 10.1016/j.enganabound.2023.01.007
– ident: e_1_2_12_19_1
  doi: 10.1080/00051144.2022.2118101
– ident: e_1_2_12_5_1
– volume: 11
  issue: 5
  year: 2024
  ident: e_1_2_12_3_1
  article-title: Renewable and Non‐Renewable Energy Sources
  publication-title: Environmental Science
– ident: e_1_2_12_23_1
  doi: 10.1016/j.egyr.2022.06.079
– ident: e_1_2_12_34_1
  doi: 10.61435/ijred.2024.60156
– ident: e_1_2_12_37_1
  doi: 10.1049/gtd2.13103
– ident: e_1_2_12_38_1
  doi: 10.1016/j.asoc.2020.106216
– ident: e_1_2_12_6_1
– ident: e_1_2_12_12_1
  doi: 10.1016/j.aej.2024.02.004
– ident: e_1_2_12_25_1
  doi: 10.1051/e3sconf/202450101023
– ident: e_1_2_12_17_1
  doi: 10.3390/math11030676
– ident: e_1_2_12_8_1
  doi: 10.1016/j.dib.2024.110212
– ident: e_1_2_12_33_1
  doi: 10.1007/s00607-023-01164-y
– ident: e_1_2_12_20_1
  doi: 10.1007/s00607-023-01164-y
– ident: e_1_2_12_27_1
  doi: 10.1002/aesr.202300160
– ident: e_1_2_12_4_1
– ident: e_1_2_12_29_1
– ident: e_1_2_12_10_1
  doi: 10.1016/j.dib.2024.110461
– ident: e_1_2_12_14_1
  doi: 10.1109/ACCESS.2024.3355448
– ident: e_1_2_12_24_1
  doi: 10.3390/en17020352
– ident: e_1_2_12_36_1
  doi: 10.1016/j.eswa.2023.121207
– ident: e_1_2_12_7_1
  doi: 10.1049/blc2.12081
– ident: e_1_2_12_13_1
  doi: 10.3390/su16072894
– ident: e_1_2_12_30_1
– ident: e_1_2_12_31_1
  doi: 10.1016/j.bdr.2023.100407
– ident: e_1_2_12_18_1
  doi: 10.3390/math10152666
SSID ssj0001414901
Score 2.2924006
Snippet ABSTRACT Accurate forecasts of renewable and nonrenewable energy output are essential for meeting global energy needs and resolving environmental issues....
Accurate forecasts of renewable and nonrenewable energy output are essential for meeting global energy needs and resolving environmental issues. Energy sources...
ABSTRACT Accurate forecasts of renewable and nonrenewable energy output are essential for meeting global energy needs and resolving environmental issues....
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms Accuracy
Alternative energy sources
Artificial neural networks
Bi‐GRU
Climate change
Coal
Datasets
Deep learning
Demand side management
Electricity generation
Emissions
Energy consumption
Energy industry
Energy management
Energy policy
Energy resources
Energy sources
European countries
Forecasting
Fossil fuels
Hydroelectric power
internet of energy things
Literature reviews
Machine learning
Neural networks
nonrenewable energy
Nuclear energy
renewable energy
Renewable resources
Root-mean-square errors
smart grid
Weather forecasting
Wind power
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na-MwEBWl7KE9lP0qTZsWURa6FzeWZNnWsR8JvaQs2y7ksCDGGqkNBDfU6fbvV5KdkECXvezNGB3GbyRrZph5j5BvHPw-gUwmuVIYqlUmUWhcwrlT0jIQyCCKTRS3t-Vkon6sSX2FnrCWHrgFbgBgEVgqRJ66zGQSpJCOoTNMVYgijvmmhVpLpmJ1JfORf8qWVEIpH9jGinOfYbONCyjy9G8El-sharxjRh_JXhcc0ovWqE9ky9afye4aZeAX8jtoaRpoQrcyvXucukVDpzVti-pnDf3p_12vYRyKQo105C2Yzujoxc7oOM43NzQ2CdBra-e0I1d9oOOoI918Jb9Gw_urm6RTSEiM8J-SuJCdeXjQg1IAFKDKTKJDhEALmBshCgllpSAtIedlhVlqPDJFVUgsDM_FPtmun2p7QKhipcHcp4MoeSYrVyHjJrL38AyxtD3yfQmbNh19eFCxmOmW-JjrgLAOCPfI6WrpvOXMeG_RZcB-tSDQXMcX3vm6c77-l_N7pL_0nO7OXqMFk4GzvlTc2xy9-Xcr9PBuKMLD4f8w54js8CAPHCs0fbK9eH6xx-SD-bOYNs8ncYe-AYvL6oo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-l-mAf_C49rRJE0Je1m6_dBJ_8uMOXlmIV-iCEbCZpD45tuVz13zeT3bu2oCD4tiyzMJnMJDOzye9HyGvusp84qarGGMBula8M-FhxHo0KzAlgrpBNtEdH-vTUHG-R9-u7MAM-xKbhhpFR1msMcNelg2vQ0JCCeJdL5lz63GFMtOjSXB5fN1hkTv4L_TGvFf7wrdUaWajmB5uvb-1HBbb_Vq55M2MtW87swX8p-5DcHzNN-mFwjUdkK_SPyc4N_MEn5AcSc3qX8OgzPTmfx1Wi854OHfo3iX7NC-EvvFtFXQ90lvWfL-jsKizoYbksnWg5cUA_h3BJR6TWM3pYSKnTU_J9Nv326Us10i1UXmTNqoilHjgGSqjWudYZLRVEAIcYg40XolVOd8bV2jVcdyBrn23cdq2C1vNG7JLt_qIPe4Qapj00ubYExaXqYgeM-wIFxCWADhPydm1060cscqTEWNgBRZlbNJhFg03Iq43o5QDA8SehjzhzGwHEzC4vLpZndgxB61zIo6uFaOoovVQujzMyiJ6ZDkDoCdlfz7sdAzlZwRQC4GvDs85lhv-uhZ2eTAU-PPt30efkHkdG4dLU2Sfbq-VVeEHu-p-reVq-LB79GyVV9oY
  priority: 102
  providerName: Wiley-Blackwell
Title Forecasting Shifts in Europe's Renewable and Fossil Fuel Markets Using Deep Learning Methods
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1981
https://www.proquest.com/docview/3157504892
https://doaj.org/article/aaeda103360f4c45a535f1dfc19bdd38
Volume 13
WOSCitedRecordID wos001362753300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: PCBAR
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: M7S
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: BENPR
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: PIMPY
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYxgN7YFy1jlFZCAlewuJbEj-hDVqxh1bRCmJISJHjY49KVdrVHfx9bNfdRQJeeEssK7J9ju3jL8ffh9BrqryfKC6yQkoIaJXOJGibUWqlMEQxICqKTZTjcXV-LusEuLmUVrlZE-NCDXMdMPIjRkRgIq8kfb-4zIJqVPi7miQ0ttBOYEkgMXVvcoOxcB__52RDKJTTI-MMe-fP2eTONhTZ-u-EmLcD1bjTDPf-t42P0MMUY-LjtVM8RvdM9wTt3mIefIq-B0lOrVxIesaTH1O7cnja4TU2_8bhM78E_gq3qrDqAA99F6YzPLwyMzyK16QdjrkG-KMxC5w4Wi_wKMpRu2foy3Dw-cOnLAktZJr5schsOOSBIiCYKJUqlay4AAugArtgoRkrhapaqfJKFbRqgefaD23ZlgJKTQv2HG13887sIyxJpaHwp0oQlIvWtkCojiRAlANUpofebsa90YmFPIhhzJo1fzJtgomaYKIeenVddbGm3vhTpZNgvOsKgS07FsyXF02afI1SxvcuZ6zILddcKN9PS8BqIlsAVvXQ4caeTZrCrrkxpm9zdIe_t6IZTAYsPBz8-0sv0AMa9IMjhHOItlfLK_MS3dc_V1O37KMtyus-2jkZjOuzfkQH-tGhfVl9Oqq_-bevp-Pfv4D9uA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-EYsFLAQCC6hsR0n9gEhoLtq1e4KsUXqAck4HqestNpdNlsq_hS_EdtJ-iEBtx64RdHIsuOX8Xg8fg_gOTMeJyYTSa4UhmyVTRTaKmGsUsJRw5GaKDZRjEby4EB9XINf3V2YUFbZ-cToqHFuQ458k1MRmMilYm8X35OgGhVOVzsJjQYWu-7nsd-y1W92tvz8vmBs0N__sJ20qgKJ5UrSpAo7GjQUBReFMYVRMhNYIZpApZdbzgthZKlMKk3OZIlZajOaFWUhsLAs577dS3DZhxFMxVLB8WlOx9v59bUjMErZpqsdf-339fTcshfVAc6FtGcD47iyDW7-b9_kFtxoY2jyrgH9bVhzsztw_Qyz4l34EiRHralDUTcZf5tUq5pMZqQ5e3hZk0_exR-HW2PEzJAM_CebTMngyE3JMF4Dr0mspSBbzi1Iy0F7SIZRbru-B58vZHj3YX02n7kHQBSVFnO_a0bBMlFWJVJmI8kRyxCl68Grbp61bVnWg9jHVDf80EwHSOgAiR48OzFdNNQifzJ6H8ByYhDYwOOL-fJQt85FG-P86FLO87TKbCaMH2dFsbJUlYhc9mCjw49uXVStT8Hj-xzh9_de6P64z8PDw3-39BSubu8P9_Tezmj3EVxjQSs5pqs2YH21PHKP4Yr9sZrUyyfxxyHw9aJR-RsVgVMU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bixMxFA5rV0QfvIvVVYMo-jJ2cptJHkTUdrCsLcVVWEGImVzWQpnWTtfFv-avM8nM7AXUt33wbRhCyOXLyTnJyfcB8AQrjxNFWZIJYcJplU6E0S7B2AlmkSIGqSg2kU-nfH9fzLbAr-4tTEir7GxiNNRmqcMZ-YAgFpjIucAD16ZFzIbFq9X3JChIhZvWTk6jgciu_Xnkw7f65Xjo5_opxsXo49t3SaswkGgiOEpciG6MQoYRliuVK8EpM84YFWj1Mk1IzhQvhUq5yjAvDU01RTQvc2ZyjTPi670Atr1LTnEPbM_Gk9nnkxMeX9Lvth2dUYoHtrbkhY_y0ZlNMGoFnHFwT7vJcZ8rrv3PI3QdXG29a_i6WQ43wJatboIrpzgXb4EvQYxUqzqke8O9b3O3qeG8gs2txLMafvDG_yi8J4OqMrDwwzdfwOLQLuAkPhCvYcyygENrV7Blpz2AkyjEXd8Gn86le3dAr1pW9i6AAnFtMh9PG4YpK11pENaR_ghTY7jtg-fdnEvd8q8HGZCFbJijsQzwkAEeffD4uOiqIR35U6E3ATjHBQJPePyxXB_I1uxIpazvXUpIljqqKVO-nw4Zp5EojSG8D3Y6LMnWeNXyBEi-zRGKf2-FHO2NSPi49--aHoFLHozy_Xi6ex9cxkFEOZ5j7YDeZn1oH4CL-sdmXq8ftqsIgq_nDcvfefJdSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Shifts+in+Europe%27s+Renewable+and+Fossil+Fuel+Markets+Using+Deep+Learning+Methods&rft.jtitle=Energy+science+%26+engineering&rft.au=Liu%2C+Yonghong&rft.au=Saleem%2C+Muhammad+S&rft.au=Rashid%2C+Javed&rft.au=Ahmad%2C+Sajjad&rft.date=2025-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2050-0505&rft.volume=13&rft.issue=1&rft.spage=119&rft.epage=139&rft_id=info:doi/10.1002%2Fese3.1981&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon