Solving Least-Squares Problems via a Double-Optimal Algorithm and a Variant of the Karush–Kuhn–Tucker Equation for Over-Determined Systems
A double optimal solution (DOS) of a least-squares problem Ax=b,A∈Rq×n with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS); two minimization techniques exactly determine the m+1 expansion coefficients of the solution x in the VAKS. The minimal-norm solution can be obtaine...
Uloženo v:
| Vydáno v: | Algorithms Ročník 17; číslo 5; s. 211 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.05.2024
|
| Témata: | |
| ISSN: | 1999-4893, 1999-4893 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A double optimal solution (DOS) of a least-squares problem Ax=b,A∈Rq×n with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS); two minimization techniques exactly determine the m+1 expansion coefficients of the solution x in the VAKS. The minimal-norm solution can be obtained automatically regardless of whether the linear system is consistent or inconsistent. A new double optimal algorithm (DOA) is created; it is sufficiently time saving by inverting an m×m positive definite matrix at each iteration step, where m≪min(n,q). The properties of the DOA are investigated and the estimation of residual error is provided. The residual norms are proven to be strictly decreasing in the iterations; hence, the DOA is absolutely convergent. Numerical tests reveal the efficiency of the DOA for solving least-squares problems. The DOA is applicable to least-squares problems regardless of whether q<n or q>n. The Moore–Penrose inverse matrix is also addressed by adopting the DOA; the accuracy and efficiency of the proposed method are proven. The m+1-dimensional VAKS is different from the traditional m-dimensional affine Krylov subspace used in the conjugate gradient (CG)-type iterative algorithms CGNR (or CGLS) and CGRE (or Craig method) for solving least-squares problems with q>n. We propose a variant of the Karush–Kuhn–Tucker equation, and then we apply the partial pivoting Gaussian elimination method to solve the variant, which is better than the original Karush–Kuhn–Tucker equation, the CGNR and the CGNE for solving over-determined linear systems. Our main contribution is developing a double-optimization-based iterative algorithm in a varying affine Krylov subspace for effectively and accurately solving least-squares problems, even for a dense and ill-conditioned matrix A with q≪n or q≫n. |
|---|---|
| AbstractList | A double optimal solution (DOS) of a least-squares problem Ax=b,A∈Rq×n with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS); two minimization techniques exactly determine the m+1 expansion coefficients of the solution x in the VAKS. The minimal-norm solution can be obtained automatically regardless of whether the linear system is consistent or inconsistent. A new double optimal algorithm (DOA) is created; it is sufficiently time saving by inverting an m×m positive definite matrix at each iteration step, where m≪min(n,q). The properties of the DOA are investigated and the estimation of residual error is provided. The residual norms are proven to be strictly decreasing in the iterations; hence, the DOA is absolutely convergent. Numerical tests reveal the efficiency of the DOA for solving least-squares problems. The DOA is applicable to least-squares problems regardless of whether q<n or q>n. The Moore–Penrose inverse matrix is also addressed by adopting the DOA; the accuracy and efficiency of the proposed method are proven. The m+1-dimensional VAKS is different from the traditional m-dimensional affine Krylov subspace used in the conjugate gradient (CG)-type iterative algorithms CGNR (or CGLS) and CGRE (or Craig method) for solving least-squares problems with q>n. We propose a variant of the Karush–Kuhn–Tucker equation, and then we apply the partial pivoting Gaussian elimination method to solve the variant, which is better than the original Karush–Kuhn–Tucker equation, the CGNR and the CGNE for solving over-determined linear systems. Our main contribution is developing a double-optimization-based iterative algorithm in a varying affine Krylov subspace for effectively and accurately solving least-squares problems, even for a dense and ill-conditioned matrix A with q≪n or q≫n. A double optimal solution (DOS) of a least-squares problem A x = b , A ∈ R q×n with q≠n is derived in an m+1 -dimensional varying affine Krylov subspace (VAKS); two minimization techniques exactly determine the m+1 expansion coefficients of the solution x in the VAKS. The minimal-norm solution can be obtained automatically regardless of whether the linear system is consistent or inconsistent. A new double optimal algorithm (DOA) is created; it is sufficiently time saving by inverting an m×m positive definite matrix at each iteration step, where m≪ min (n,q) . The properties of the DOA are investigated and the estimation of residual error is provided. The residual norms are proven to be strictly decreasing in the iterations; hence, the DOA is absolutely convergent. Numerical tests reveal the efficiency of the DOA for solving least-squares problems. The DOA is applicable to least-squares problems regardless of whether q<n or q>n . The Moore–Penrose inverse matrix is also addressed by adopting the DOA; the accuracy and efficiency of the proposed method are proven. The m+1 -dimensional VAKS is different from the traditional m-dimensional affine Krylov subspace used in the conjugate gradient (CG)-type iterative algorithms CGNR (or CGLS) and CGRE (or Craig method) for solving least-squares problems with q>n . We propose a variant of the Karush–Kuhn–Tucker equation, and then we apply the partial pivoting Gaussian elimination method to solve the variant, which is better than the original Karush–Kuhn–Tucker equation, the CGNR and the CGNE for solving over-determined linear systems. Our main contribution is developing a double-optimization-based iterative algorithm in a varying affine Krylov subspace for effectively and accurately solving least-squares problems, even for a dense and ill-conditioned matrix A with q≪n or q≫n . A double optimal solution (DOS) of a least-squares problem Ax=b, A∈R[sup.q×n] with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS); two minimization techniques exactly determine the m+1 expansion coefficients of the solution x in the VAKS. The minimal-norm solution can be obtained automatically regardless of whether the linear system is consistent or inconsistent. A new double optimal algorithm (DOA) is created; it is sufficiently time saving by inverting an m×m positive definite matrix at each iteration step, where m≪min(n,q). The properties of the DOA are investigated and the estimation of residual error is provided. The residual norms are proven to be strictly decreasing in the iterations; hence, the DOA is absolutely convergent. Numerical tests reveal the efficiency of the DOA for solving least-squares problems. The DOA is applicable to least-squares problems regardless of whether q<n or q>n. The Moore–Penrose inverse matrix is also addressed by adopting the DOA; the accuracy and efficiency of the proposed method are proven. The m+1-dimensional VAKS is different from the traditional m-dimensional affine Krylov subspace used in the conjugate gradient (CG)-type iterative algorithms CGNR (or CGLS) and CGRE (or Craig method) for solving least-squares problems with q>n. We propose a variant of the Karush–Kuhn–Tucker equation, and then we apply the partial pivoting Gaussian elimination method to solve the variant, which is better than the original Karush–Kuhn–Tucker equation, the CGNR and the CGNE for solving over-determined linear systems. Our main contribution is developing a double-optimization-based iterative algorithm in a varying affine Krylov subspace for effectively and accurately solving least-squares problems, even for a dense and ill-conditioned matrix A with q≪n or q≫n. |
| Audience | Academic |
| Author | Chang, Chih-Wen Kuo, Chung-Lun Liu, Chein-Shan |
| Author_xml | – sequence: 1 givenname: Chein-Shan orcidid: 0000-0001-6366-3539 surname: Liu fullname: Liu, Chein-Shan – sequence: 2 givenname: Chung-Lun surname: Kuo fullname: Kuo, Chung-Lun – sequence: 3 givenname: Chih-Wen orcidid: 0000-0001-9846-0694 surname: Chang fullname: Chang, Chih-Wen |
| BookMark | eNplUcFuEzEQXaEi0RYO_IElThy2tdf2rn2M2gJVIwUphavl9dqJw8ZObW-k3vgCLvwhX8K0KRUC-TD2eN6befNOqqMQg62qtwSfUSrxuSYd5rgh5EV1TKSUNROSHv11f1Wd5LzBuOWyJcfVj2Uc9z6s0NzqXOrl3aSTzehziv1otxntvUYaXcYJnvViV_xWj2g2rmLyZb1FOgzw_VUnr0NB0aGytuhGpymvf33_eTOtA4TbyXyzCV0Bd_ExIBcTWuxtqi9tsWnrgx3Q8j4X6Pe6eun0mO2bp3hafflwdXvxqZ4vPl5fzOa1obIrtbODBUXUSNf0jeEtSO-EbVjrCHFSN0xTg5lrKCHcwE5o3_JeUMYpB2hDT6vrA-8Q9UbtEshK9ypqrx4TMa2UTsWb0SoGbYwRvGm7nlljNRdd1zEpBMOdZBi43h24dineTTYXtYlTCjC-opjLhpNOtFB1dqhaaSD1wcWStIEz2K03YKLzkJ91klNBRPsw4vkBYFLMOVmnjC-PCwSgHxXB6sFx9ew4IN7_g_gj7P_a331FrhQ |
| CitedBy_id | crossref_primary_10_3390_a17060266 crossref_primary_10_3390_math12111761 crossref_primary_10_4018_IJSIR_370390 |
| Cites_doi | 10.6028/jres.049.006 10.1016/j.laa.2020.09.006 10.6028/jres.049.044 10.1137/0913035 10.1016/S0377-0427(00)00412-X 10.1016/j.cam.2008.10.008 10.1016/j.apnum.2020.06.014 10.1016/j.aml.2011.09.051 10.1016/j.aml.2021.107057 10.1016/j.cam.2010.08.042 10.1080/17415977.2014.880905 10.1137/1.9781611971484 10.1016/j.cam.2022.114954 10.1090/S0025-5718-1981-0616364-6 10.1016/j.cam.2013.10.013 10.2298/FIL1307269S 10.1137/0910004 10.1007/BF01436075 10.1016/j.aml.2023.108780 10.1016/j.jocs.2023.102029 10.1016/j.enganabound.2014.04.017 10.1016/j.jmaa.2023.127631 10.1137/100787921 10.1016/j.compchemeng.2024.108654 10.1007/BF01385726 10.1016/j.camwa.2014.04.011 10.1109/MCISE.2000.814652 10.1002/nla.499 10.1016/j.cam.2014.01.034 10.1137/0712047 10.1016/j.automatica.2021.110095 10.1016/j.aml.2021.107689 10.1007/s11075-023-01691-x 10.1016/j.jocs.2020.101092 10.1007/BFb0080116 10.1137/0907058 10.1137/S0895479802403459 10.1016/j.enganabound.2014.01.011 10.1137/1.9780898718003 10.1007/BF02163027 10.1162/NECO_a_00549 10.1017/CBO9780511615115 10.1007/s10543-024-01015-y 10.1016/j.enganabound.2015.09.003 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
| DOI | 10.3390/a17050211 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_493ccc85267b4ecea587774988407940 A795381862 10_3390_a17050211 |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c397t-fede1993c9f2b2c5639078e246f11f9a24a3c04f23115ca173b65b834535ede23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001232451600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:46:20 EDT 2025 Fri Jul 25 11:54:16 EDT 2025 Tue Nov 04 18:24:19 EST 2025 Tue Nov 18 22:26:27 EST 2025 Sat Nov 29 07:17:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-fede1993c9f2b2c5639078e246f11f9a24a3c04f23115ca173b65b834535ede23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6366-3539 0000-0001-9846-0694 |
| OpenAccessLink | https://doaj.org/article/493ccc85267b4ecea587774988407940 |
| PQID | 3059251786 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_493ccc85267b4ecea587774988407940 proquest_journals_3059251786 gale_infotracacademiconefile_A795381862 crossref_citationtrail_10_3390_a17050211 crossref_primary_10_3390_a17050211 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Liu (ref_41) 2015; 23 Lipitakis (ref_26) 2020; 41 Simoncini (ref_3) 2007; 14 Saad (ref_5) 1981; 37 Sleijpen (ref_7) 2004; 26 Golub (ref_37) 1970; 14 Petkovic (ref_20) 2014; 267 Bojanczyk (ref_28) 2021; 623 Niu (ref_27) 2021; 116 ref_11 Sonneveld (ref_12) 1989; 10 Petkovic (ref_19) 2011; 235 Du (ref_29) 2022; 124 Saad (ref_14) 2000; 123 Stanimirovic (ref_22) 2012; 25 Liu (ref_40) 2014; 44 Contino (ref_36) 2024; 530 Saad (ref_4) 1986; 7 Paige (ref_10) 1975; 12 ref_16 ref_38 ref_15 Kuo (ref_33) 2023; 424 Liu (ref_42) 2014; 67 Abbasi (ref_44) 2024; 64 Zhang (ref_31) 2023; 446 (ref_13) 1992; 13 Liu (ref_1) 2013; 33 Jin (ref_34) 2023; 70 Sheng (ref_23) 2013; 27 Pes (ref_32) 2023; 145 Hestenes (ref_8) 1952; 49 Feng (ref_46) 2014; 41 Jahvani (ref_35) 2024; 185 ref_43 Liu (ref_39) 2014; 260 Xia (ref_45) 2014; 26 Choi (ref_18) 2011; 33 Katsikis (ref_21) 2011; 217 Zhang (ref_25) 2020; 157 Toutounian (ref_24) 2009; 228 Liu (ref_47) 2016; 62 Chakrabarti (ref_30) 2022; 137 Lanczos (ref_9) 1952; 49 Golub (ref_17) 1965; 7 Dongarra (ref_2) 2000; 2 Freund (ref_6) 1991; 60 |
| References_xml | – volume: 49 start-page: 33 year: 1952 ident: ref_9 article-title: Solution of systems of linear equations by minimized iterations publication-title: J. Res. Nat. Bur. Stand. doi: 10.6028/jres.049.006 – volume: 623 start-page: 104 year: 2021 ident: ref_28 article-title: Algorithms for indefinite linear least squares problems publication-title: Linear Algebra Appli. doi: 10.1016/j.laa.2020.09.006 – volume: 49 start-page: 409 year: 1952 ident: ref_8 article-title: Methods of conjugate gradients for solving linear systems publication-title: J. Res. Nat. Bur. Stand. doi: 10.6028/jres.049.044 – volume: 13 start-page: 631 year: 1992 ident: ref_13 article-title: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0913035 – volume: 123 start-page: 1 year: 2000 ident: ref_14 article-title: Iterative solution of linear systems in the 20th century publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00412-X – volume: 228 start-page: 412 year: 2009 ident: ref_24 article-title: A new method for computing Moore-Penrose inverse matrices publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.10.008 – volume: 157 start-page: 372 year: 2020 ident: ref_25 article-title: On relaxed greedy randomized coordinate descent methods for solving large linear least-squares problems publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2020.06.014 – volume: 25 start-page: 526 year: 2012 ident: ref_22 article-title: Computation of generalized inverse by using the LDL* decomposition publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.09.051 – volume: 116 start-page: 107057 year: 2021 ident: ref_27 article-title: A new randomized Gauss–Seidel method for solving linear least-squares problems publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2021.107057 – volume: 235 start-page: 1604 year: 2011 ident: ref_19 article-title: Iterative method for computing Moore-Penrose inverse based on Penrose equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2010.08.042 – volume: 23 start-page: 38 year: 2015 ident: ref_41 article-title: A double optimal descent algorithm for iteratively solving ill-posed linear inverse problems publication-title: Inv. Prob. Sci. Eng. doi: 10.1080/17415977.2014.880905 – ident: ref_38 doi: 10.1137/1.9781611971484 – volume: 424 start-page: 114954 year: 2023 ident: ref_33 article-title: An index search method based inner-outer iterative algorithm for solving nonnegative least squares problems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2022.114954 – volume: 37 start-page: 105 year: 1981 ident: ref_5 article-title: Krylov subspace methods for solving large unsymmetric linear systems publication-title: Math. Comput. doi: 10.1090/S0025-5718-1981-0616364-6 – volume: 260 start-page: 375 year: 2014 ident: ref_39 article-title: A doubly optimized solution of linear equations system expressed in an affine Krylov subspace publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.10.013 – volume: 27 start-page: 1269 year: 2013 ident: ref_23 article-title: An iterative method to compute Moore-Penrose inverse based on gradient maximal convergence rate publication-title: Filomat doi: 10.2298/FIL1307269S – volume: 10 start-page: 36 year: 1989 ident: ref_12 article-title: CGS: A fast Lanczos-type solver for nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0910004 – volume: 7 start-page: 206 year: 1965 ident: ref_17 article-title: Numerical methods for solving linear least squares problems publication-title: Numer. Math. doi: 10.1007/BF01436075 – volume: 446 start-page: 127892 year: 2023 ident: ref_31 article-title: Splitting-based randomized iterative methods for solving indefinite least squares problem publication-title: Appl. Math. Comput. – volume: 145 start-page: 108780 year: 2023 ident: ref_32 article-title: A projection method for general form linear least-squares problems publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2023.108780 – volume: 70 start-page: 102029 year: 2023 ident: ref_34 article-title: Greedy double subspaces coordinate descent method for solving linear least-squares problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2023.102029 – volume: 44 start-page: 64 year: 2014 ident: ref_40 article-title: Optimal algorithms in a Krylov subspace for solving linear inverse problems by MFS publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2014.04.017 – volume: 530 start-page: 127631 year: 2024 ident: ref_36 article-title: Matrix representations of multivalued projections and least squares problems publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2023.127631 – volume: 33 start-page: 1810 year: 2011 ident: ref_18 article-title: MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems publication-title: SIAM J. Sci. Comput. doi: 10.1137/100787921 – volume: 185 start-page: 108654 year: 2024 ident: ref_35 article-title: Solving least-squares problems in directed networks: A distributed approach publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2024.108654 – volume: 60 start-page: 315 year: 1991 ident: ref_6 article-title: QMR: A quasi-minimal residual method for non-Hermitian linear systems publication-title: Numer. Math. doi: 10.1007/BF01385726 – volume: 67 start-page: 1998 year: 2014 ident: ref_42 article-title: A maximal projection solution of ill-posed linear system in a column subspace, better than the least squares solution publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2014.04.011 – volume: 2 start-page: 22 year: 2000 ident: ref_2 article-title: Guest editors’ introduction to the top 10 algorithms publication-title: Comput. Sci. Eng. doi: 10.1109/MCISE.2000.814652 – volume: 33 start-page: 175 year: 2013 ident: ref_1 article-title: An optimal multi-vector iterative algorithm in a Krylov subspace for solving the ill-posed linear inverse problems publication-title: Comput. Mater. Contin. – volume: 14 start-page: 1 year: 2007 ident: ref_3 article-title: Recent computational developments in Krylov subspace methods for linear systems publication-title: Numer. Linear Alg. Appl. doi: 10.1002/nla.499 – volume: 267 start-page: 61 year: 2014 ident: ref_20 article-title: Two improvements of the iterative method for computing Moore-Penrose inverse based on Penrose equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.01.034 – volume: 12 start-page: 617 year: 1975 ident: ref_10 article-title: Solution of sparse indefinite systems of linear equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/0712047 – volume: 217 start-page: 9828 year: 2011 ident: ref_21 article-title: An improved method for the computation of the Moore-Penrose inverse matrix publication-title: Appl. Math. Comput. – volume: 137 start-page: 110095 year: 2022 ident: ref_30 article-title: Iterative pre-conditioning for expediting the distributed gradient-descent method: The case of linear least-squares problem publication-title: Automatica doi: 10.1016/j.automatica.2021.110095 – volume: 124 start-page: 107689 year: 2022 ident: ref_29 article-title: On the convergence of a randomized block coordinate descent algorithm for a matrix least squares problem publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2021.107689 – ident: ref_43 doi: 10.1007/s11075-023-01691-x – volume: 41 start-page: 101092 year: 2020 ident: ref_26 article-title: A note on parallel approximate pseudoinverse matrix techniques for solving linear least squares problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2020.101092 – ident: ref_11 doi: 10.1007/BFb0080116 – volume: 7 start-page: 856 year: 1986 ident: ref_4 article-title: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0907058 – volume: 26 start-page: 125 year: 2004 ident: ref_7 article-title: Inexact Krylov subspace methods for linear systems publication-title: SIAM J. Matrix Ana. Appl. doi: 10.1137/S0895479802403459 – volume: 41 start-page: 98 year: 2014 ident: ref_46 article-title: On the ill-conditioning of the MFS for irregular boundary data with sufficient regularity publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2014.01.011 – ident: ref_15 doi: 10.1137/1.9780898718003 – volume: 14 start-page: 403 year: 1970 ident: ref_37 article-title: Singular value decomposition and least squares solutions publication-title: Numer. Math. doi: 10.1007/BF02163027 – volume: 26 start-page: 449 year: 2014 ident: ref_45 article-title: A novel iterative method for computing generalized inverse publication-title: Neural Comput. doi: 10.1162/NECO_a_00549 – ident: ref_16 doi: 10.1017/CBO9780511615115 – volume: 64 start-page: 15 year: 2024 ident: ref_44 article-title: Bounded perturbations resilient iterative methods for linear systems and least squares problems: Operator-based approaches, analysis, and performance evaluation publication-title: BIT Numer. Math. doi: 10.1007/s10543-024-01015-y – volume: 62 start-page: 35 year: 2016 ident: ref_47 article-title: A multiple-scale Pascal polynomial triangle solving elliptic equations and inverse Cauchy problems publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2015.09.003 |
| SSID | ssj0065961 |
| Score | 2.3232229 |
| Snippet | A double optimal solution (DOS) of a least-squares problem Ax=b,A∈Rq×n with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS); two... A double optimal solution (DOS) of a least-squares problem Ax=b, A∈R[sup.q×n] with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS);... A double optimal solution (DOS) of a least-squares problem A x = b , A ∈ R q×n with q≠n is derived in an m+1 -dimensional varying affine Krylov subspace... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 211 |
| SubjectTerms | absolute convergence Algorithms double optimal algorithm Gaussian elimination Iterative algorithms Iterative methods Least squares method linear least-squares problems Linear systems Matrices (mathematics) Methods minimal-norm solution Numerical analysis Optimization Optimization techniques residual orthogonality Subspaces Thermal expansion varying affine Krylov subspace |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcOBC-VSXFmQhJLhY3Ti2Y59QgVZIrdpKC1VvluPY3UrbpLvZ7bm_gAv_kF_CTOIsQgIunKIkzueMx2-cyXuEvFHKQ3acG-ZUdPiZ0TOXlZpF7WQRK-_zTqbz7Kg4Ptbn5-Y0Tbi1qaxyiIldoK4aj3Pku-CXBum1tHp_PWeoGoVfV5OExl1yD1kSsq50bzJEYiWNyno2oRxS-12H1DEwpmW_jUEdVf_fAnI3yhxs_u_9PSIPE76ke71DPCZ3Qv2EbA7aDTR15afk26SZ4VwCPULxHjaZr_BHJHra68u09ObSUUcBXsMqO4G4coVnnV3AJZfTK-rqCnafQaINlqFNpIAj6aFbrNrpj9vvh6tpDYu-ZoPuz3s6cQr4mJ5A12GfUg1OqGhiTH9Gvh7sf_n4mSVtBuYBwSxZDFXA2j9vIi-5l2BuABuBCxWzLBrHhcv9WESObD4e3nxeKlnqXMhcwqE8f0426qYOW4Rm3gg9VihwyEWuK6cA8BeqAmxSFj6aEXk3WMv6RFyO-hkzCwkMGtauDTsir9dNr3u2jj81-oAmXzdAgu1uQ7O4sKm_WgGP5r2WXBWlCD44icSJwmhIiCGEjUfkLTqMxTAAN-Nd-psBHgkJtexeYSSCIcVHZGdwGJviQ2t_ecuLf-_eJg84wKi-xHKHbCwXq_CS3Pc3y8t28apz959PpQsC priority: 102 providerName: ProQuest |
| Title | Solving Least-Squares Problems via a Double-Optimal Algorithm and a Variant of the Karush–Kuhn–Tucker Equation for Over-Determined Systems |
| URI | https://www.proquest.com/docview/3059251786 https://doaj.org/article/493ccc85267b4ecea587774988407940 |
| Volume | 17 |
| WOSCitedRecordID | wos001232451600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: K7- dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M7S dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ4cCFN2KhrCyEBBerje049rGFrUBbthELVTlFziTurrTN0n30iPgFXPiH_BJm4uwKJBAXLnnZiRzPePxNMv6GsefGAHrHyglvgqffjCB8UloRrE-zUAGoNk3n6XE2GtmzM5f_kuqLYsIiPXDsuD3tFADYVJqs1DXUPiUGO-0seiaoS623jgcbZyraYJM6k0QeIYVO_Z4n0hiczZLfZp-WpP9vpridX47usFsdMOQHsUF32bW6ucdub5Iu8G4M3mffxvMZfQTgx5R1R4wv17SCiOcxMcySX0099xxxMZ6KEzQIF_TU2fl8MV1NLrhvKiw-RQ8Zu5TPA0cAyId-sV5Ofnz9PlxPGtzFYAs-uIw84ByBLT9BnRevu-CZuuId1fkD9vFo8OHVG9ElVRCA0GMlQl3VFLQHLshSQopyQpRQS21CkgTnpfYK9nWQRMMD2HGqNGlplU5VirdK9ZDtNPOmfsR4Ak7bfUOZCaVWtvIGkXpmKgQVZQbB9djLTWcX0DGOU-KLWYGeB8ml2Mqlx55tq36ONBt_qnRIEttWIGbs9gLqS9HpS_EvfemxFyTvgsYvNgZ8twwBX4mYsIqDzKWEYozssd2NShTdwF4WaB4dsbxZ8_h_tOYJuykRJcUIyl22s1qs66fsBlytpstFn10_HIzy9_1Wt3E7zESfglPHtP0ywPL87bv8009abAH6 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqFgk2tLzEQAsWAsHG6sRJnHiBUKGtWmWYVmqpunMdx-5UmiadSaYVO76gm_4HH8WXcG8eg5CAXResRpk4UZwcn3tvYp9DyGshDFTHvmRaOI2fGQ3TXhozF-swcpkxfm3TeTSIhsP4-FjuL5Dv3VoYnFbZcWJN1Flh8B35OuBSorxWLD5cTBi6RuHX1c5Co4FFYr9eQclWvt_dhOf7hvPtrcNPO6x1FWAGYm_FnM0szloz0vGUmxAuFMKk5YFwnuek5oH2TT9wHHVojPYiPxVhGvtB6IdwKAodAOUvBX4c4bhKItYxvwil8Br1Ih9Ouq5RqgZiqPdbzKutAf4WAOqotr38v92PFXK_zZ_pRgP4B2TB5g_JcudNQVuqekSuD4oxviuhAzQnYgeTGS60ovuNf05JL8801RTKB9hke8Cb53jW8Sl0sRqdU51nsPtIw_DMK1o4CnkyTfR0Vo5-fLtJZqMcfpo5KXRr0silU8j_6R5QA9ts5xjZjLaK8I_Jl1u5K0_IYl7k9imhnpFB3Bdo4MgBNZkWUNBEIoPcK42Mkz3yrkOHMq0wO_qDjBUUaAgkNQdSj7yaN71o1Ej-1OgjQmzeAAXE6z-K6alq-UgF0DVj4pCLKA2ssTpEYchAxlDwA0X3e-QtAlQhzcHFGN2u1oAuoWCY2ohkiMme4D2y2gFUtfxXql_ofPbv3S_J3Z3DzwM12B0mz8k9DiljM510lSxW05ldI3fMZXVWTl_UQ42Sk9vG8k9vc2ZD |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLamDiEujE9RGGAhEFyiNo7jxIcJDbqKqqWLNJjGKXOceJ3UJWuTbuLGL-DCv-Hn8Et438QpQgJuO3CKkjiRnTx-P5LXz0PIcyE0ZMeedJQwCn8zake5SeiYUPmBSbX2apnOw0kwnYZHRzLaIN_btTBYVtnaxNpQp4XGb-Q9wKVEeq1Q9Iwti4gGw9fnCwcVpPBPayun0UBknH2-hPSt3BkN4F2_YGy49-HtO8cqDDga_HDlmCzNsIJNS8MSpn3oNLjMjHFhXNdIxbjydJ8bhpw0WrmBlwg_CT3uez5ciqQHYP43ISTnrEM2o9H76FPrB4QvhdtwGXlw255C4hrwqO5vHrAWCvibO6h93HDrf346t8hNG1nT3WYq3CYbWX6HbLWqFdQasbvk60Exx68odIKyRc7BYoVLsGjUKOuU9OJUUUUhsYBdZx8s6hnedX4CQ6xmZ1TlKZw-VDBx84oWhkIETcdquSpnP758G69mOWyaahW6t2iI1ClkBnQfjIYzsNVHWUotV_w98vFKnsp90smLPHtAqKslD_sCpR0Z98JUCUh1ApFCVJYE2sguedUiJdaWsh2VQ-YxpG4IqngNqi55tm563vCU_KnRG4TbugFSi9cHiuVJbC1VzGFoWoc-E0HCM50pHykjuQxDyP0l73fJSwRrjAYQOqOVXccBQ0IqsXg3kD6GgYJ1yXYL1thaxjL-hdSH_z79lFwHCMeT0XT8iNxgEEs2dabbpFMtV9ljck1fVKfl8omdd5QcXzWYfwJtz3DE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Least-Squares+Problems+via+a+Double-Optimal+Algorithm+and+a+Variant+of+the+Karush%E2%80%93Kuhn%E2%80%93Tucker+Equation+for+Over-Determined+Systems&rft.jtitle=Algorithms&rft.au=Liu%2C+Chein-Shan&rft.au=Kuo%2C+Chung-Lun&rft.au=Chang%2C+Chih-Wen&rft.date=2024-05-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=17&rft.issue=5&rft.spage=211&rft_id=info:doi/10.3390%2Fa17050211&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a17050211 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |