Solving Least-Squares Problems via a Double-Optimal Algorithm and a Variant of the Karush–Kuhn–Tucker Equation for Over-Determined Systems

A double optimal solution (DOS) of a least-squares problem Ax=b,A∈Rq×n with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS); two minimization techniques exactly determine the m+1 expansion coefficients of the solution x in the VAKS. The minimal-norm solution can be obtaine...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithms Ročník 17; číslo 5; s. 211
Hlavní autoři: Liu, Chein-Shan, Kuo, Chung-Lun, Chang, Chih-Wen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2024
Témata:
ISSN:1999-4893, 1999-4893
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A double optimal solution (DOS) of a least-squares problem Ax=b,A∈Rq×n with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS); two minimization techniques exactly determine the m+1 expansion coefficients of the solution x in the VAKS. The minimal-norm solution can be obtained automatically regardless of whether the linear system is consistent or inconsistent. A new double optimal algorithm (DOA) is created; it is sufficiently time saving by inverting an m×m positive definite matrix at each iteration step, where m≪min(n,q). The properties of the DOA are investigated and the estimation of residual error is provided. The residual norms are proven to be strictly decreasing in the iterations; hence, the DOA is absolutely convergent. Numerical tests reveal the efficiency of the DOA for solving least-squares problems. The DOA is applicable to least-squares problems regardless of whether q<n or q>n. The Moore–Penrose inverse matrix is also addressed by adopting the DOA; the accuracy and efficiency of the proposed method are proven. The m+1-dimensional VAKS is different from the traditional m-dimensional affine Krylov subspace used in the conjugate gradient (CG)-type iterative algorithms CGNR (or CGLS) and CGRE (or Craig method) for solving least-squares problems with q>n. We propose a variant of the Karush–Kuhn–Tucker equation, and then we apply the partial pivoting Gaussian elimination method to solve the variant, which is better than the original Karush–Kuhn–Tucker equation, the CGNR and the CGNE for solving over-determined linear systems. Our main contribution is developing a double-optimization-based iterative algorithm in a varying affine Krylov subspace for effectively and accurately solving least-squares problems, even for a dense and ill-conditioned matrix A with q≪n or q≫n.
AbstractList A double optimal solution (DOS) of a least-squares problem Ax=b,A∈Rq×n with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS); two minimization techniques exactly determine the m+1 expansion coefficients of the solution x in the VAKS. The minimal-norm solution can be obtained automatically regardless of whether the linear system is consistent or inconsistent. A new double optimal algorithm (DOA) is created; it is sufficiently time saving by inverting an m×m positive definite matrix at each iteration step, where m≪min(n,q). The properties of the DOA are investigated and the estimation of residual error is provided. The residual norms are proven to be strictly decreasing in the iterations; hence, the DOA is absolutely convergent. Numerical tests reveal the efficiency of the DOA for solving least-squares problems. The DOA is applicable to least-squares problems regardless of whether q<n or q>n. The Moore–Penrose inverse matrix is also addressed by adopting the DOA; the accuracy and efficiency of the proposed method are proven. The m+1-dimensional VAKS is different from the traditional m-dimensional affine Krylov subspace used in the conjugate gradient (CG)-type iterative algorithms CGNR (or CGLS) and CGRE (or Craig method) for solving least-squares problems with q>n. We propose a variant of the Karush–Kuhn–Tucker equation, and then we apply the partial pivoting Gaussian elimination method to solve the variant, which is better than the original Karush–Kuhn–Tucker equation, the CGNR and the CGNE for solving over-determined linear systems. Our main contribution is developing a double-optimization-based iterative algorithm in a varying affine Krylov subspace for effectively and accurately solving least-squares problems, even for a dense and ill-conditioned matrix A with q≪n or q≫n.
A double optimal solution (DOS) of a least-squares problem A x = b , A ∈ R q×n with q≠n is derived in an m+1 -dimensional varying affine Krylov subspace (VAKS); two minimization techniques exactly determine the m+1 expansion coefficients of the solution x in the VAKS. The minimal-norm solution can be obtained automatically regardless of whether the linear system is consistent or inconsistent. A new double optimal algorithm (DOA) is created; it is sufficiently time saving by inverting an m×m positive definite matrix at each iteration step, where m≪ min (n,q) . The properties of the DOA are investigated and the estimation of residual error is provided. The residual norms are proven to be strictly decreasing in the iterations; hence, the DOA is absolutely convergent. Numerical tests reveal the efficiency of the DOA for solving least-squares problems. The DOA is applicable to least-squares problems regardless of whether q<n or q>n . The Moore–Penrose inverse matrix is also addressed by adopting the DOA; the accuracy and efficiency of the proposed method are proven. The m+1 -dimensional VAKS is different from the traditional m-dimensional affine Krylov subspace used in the conjugate gradient (CG)-type iterative algorithms CGNR (or CGLS) and CGRE (or Craig method) for solving least-squares problems with q>n . We propose a variant of the Karush–Kuhn–Tucker equation, and then we apply the partial pivoting Gaussian elimination method to solve the variant, which is better than the original Karush–Kuhn–Tucker equation, the CGNR and the CGNE for solving over-determined linear systems. Our main contribution is developing a double-optimization-based iterative algorithm in a varying affine Krylov subspace for effectively and accurately solving least-squares problems, even for a dense and ill-conditioned matrix A with q≪n or q≫n .
A double optimal solution (DOS) of a least-squares problem Ax=b, A∈R[sup.q×n] with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS); two minimization techniques exactly determine the m+1 expansion coefficients of the solution x in the VAKS. The minimal-norm solution can be obtained automatically regardless of whether the linear system is consistent or inconsistent. A new double optimal algorithm (DOA) is created; it is sufficiently time saving by inverting an m×m positive definite matrix at each iteration step, where m≪min(n,q). The properties of the DOA are investigated and the estimation of residual error is provided. The residual norms are proven to be strictly decreasing in the iterations; hence, the DOA is absolutely convergent. Numerical tests reveal the efficiency of the DOA for solving least-squares problems. The DOA is applicable to least-squares problems regardless of whether q<n or q>n. The Moore–Penrose inverse matrix is also addressed by adopting the DOA; the accuracy and efficiency of the proposed method are proven. The m+1-dimensional VAKS is different from the traditional m-dimensional affine Krylov subspace used in the conjugate gradient (CG)-type iterative algorithms CGNR (or CGLS) and CGRE (or Craig method) for solving least-squares problems with q>n. We propose a variant of the Karush–Kuhn–Tucker equation, and then we apply the partial pivoting Gaussian elimination method to solve the variant, which is better than the original Karush–Kuhn–Tucker equation, the CGNR and the CGNE for solving over-determined linear systems. Our main contribution is developing a double-optimization-based iterative algorithm in a varying affine Krylov subspace for effectively and accurately solving least-squares problems, even for a dense and ill-conditioned matrix A with q≪n or q≫n.
Audience Academic
Author Chang, Chih-Wen
Kuo, Chung-Lun
Liu, Chein-Shan
Author_xml – sequence: 1
  givenname: Chein-Shan
  orcidid: 0000-0001-6366-3539
  surname: Liu
  fullname: Liu, Chein-Shan
– sequence: 2
  givenname: Chung-Lun
  surname: Kuo
  fullname: Kuo, Chung-Lun
– sequence: 3
  givenname: Chih-Wen
  orcidid: 0000-0001-9846-0694
  surname: Chang
  fullname: Chang, Chih-Wen
BookMark eNplUcFuEzEQXaEi0RYO_IElThy2tdf2rn2M2gJVIwUphavl9dqJw8ZObW-k3vgCLvwhX8K0KRUC-TD2eN6befNOqqMQg62qtwSfUSrxuSYd5rgh5EV1TKSUNROSHv11f1Wd5LzBuOWyJcfVj2Uc9z6s0NzqXOrl3aSTzehziv1otxntvUYaXcYJnvViV_xWj2g2rmLyZb1FOgzw_VUnr0NB0aGytuhGpymvf33_eTOtA4TbyXyzCV0Bd_ExIBcTWuxtqi9tsWnrgx3Q8j4X6Pe6eun0mO2bp3hafflwdXvxqZ4vPl5fzOa1obIrtbODBUXUSNf0jeEtSO-EbVjrCHFSN0xTg5lrKCHcwE5o3_JeUMYpB2hDT6vrA-8Q9UbtEshK9ypqrx4TMa2UTsWb0SoGbYwRvGm7nlljNRdd1zEpBMOdZBi43h24dineTTYXtYlTCjC-opjLhpNOtFB1dqhaaSD1wcWStIEz2K03YKLzkJ91klNBRPsw4vkBYFLMOVmnjC-PCwSgHxXB6sFx9ew4IN7_g_gj7P_a331FrhQ
CitedBy_id crossref_primary_10_3390_a17060266
crossref_primary_10_3390_math12111761
crossref_primary_10_4018_IJSIR_370390
Cites_doi 10.6028/jres.049.006
10.1016/j.laa.2020.09.006
10.6028/jres.049.044
10.1137/0913035
10.1016/S0377-0427(00)00412-X
10.1016/j.cam.2008.10.008
10.1016/j.apnum.2020.06.014
10.1016/j.aml.2011.09.051
10.1016/j.aml.2021.107057
10.1016/j.cam.2010.08.042
10.1080/17415977.2014.880905
10.1137/1.9781611971484
10.1016/j.cam.2022.114954
10.1090/S0025-5718-1981-0616364-6
10.1016/j.cam.2013.10.013
10.2298/FIL1307269S
10.1137/0910004
10.1007/BF01436075
10.1016/j.aml.2023.108780
10.1016/j.jocs.2023.102029
10.1016/j.enganabound.2014.04.017
10.1016/j.jmaa.2023.127631
10.1137/100787921
10.1016/j.compchemeng.2024.108654
10.1007/BF01385726
10.1016/j.camwa.2014.04.011
10.1109/MCISE.2000.814652
10.1002/nla.499
10.1016/j.cam.2014.01.034
10.1137/0712047
10.1016/j.automatica.2021.110095
10.1016/j.aml.2021.107689
10.1007/s11075-023-01691-x
10.1016/j.jocs.2020.101092
10.1007/BFb0080116
10.1137/0907058
10.1137/S0895479802403459
10.1016/j.enganabound.2014.01.011
10.1137/1.9780898718003
10.1007/BF02163027
10.1162/NECO_a_00549
10.1017/CBO9780511615115
10.1007/s10543-024-01015-y
10.1016/j.enganabound.2015.09.003
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/a17050211
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_493ccc85267b4ecea587774988407940
A795381862
10_3390_a17050211
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c397t-fede1993c9f2b2c5639078e246f11f9a24a3c04f23115ca173b65b834535ede23
IEDL.DBID M7S
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001232451600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4893
IngestDate Fri Oct 03 12:46:20 EDT 2025
Fri Jul 25 11:54:16 EDT 2025
Tue Nov 04 18:24:19 EST 2025
Tue Nov 18 22:26:27 EST 2025
Sat Nov 29 07:17:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-fede1993c9f2b2c5639078e246f11f9a24a3c04f23115ca173b65b834535ede23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6366-3539
0000-0001-9846-0694
OpenAccessLink https://www.proquest.com/docview/3059251786?pq-origsite=%requestingapplication%
PQID 3059251786
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_493ccc85267b4ecea587774988407940
proquest_journals_3059251786
gale_infotracacademiconefile_A795381862
crossref_citationtrail_10_3390_a17050211
crossref_primary_10_3390_a17050211
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_41) 2015; 23
Lipitakis (ref_26) 2020; 41
Simoncini (ref_3) 2007; 14
Saad (ref_5) 1981; 37
Sleijpen (ref_7) 2004; 26
Golub (ref_37) 1970; 14
Petkovic (ref_20) 2014; 267
Bojanczyk (ref_28) 2021; 623
Niu (ref_27) 2021; 116
ref_11
Sonneveld (ref_12) 1989; 10
Petkovic (ref_19) 2011; 235
Du (ref_29) 2022; 124
Saad (ref_14) 2000; 123
Stanimirovic (ref_22) 2012; 25
Liu (ref_40) 2014; 44
Contino (ref_36) 2024; 530
Saad (ref_4) 1986; 7
Paige (ref_10) 1975; 12
ref_16
ref_38
ref_15
Kuo (ref_33) 2023; 424
Liu (ref_42) 2014; 67
Abbasi (ref_44) 2024; 64
Zhang (ref_31) 2023; 446
(ref_13) 1992; 13
Liu (ref_1) 2013; 33
Jin (ref_34) 2023; 70
Sheng (ref_23) 2013; 27
Pes (ref_32) 2023; 145
Hestenes (ref_8) 1952; 49
Feng (ref_46) 2014; 41
Jahvani (ref_35) 2024; 185
ref_43
Liu (ref_39) 2014; 260
Xia (ref_45) 2014; 26
Choi (ref_18) 2011; 33
Katsikis (ref_21) 2011; 217
Zhang (ref_25) 2020; 157
Toutounian (ref_24) 2009; 228
Liu (ref_47) 2016; 62
Chakrabarti (ref_30) 2022; 137
Lanczos (ref_9) 1952; 49
Golub (ref_17) 1965; 7
Dongarra (ref_2) 2000; 2
Freund (ref_6) 1991; 60
References_xml – volume: 49
  start-page: 33
  year: 1952
  ident: ref_9
  article-title: Solution of systems of linear equations by minimized iterations
  publication-title: J. Res. Nat. Bur. Stand.
  doi: 10.6028/jres.049.006
– volume: 623
  start-page: 104
  year: 2021
  ident: ref_28
  article-title: Algorithms for indefinite linear least squares problems
  publication-title: Linear Algebra Appli.
  doi: 10.1016/j.laa.2020.09.006
– volume: 49
  start-page: 409
  year: 1952
  ident: ref_8
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. Nat. Bur. Stand.
  doi: 10.6028/jres.049.044
– volume: 13
  start-page: 631
  year: 1992
  ident: ref_13
  article-title: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0913035
– volume: 123
  start-page: 1
  year: 2000
  ident: ref_14
  article-title: Iterative solution of linear systems in the 20th century
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00412-X
– volume: 228
  start-page: 412
  year: 2009
  ident: ref_24
  article-title: A new method for computing Moore-Penrose inverse matrices
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.10.008
– volume: 157
  start-page: 372
  year: 2020
  ident: ref_25
  article-title: On relaxed greedy randomized coordinate descent methods for solving large linear least-squares problems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2020.06.014
– volume: 25
  start-page: 526
  year: 2012
  ident: ref_22
  article-title: Computation of generalized inverse by using the LDL* decomposition
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.09.051
– volume: 116
  start-page: 107057
  year: 2021
  ident: ref_27
  article-title: A new randomized Gauss–Seidel method for solving linear least-squares problems
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2021.107057
– volume: 235
  start-page: 1604
  year: 2011
  ident: ref_19
  article-title: Iterative method for computing Moore-Penrose inverse based on Penrose equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.08.042
– volume: 23
  start-page: 38
  year: 2015
  ident: ref_41
  article-title: A double optimal descent algorithm for iteratively solving ill-posed linear inverse problems
  publication-title: Inv. Prob. Sci. Eng.
  doi: 10.1080/17415977.2014.880905
– ident: ref_38
  doi: 10.1137/1.9781611971484
– volume: 424
  start-page: 114954
  year: 2023
  ident: ref_33
  article-title: An index search method based inner-outer iterative algorithm for solving nonnegative least squares problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2022.114954
– volume: 37
  start-page: 105
  year: 1981
  ident: ref_5
  article-title: Krylov subspace methods for solving large unsymmetric linear systems
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1981-0616364-6
– volume: 260
  start-page: 375
  year: 2014
  ident: ref_39
  article-title: A doubly optimized solution of linear equations system expressed in an affine Krylov subspace
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.10.013
– volume: 27
  start-page: 1269
  year: 2013
  ident: ref_23
  article-title: An iterative method to compute Moore-Penrose inverse based on gradient maximal convergence rate
  publication-title: Filomat
  doi: 10.2298/FIL1307269S
– volume: 10
  start-page: 36
  year: 1989
  ident: ref_12
  article-title: CGS: A fast Lanczos-type solver for nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0910004
– volume: 7
  start-page: 206
  year: 1965
  ident: ref_17
  article-title: Numerical methods for solving linear least squares problems
  publication-title: Numer. Math.
  doi: 10.1007/BF01436075
– volume: 446
  start-page: 127892
  year: 2023
  ident: ref_31
  article-title: Splitting-based randomized iterative methods for solving indefinite least squares problem
  publication-title: Appl. Math. Comput.
– volume: 145
  start-page: 108780
  year: 2023
  ident: ref_32
  article-title: A projection method for general form linear least-squares problems
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2023.108780
– volume: 70
  start-page: 102029
  year: 2023
  ident: ref_34
  article-title: Greedy double subspaces coordinate descent method for solving linear least-squares problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2023.102029
– volume: 44
  start-page: 64
  year: 2014
  ident: ref_40
  article-title: Optimal algorithms in a Krylov subspace for solving linear inverse problems by MFS
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2014.04.017
– volume: 530
  start-page: 127631
  year: 2024
  ident: ref_36
  article-title: Matrix representations of multivalued projections and least squares problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2023.127631
– volume: 33
  start-page: 1810
  year: 2011
  ident: ref_18
  article-title: MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/100787921
– volume: 185
  start-page: 108654
  year: 2024
  ident: ref_35
  article-title: Solving least-squares problems in directed networks: A distributed approach
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2024.108654
– volume: 60
  start-page: 315
  year: 1991
  ident: ref_6
  article-title: QMR: A quasi-minimal residual method for non-Hermitian linear systems
  publication-title: Numer. Math.
  doi: 10.1007/BF01385726
– volume: 67
  start-page: 1998
  year: 2014
  ident: ref_42
  article-title: A maximal projection solution of ill-posed linear system in a column subspace, better than the least squares solution
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2014.04.011
– volume: 2
  start-page: 22
  year: 2000
  ident: ref_2
  article-title: Guest editors’ introduction to the top 10 algorithms
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCISE.2000.814652
– volume: 33
  start-page: 175
  year: 2013
  ident: ref_1
  article-title: An optimal multi-vector iterative algorithm in a Krylov subspace for solving the ill-posed linear inverse problems
  publication-title: Comput. Mater. Contin.
– volume: 14
  start-page: 1
  year: 2007
  ident: ref_3
  article-title: Recent computational developments in Krylov subspace methods for linear systems
  publication-title: Numer. Linear Alg. Appl.
  doi: 10.1002/nla.499
– volume: 267
  start-page: 61
  year: 2014
  ident: ref_20
  article-title: Two improvements of the iterative method for computing Moore-Penrose inverse based on Penrose equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.01.034
– volume: 12
  start-page: 617
  year: 1975
  ident: ref_10
  article-title: Solution of sparse indefinite systems of linear equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0712047
– volume: 217
  start-page: 9828
  year: 2011
  ident: ref_21
  article-title: An improved method for the computation of the Moore-Penrose inverse matrix
  publication-title: Appl. Math. Comput.
– volume: 137
  start-page: 110095
  year: 2022
  ident: ref_30
  article-title: Iterative pre-conditioning for expediting the distributed gradient-descent method: The case of linear least-squares problem
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.110095
– volume: 124
  start-page: 107689
  year: 2022
  ident: ref_29
  article-title: On the convergence of a randomized block coordinate descent algorithm for a matrix least squares problem
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2021.107689
– ident: ref_43
  doi: 10.1007/s11075-023-01691-x
– volume: 41
  start-page: 101092
  year: 2020
  ident: ref_26
  article-title: A note on parallel approximate pseudoinverse matrix techniques for solving linear least squares problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2020.101092
– ident: ref_11
  doi: 10.1007/BFb0080116
– volume: 7
  start-page: 856
  year: 1986
  ident: ref_4
  article-title: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907058
– volume: 26
  start-page: 125
  year: 2004
  ident: ref_7
  article-title: Inexact Krylov subspace methods for linear systems
  publication-title: SIAM J. Matrix Ana. Appl.
  doi: 10.1137/S0895479802403459
– volume: 41
  start-page: 98
  year: 2014
  ident: ref_46
  article-title: On the ill-conditioning of the MFS for irregular boundary data with sufficient regularity
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2014.01.011
– ident: ref_15
  doi: 10.1137/1.9780898718003
– volume: 14
  start-page: 403
  year: 1970
  ident: ref_37
  article-title: Singular value decomposition and least squares solutions
  publication-title: Numer. Math.
  doi: 10.1007/BF02163027
– volume: 26
  start-page: 449
  year: 2014
  ident: ref_45
  article-title: A novel iterative method for computing generalized inverse
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00549
– ident: ref_16
  doi: 10.1017/CBO9780511615115
– volume: 64
  start-page: 15
  year: 2024
  ident: ref_44
  article-title: Bounded perturbations resilient iterative methods for linear systems and least squares problems: Operator-based approaches, analysis, and performance evaluation
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-024-01015-y
– volume: 62
  start-page: 35
  year: 2016
  ident: ref_47
  article-title: A multiple-scale Pascal polynomial triangle solving elliptic equations and inverse Cauchy problems
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2015.09.003
SSID ssj0065961
Score 2.3231292
Snippet A double optimal solution (DOS) of a least-squares problem Ax=b,A∈Rq×n with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS); two...
A double optimal solution (DOS) of a least-squares problem Ax=b, A∈R[sup.q×n] with q≠n is derived in an m+1-dimensional varying affine Krylov subspace (VAKS);...
A double optimal solution (DOS) of a least-squares problem A x = b , A ∈ R q×n with q≠n is derived in an m+1 -dimensional varying affine Krylov subspace...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 211
SubjectTerms absolute convergence
Algorithms
double optimal algorithm
Gaussian elimination
Iterative algorithms
Iterative methods
Least squares method
linear least-squares problems
Linear systems
Matrices (mathematics)
Methods
minimal-norm solution
Numerical analysis
Optimization
Optimization techniques
residual orthogonality
Subspaces
Thermal expansion
varying affine Krylov subspace
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELb8SWgiyEBBeriV-Jj6UPIbVqKxWq3izbsdmVtlm6j575BVz4h_wSZmLvCiQQF055OZEzM575Jpp8Q8gbDVFLi65lydeCSXCSzDVdZI2JYCCdV9XQDObypDk9ba-uzPkvrb6wJizTA2fB7UojQgit4rrxMoboFDLYSdNCZgK2NGTrsLNOprIP1sroOvMICUjqdx2SxkA0q3-LPgNJ_99c8RBfjh6S-wUY0r08oUfkTuwfkwfrpgu0rMEn5NvFbIofAegJdt1hFzcr_IOInufGMAt6O3HUUcDFcMjOwCFc41Onn2fzyXJ8TV3fweVLyJBBpHSWKABAeuzmq8X4x9fvx6txD5tcbEEPbzIPOAVgS8_A5tlBKZ6JHS1U50_Jp6PDj_sfWGmqwAJAjyVLsYtYtBdM4p4HBQgFUELkUqe6TsZx6USoZOJIwxNAcMJr5VshlVBwKxfPyFY_6-NzQkVVxVR57gGSSFd3pnaGK9603stWpWpE3q2FbUNhHMfGF1MLmQfqxW70MiKvN0O_ZJqNPw16jxrbDEBm7OEE2Ist9mL_ZS8j8hb1bXH9wmSCK78hwCshE5bda4xCFKP5iOysTcKWhb2w4B4Nsry1evt_zOYFuccBJeUKyh2ytZyv4ktyN9wuJ4v5q8GmfwKXHftN
  priority: 102
  providerName: Directory of Open Access Journals
Title Solving Least-Squares Problems via a Double-Optimal Algorithm and a Variant of the Karush–Kuhn–Tucker Equation for Over-Determined Systems
URI https://www.proquest.com/docview/3059251786
https://doaj.org/article/493ccc85267b4ecea587774988407940
Volume 17
WOSCitedRecordID wos001232451600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: K7-
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M7S
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZg44EXxlUrjMpCSPBiLfEllye0QSdQRxdRmMZTZDvOOqlL1qbdI-IX8MI_5JdwTuIUIQEvvKRq7CZOzvHnz-7xdwh5HsGoFYkiYaUJBZMAkkzHhWNx6sBBCqOCNhnM6XE8mSRnZ2nmF9waH1bZY2IL1EVtcY18H_wyRXmtJHp1tWCYNQr_XfUpNG6SbVRJCNvQvWmPxJFKo7BTExIwtd_XKB0DY1r42xjUSvX_DZDbUeZo53_bd5fc8fySHnQOcY_ccNV9stPnbqC-Kz8g36b1HNcS6DEm72HTxRo3ItGsyy_T0OsLTTUFeg1f2QngyiVedX4Ot1zNLqmuCig-hYk2WIbWJQUeScd6uW5mP75-H69nFXx0MRt0tOjkxCnwY3oCXYe98TE4rqBeMf0h-XQ0-vj6LfO5GZgFBrNipSscxv7ZtOSGWwVEB8iG4zIqw7BMNZda2ECWHNV8LLx5YSJlEiGVUPBTLh6Rraqu3C6hIghcGRhugNlIHRZpqOFN8jgxRiaqDAbkZW-t3HrhcsyfMc9hAoOGzTeGHZBnm6pXnVrHnyodosk3FVBguz1RL89z319zCY9mbaJ4FBvprNMKhRNlmsCEGCAMGvUCHSZHGIDGWO13M8AjoaBWfhCnCslQxAdkr3eY3ONDk__ylsf_Ln5CbnOgUV2I5R7ZWi3X7im5Za9XF81ySLYPR5Psw7BdSYDjOGbDtgvg8csIyrN377PPPwED-xDr
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqFgk2lKcYKGAhEGysJo6dxwKhQlu1yjCt1FJ159qO06k0TTqTTCt2fAEb_oOP4ku4N49BSMCuC1ajTJwoTo7PvU6uzyHkZQhRKwyymOXGD5gAkmQ6yhyLEgcAyYz0GjOYo2E0GsXHx8n-Evner4XBssqeExuizkqL78jXAZcJymvF4buLKUPXKPy62ltotLBI3ecrmLJVb3c34fm-4nx76_DDDutcBZiF2Fuz3GUOq9ZsknPDrYQQDWHScRHmvp8nmgsdWE_kHHVorPajwITSxIGQgYRDUegAKH9FBHGE4yqNWM_8oUxCv1UvCuCk6xqlaiCG-r_FvMYa4G8BoIlq26v_2_24Q253-TPdaAF_lyy54h5Z7b0paEdV98nXg3KC70roEM2J2MF0jgut6H7rn1PRyzNNNYXpA2yyPeDNczzr5BS6WI_PqS4y2H2kYXgWNS1zCnkyTfVsXo1_fPmWzscF_LQ1KXRr2sqlU8j_6R5QA9vsaoxcRjtF-Afk07XclYdkuSgL94jQwPNc7hluIHMT2s8SX8OT41FsjIhl7g3Imx4dynbC7OgPMlEwQUMgqQWQBuTFoulFq0byp0bvEWKLBigg3vxRzk5Vx0dKQNesjSUPIyOcdVqiMKRIYpjwA0XDRb1GgCqkObgYq7vVGtAlFAxTG1EiMdkL-YCs9QBVHf9V6hc6H_9793Nyc-fw41ANd0fpE3KLQ8rYlpOukeV6NndPyQ17WZ9Vs2fNUKPk5Lqx_BN7EGXq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VKUJcKL8iUGCFQHBZxV6v_w4VKqQRUUIaqVCV03a9XjeVUruJnVbceAIuvA2Pw5MwY6-DkIBbD5ws22tr1_72mxl79htCngdgtQIvjViWuB4TQJJMhalhYWwAIGniO3UxmMNxOJlER0fxdIN8b9fCYFply4k1UaeFxm_kPcBljPJaUdDLbFrEtD94fb5gWEEK_7S25TQaiIzM50sI38qdYR_e9QvOB3sf3r5jtsIA02CHK5aZ1GAGm44znnDtg7kGk2m4CDLXzWLFhfK0IzKOmjRauaGXBH4SecL3fLgURQ-A_jfBJRe8Qzanw_fTT60dCPw4cBstIw9u21MoXAMW1f3NAtaFAv5mDmobN9j6n5_OLXLTetZ0t5kKt8mGye-QrbZqBbUkdpd8PSjm-BWFjrFsETtYrHAJFp02lXVKenGqqKIQWMAu2wdGPcO7zk9giNXsjKo8hdOHCiZuXtEio-BB05FarsrZjy_fRqtZDpsmW4XuLRohdQqRAd0H0mB9m31kUmq14u-Rj1fyVO6TTl7k5gGhnuOYzEl4Aj6dUG4auwreIg-jJBGRnzld8qpFitRWsh0rh8wlhG4IKrkGVZc8Wzc9b3RK_tToDcJt3QClxesDxfJEWqaSAoamdeTzIEyE0Ub5KBkp4iiC2D8W0KmXCFaJBAid0cqu44AhoZSY3A1jH93AgHfJdgtWaZmxlL-Q-vDfp5-S6wBhOR5ORo_IDQ6-ZJNnuk061XJlHpNr-qI6LZdP7Lyj5PiqwfwTZFtwaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Least-Squares+Problems+via+a+Double-Optimal+Algorithm+and+a+Variant+of+the+Karush%E2%80%93Kuhn%E2%80%93Tucker+Equation+for+Over-Determined+Systems&rft.jtitle=Algorithms&rft.au=Liu%2C+Chein-Shan&rft.au=Kuo%2C+Chung-Lun&rft.au=Chang%2C+Chih-Wen&rft.date=2024-05-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=17&rft.issue=5&rft.spage=211&rft_id=info:doi/10.3390%2Fa17050211&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a17050211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon