High-order tensor completion via gradient-based optimization under tensor train format
Tensor train (TT) decomposition has drawn people’s attention due to its powerful representation ability and performance stability in high-order tensors. In this paper, we propose a novel approach to recover the missing entries of incomplete data represented by higher-order tensors. We attempt to fin...
Saved in:
| Published in: | Signal processing. Image communication Vol. 73; pp. 53 - 61 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.04.2019
Elsevier BV |
| Subjects: | |
| ISSN: | 0923-5965, 1879-2677 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Tensor train (TT) decomposition has drawn people’s attention due to its powerful representation ability and performance stability in high-order tensors. In this paper, we propose a novel approach to recover the missing entries of incomplete data represented by higher-order tensors. We attempt to find the low-rank TT decomposition of the incomplete data which captures the latent features of the whole data and then reconstruct the missing entries. By applying gradient descent algorithms, tensor completion problem is efficiently solved by optimization models. We propose two TT-based algorithms: Tensor Train Weighted Optimization (TT-WOPT) and Tensor Train Stochastic Gradient Descent (TT-SGD) to optimize TT decomposition factors. In addition, a method named Visual Data Tensorization (VDT) is proposed to transform visual data into higher-order tensors, resulting in the performance improvement of our algorithms. The experiments in synthetic data and visual data show high efficiency and performance of our algorithms compared to the state-of-the-art completion algorithms, especially in high-order, high missing rate, and large-scale tensor completion situations.
•By employing tensor-train (TT) decomposition, we propose a gradientbased tensor completion algorithm named TT-WOPT which is of low computational complexity and shows high computational efficiency.•Based on stochastic gradient descent method, we propose the TT-SGD algorithm which possesses extremely low computational complexity in every iteration and can be applied to solving large-scale tensor completion problems.•We propose a higher-order tensorization method named VDT which transforms visual data into higher-order tensors. By applying the VDT method, the performance of TT-WOPT and TT-SGD are improved. |
|---|---|
| AbstractList | Tensor train (TT) decomposition has drawn people’s attention due to its powerful representation ability and performance stability in high-order tensors. In this paper, we propose a novel approach to recover the missing entries of incomplete data represented by higher-order tensors. We attempt to find the low-rank TT decomposition of the incomplete data which captures the latent features of the whole data and then reconstruct the missing entries. By applying gradient descent algorithms, tensor completion problem is efficiently solved by optimization models. We propose two TT-based algorithms: Tensor Train Weighted Optimization (TT-WOPT) and Tensor Train Stochastic Gradient Descent (TT-SGD) to optimize TT decomposition factors. In addition, a method named Visual Data Tensorization (VDT) is proposed to transform visual data into higher-order tensors, resulting in the performance improvement of our algorithms. The experiments in synthetic data and visual data show high efficiency and performance of our algorithms compared to the state-of-the-art completion algorithms, especially in high-order, high missing rate, and large-scale tensor completion situations. Tensor train (TT) decomposition has drawn people’s attention due to its powerful representation ability and performance stability in high-order tensors. In this paper, we propose a novel approach to recover the missing entries of incomplete data represented by higher-order tensors. We attempt to find the low-rank TT decomposition of the incomplete data which captures the latent features of the whole data and then reconstruct the missing entries. By applying gradient descent algorithms, tensor completion problem is efficiently solved by optimization models. We propose two TT-based algorithms: Tensor Train Weighted Optimization (TT-WOPT) and Tensor Train Stochastic Gradient Descent (TT-SGD) to optimize TT decomposition factors. In addition, a method named Visual Data Tensorization (VDT) is proposed to transform visual data into higher-order tensors, resulting in the performance improvement of our algorithms. The experiments in synthetic data and visual data show high efficiency and performance of our algorithms compared to the state-of-the-art completion algorithms, especially in high-order, high missing rate, and large-scale tensor completion situations. •By employing tensor-train (TT) decomposition, we propose a gradientbased tensor completion algorithm named TT-WOPT which is of low computational complexity and shows high computational efficiency.•Based on stochastic gradient descent method, we propose the TT-SGD algorithm which possesses extremely low computational complexity in every iteration and can be applied to solving large-scale tensor completion problems.•We propose a higher-order tensorization method named VDT which transforms visual data into higher-order tensors. By applying the VDT method, the performance of TT-WOPT and TT-SGD are improved. |
| Author | Yuan, Longhao Gui, Lihua Zhao, Qibin Cao, Jianting |
| Author_xml | – sequence: 1 givenname: Longhao orcidid: 0000-0002-0869-8445 surname: Yuan fullname: Yuan, Longhao organization: Graduate School of Engineering, Saitama Institute of Technology, Japan – sequence: 2 givenname: Qibin orcidid: 0000-0002-4442-3182 surname: Zhao fullname: Zhao, Qibin email: qibin.zhao@riken.jp organization: Tensor Learning Unit, RIKEN Center for Advanced Intelligence Project (AIP), Japan – sequence: 3 givenname: Lihua surname: Gui fullname: Gui, Lihua organization: Graduate School of Engineering, Saitama Institute of Technology, Japan – sequence: 4 givenname: Jianting surname: Cao fullname: Cao, Jianting email: cao@sit.ac.jp organization: Graduate School of Engineering, Saitama Institute of Technology, Japan |
| BookMark | eNqFkD1PwzAQhi1UJNrCL2CJxJxwdmqnHhhQBRSpEguwWq59Ka6aONhuJfj1pC0DYoDphnuf-3hGZND6Fgm5pFBQoOJ6XbhGr7BgQKcFpQVQdkKGdFrJnImqGpAhSFbmXAp-RkYxrgGATUAOyevcrd5yHyyGLGEbfciMb7oNJufbbOd0tgraOmxTvtQRbea75Br3qQ_9bfuDS0G7Nqt9aHQ6J6e13kS8-K5j8nJ_9zyb54unh8fZ7SI3paxSXmsusbZCTjivOVZGLmUt2BJKbUuwFrQQojICDKNYT7kQhlsDegqcgcSyHJOr49wu-PctxqTWfhvafqVijLIKyn5yn5LHlAk-xoC1Mi4dPtjfvFEU1F6jWquDRrXXqChVvcaeLX-xXehT4eMf6uZIYf_8zmFQ0fQSDVoX0CRlvfuT_wKBypBt |
| CitedBy_id | crossref_primary_10_1109_TIT_2024_3360951 crossref_primary_10_1016_j_image_2021_116276 crossref_primary_10_1016_j_sigpro_2025_110191 crossref_primary_10_1002_nla_2289 crossref_primary_10_1007_s11431_020_1851_5 crossref_primary_10_1109_TSP_2021_3085116 crossref_primary_10_1016_j_sigpro_2021_108425 crossref_primary_10_1016_j_sigpro_2022_108888 crossref_primary_10_1109_TIP_2021_3062195 crossref_primary_10_3389_feart_2022_1022874 crossref_primary_10_1109_JSTSP_2021_3051503 crossref_primary_10_1109_TCYB_2021_3108847 crossref_primary_10_1155_2022_7410364 crossref_primary_10_1007_s10444_024_10119_6 crossref_primary_10_1088_2632_2153_abad87 crossref_primary_10_3390_e26020105 crossref_primary_10_1007_s10915_023_02404_1 crossref_primary_10_3389_fdata_2024_1382144 crossref_primary_10_1109_TNNLS_2022_3181378 crossref_primary_10_1109_JIOT_2019_2960293 crossref_primary_10_1109_TCSVT_2021_3067022 crossref_primary_10_1109_TNSE_2022_3168615 crossref_primary_10_1109_LSP_2020_2990313 crossref_primary_10_1016_j_compbiomed_2023_106887 crossref_primary_10_1109_LSP_2025_3597829 crossref_primary_10_1109_TNNLS_2023_3236415 crossref_primary_10_1109_TIP_2021_3138325 crossref_primary_10_1007_s10092_024_00582_4 crossref_primary_10_1007_s10915_024_02670_7 crossref_primary_10_3389_frai_2021_687176 crossref_primary_10_1016_j_neucom_2025_130820 crossref_primary_10_1145_3278607 crossref_primary_10_3390_jmse9111245 crossref_primary_10_1016_j_neucom_2025_130889 |
| Cites_doi | 10.1145/192115.192132 10.1007/s11045-013-0269-9 10.1109/JSTSP.2015.2509907 10.1051/proc/201448001 10.1109/10.2119 10.1007/BF02289464 10.1016/j.sigpro.2004.11.029 10.1137/S0895479898346995 10.2172/989350 10.1109/TSP.2007.908929 10.1137/120868323 10.1109/TPAMI.2015.2392756 10.1109/TIP.2017.2672439 10.1137/07070111X 10.1016/j.chemolab.2010.08.004 10.1109/TPAMI.2012.39 10.1561/2200000059 10.1137/090752286 10.1109/TGRS.2013.2284280 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Apr 2019 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Apr 2019 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.image.2018.11.012 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1879-2677 |
| EndPage | 61 |
| ExternalDocumentID | 10_1016_j_image_2018_11_012 S0923596518311081 |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AGCQF JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c397t-fa59efd69455f5e7c9b9f62b03ad30dd0a6667c60c21ef8566c5dc0a805209e33 |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463307000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0923-5965 |
| IngestDate | Wed Aug 13 11:21:47 EDT 2025 Sat Nov 29 07:17:49 EST 2025 Tue Nov 18 21:38:59 EST 2025 Fri Feb 23 02:28:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Tensor completion Visual data recovery Higher-order tensorization Gradient-based optimization Tensor train decomposition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c397t-fa59efd69455f5e7c9b9f62b03ad30dd0a6667c60c21ef8566c5dc0a805209e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0869-8445 0000-0002-4442-3182 |
| PQID | 2212703455 |
| PQPubID | 2045400 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2212703455 crossref_citationtrail_10_1016_j_image_2018_11_012 crossref_primary_10_1016_j_image_2018_11_012 elsevier_sciencedirect_doi_10_1016_j_image_2018_11_012 |
| PublicationCentury | 2000 |
| PublicationDate | April 2019 2019-04-00 20190401 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Signal processing. Image communication |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Khoromskij (b38) 2015; 48 Maehara, Hayashi, Kawarabayashi (b31) 2016 De Lathauwer, De Moor, Vandewalle (b14) 2000; 21 Mocks (b9) 1988; 35 Wang, Aggarwal, Aeron (b25) 2017; 1 Moré, Thuente (b34) 1994; 20 Wright, Nocedal (b33) 1999; 35 Shashua, Hazan (b1) 2005 S. Ruder, An overview of gradient descent optimization algorithms. arXiv preprint Gemulla, Nijkamp, Haas, Sismanis (b30) 2011 D. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv preprint Kolda, Bader (b2) 2009; 51 Liu, Long, Zhu (b28) 2018 Bengua, Phien, Tuan, Do (b19) 2017; 26 Yang, Krompass, Tresp (b20) 2017 Q. Zhao, M. Sugiyama, A. Cichocki, Learning Efficient Tensor Representations with Ring Structure Networks. arXiv preprint Sorber, Van Barel, De Lathauwer (b11) 2013; 23 Tucker (b13) 1966; 31 Zhang, He, Zhang, Shen, Yuan (b40) 2014; 52 Vasilescu, Terzopoulos (b3) 2003 Liu, Musialski, Wonka, Ye (b16) 2013; 35 De Lathauwer, Castaing (b7) 2008; 56 Q. Zhao, G. Zhou, S. Xie, L. Zhang, A. Cichocki, Tensor ring decomposition. arXiv preprint Acar, Dunlavy, Kolda, Mørup (b5) 2011; 106 Muti, Bourennane (b8) 2005; 85 L. Yuan, J. Cao, Q. Wu, Q. Zhao, Higher-dimension Tensor Completion via Low-rank Tensor Ring Decomposition. arXiv preprint Wang, Anandkumar (b32) 2016 Tsai, Saxe, Cox (b15) 2016 Shashua, Levin (b10) 2001 Oseledets (b18) 2011; 33 W. Wang, V. Aggarwal, S. Aeron, Tensor completion by alternating minimization under the tensor train (TT) model. arXiv preprint Goulart, Boizard, Boyer, Favier, Comon (b12) 2016; 10 Franz, Schultz, Sizov, Staab (b4) 2009 . J.I. Latorre, Image compression and entanglement. arXiv preprint quant-ph/0510031. Zhao, Zhang, Cichocki (b6) 2015; 37 Filipović, Jukić (b17) 2015; 26 Yuan, Zhao, Cao (b22) 2017 L. Yuan, C. Li, D. Mandic, J. Cao, Q. Zhao, Tensor Ring Decomposition with Rank Minimization on Latent Space: An Efficient Approach for Tensor Completion. arXiv preprint Cichocki, Lee, Oseledets, Phan, Zhao, Mandic (b29) 2016; 9 D.M. Dunlavy, T.G. Kolda, E. Acar, Poblano v1. 0: A matlab toolbox for gradient-based optimization, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, Tech. Rep. SAND2010-1422. Sorber (10.1016/j.image.2018.11.012_b11) 2013; 23 Muti (10.1016/j.image.2018.11.012_b8) 2005; 85 Yuan (10.1016/j.image.2018.11.012_b22) 2017 Oseledets (10.1016/j.image.2018.11.012_b18) 2011; 33 De Lathauwer (10.1016/j.image.2018.11.012_b14) 2000; 21 Shashua (10.1016/j.image.2018.11.012_b1) 2005 Shashua (10.1016/j.image.2018.11.012_b10) 2001 Gemulla (10.1016/j.image.2018.11.012_b30) 2011 Bengua (10.1016/j.image.2018.11.012_b19) 2017; 26 Cichocki (10.1016/j.image.2018.11.012_b29) 2016; 9 Liu (10.1016/j.image.2018.11.012_b16) 2013; 35 10.1016/j.image.2018.11.012_b39 Kolda (10.1016/j.image.2018.11.012_b2) 2009; 51 Moré (10.1016/j.image.2018.11.012_b34) 1994; 20 10.1016/j.image.2018.11.012_b37 Zhao (10.1016/j.image.2018.11.012_b6) 2015; 37 10.1016/j.image.2018.11.012_b24 Wright (10.1016/j.image.2018.11.012_b33) 1999; 35 10.1016/j.image.2018.11.012_b23 Yang (10.1016/j.image.2018.11.012_b20) 2017 10.1016/j.image.2018.11.012_b21 Wang (10.1016/j.image.2018.11.012_b25) 2017; 1 Filipović (10.1016/j.image.2018.11.012_b17) 2015; 26 Liu (10.1016/j.image.2018.11.012_b28) 2018 Maehara (10.1016/j.image.2018.11.012_b31) 2016 Acar (10.1016/j.image.2018.11.012_b5) 2011; 106 Wang (10.1016/j.image.2018.11.012_b32) 2016 Zhang (10.1016/j.image.2018.11.012_b40) 2014; 52 Tucker (10.1016/j.image.2018.11.012_b13) 1966; 31 Tsai (10.1016/j.image.2018.11.012_b15) 2016 De Lathauwer (10.1016/j.image.2018.11.012_b7) 2008; 56 Khoromskij (10.1016/j.image.2018.11.012_b38) 2015; 48 Vasilescu (10.1016/j.image.2018.11.012_b3) 2003 10.1016/j.image.2018.11.012_b27 Mocks (10.1016/j.image.2018.11.012_b9) 1988; 35 10.1016/j.image.2018.11.012_b26 10.1016/j.image.2018.11.012_b36 10.1016/j.image.2018.11.012_b35 Franz (10.1016/j.image.2018.11.012_b4) 2009 Goulart (10.1016/j.image.2018.11.012_b12) 2016; 10 |
| References_xml | – start-page: 792 year: 2005 end-page: 799 ident: b1 article-title: Non-negative tensor factorization with applications to statistics and computer vision publication-title: Proceedings of the 22nd International Conference on Machine Learning – reference: J.I. Latorre, Image compression and entanglement. arXiv preprint quant-ph/0510031. – volume: 23 start-page: 695 year: 2013 end-page: 720 ident: b11 article-title: Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-(L_r,L_r,1) terms, and a new generalization publication-title: SIAM J. Optim. – reference: Q. Zhao, G. Zhou, S. Xie, L. Zhang, A. Cichocki, Tensor ring decomposition. arXiv preprint – reference: L. Yuan, C. Li, D. Mandic, J. Cao, Q. Zhao, Tensor Ring Decomposition with Rank Minimization on Latent Space: An Efficient Approach for Tensor Completion. arXiv preprint – volume: 26 start-page: 677 year: 2015 end-page: 692 ident: b17 article-title: Tucker factorization with missing data with application to low-n-rank tensor completion publication-title: Multidimens. Syst. Signal Process. – year: 2018 ident: b28 article-title: Image completion using low tensor tree rank and total variation minimization publication-title: IEEE Trans. Multimed. – volume: 85 start-page: 2338 year: 2005 end-page: 2353 ident: b8 article-title: Multidimensional filtering based on a tensor approach publication-title: Signal Process. – reference: D.M. Dunlavy, T.G. Kolda, E. Acar, Poblano v1. 0: A matlab toolbox for gradient-based optimization, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, Tech. Rep. SAND2010-1422. – volume: 35 start-page: 208 year: 2013 end-page: 220 ident: b16 article-title: Tensor completion for estimating missing values in visual data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 26 start-page: 2466 year: 2017 end-page: 2479 ident: b19 article-title: Efficient tensor completion for color image and video recovery: Low-rank tensor train publication-title: IEEE Trans. Image Process. – volume: 21 start-page: 1324 year: 2000 end-page: 1342 ident: b14 article-title: On the best rank-1 and rank-(r 1, r 2,..., rn) approximation of higher-order tensors publication-title: SIAM J. Matrix Anal. Appl. – start-page: 2038 year: 2016 end-page: 2046 ident: b15 article-title: Tensor switching networks publication-title: Advances in Neural Information Processing Systems – volume: 52 start-page: 4729 year: 2014 end-page: 4743 ident: b40 article-title: Hyperspectral image restoration using low-rank matrix recovery publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 3891 year: 2017 end-page: 3900 ident: b20 article-title: Tensor-Train Recurrent Neural Networks for Video Classification publication-title: International Conference on Machine Learning – volume: 106 start-page: 41 year: 2011 end-page: 56 ident: b5 article-title: Scalable tensor factorizations for incomplete data publication-title: Chemom. Intell. Lab. Syst. – year: 2001 ident: b10 article-title: Linear image coding for regression and classification using the tensor-rank principle publication-title: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, Vol. 1 – volume: 48 start-page: 1 year: 2015 end-page: 28 ident: b38 article-title: Tensor numerical methods for multidimensional PDES: theoretical analysis and initial applications publication-title: ESAIM: Proc. Surv. – start-page: 1919 year: 2016 end-page: 1925 ident: b31 article-title: Expected tensor decomposition with stochastic gradient descent publication-title: AAAI – volume: 20 start-page: 286 year: 1994 end-page: 307 ident: b34 article-title: Line search algorithms with guaranteed sufficient decrease publication-title: ACM Trans. Math. Softw. (TOMS) – reference: W. Wang, V. Aggarwal, S. Aeron, Tensor completion by alternating minimization under the tensor train (TT) model. arXiv preprint – volume: 31 start-page: 279 year: 1966 end-page: 311 ident: b13 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika – reference: D. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv preprint – volume: 33 start-page: 2295 year: 2011 end-page: 2317 ident: b18 article-title: Tensor-train decomposition publication-title: SIAM J. Sci. Comput. – volume: 35 start-page: 482 year: 1988 end-page: 484 ident: b9 article-title: Topographic components model for event-related potentials and some biophysical considerations publication-title: IEEE Trans. Biomed. Eng. – reference: Q. Zhao, M. Sugiyama, A. Cichocki, Learning Efficient Tensor Representations with Ring Structure Networks. arXiv preprint – volume: 1 start-page: 1 year: 2017 ident: b25 article-title: Efficient low rank tensor ring completion publication-title: Rn – reference: L. Yuan, J. Cao, Q. Wu, Q. Zhao, Higher-dimension Tensor Completion via Low-rank Tensor Ring Decomposition. arXiv preprint – start-page: 3531 year: 2016 end-page: 3539 ident: b32 article-title: Online and differentially-private tensor decomposition publication-title: Advances in Neural Information Processing Systems – volume: 56 start-page: 1096 year: 2008 end-page: 1105 ident: b7 article-title: Blind identification of underdetermined mixtures by simultaneous matrix diagonalization publication-title: IEEE Trans. Signal Process. – reference: . – volume: 9 start-page: 249 year: 2016 end-page: 429 ident: b29 article-title: Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions publication-title: Found. Trends – start-page: 213 year: 2009 end-page: 228 ident: b4 article-title: Triplerank: Ranking semantic web data by tensor decomposition publication-title: The Semantic Web-ISWC 2009 – reference: S. Ruder, An overview of gradient descent optimization algorithms. arXiv preprint – volume: 51 start-page: 455 year: 2009 end-page: 500 ident: b2 article-title: Tensor decompositions and applications publication-title: SIAM Rev. – start-page: II year: 2003 end-page: 93 ident: b3 article-title: Multilinear subspace analysis of image ensembles publication-title: Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, Vol. 2 – volume: 10 start-page: 757 year: 2016 end-page: 769 ident: b12 article-title: Tensor cp decomposition with structured factor matrices: Algorithms and Performance publication-title: IEEE J. Sel. Top. Sign. Proces. – volume: 37 start-page: 1751 year: 2015 end-page: 1763 ident: b6 article-title: Bayesian cp factorization of incomplete tensors with automatic rank determination publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 35 start-page: 7 year: 1999 ident: b33 article-title: Numerical optimization publication-title: Springer Sci. – start-page: 222 year: 2017 end-page: 229 ident: b22 article-title: Completion of high order tensor data with missing entries via tensor-train decomposition publication-title: International Conference on Neural Information Processing – start-page: 69 year: 2011 end-page: 77 ident: b30 article-title: Large-scale matrix factorization with distributed stochastic gradient descent publication-title: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – ident: 10.1016/j.image.2018.11.012_b36 – start-page: II year: 2003 ident: 10.1016/j.image.2018.11.012_b3 article-title: Multilinear subspace analysis of image ensembles – volume: 20 start-page: 286 issue: 3 year: 1994 ident: 10.1016/j.image.2018.11.012_b34 article-title: Line search algorithms with guaranteed sufficient decrease publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/192115.192132 – start-page: 1919 year: 2016 ident: 10.1016/j.image.2018.11.012_b31 article-title: Expected tensor decomposition with stochastic gradient descent – volume: 26 start-page: 677 issue: 3 year: 2015 ident: 10.1016/j.image.2018.11.012_b17 article-title: Tucker factorization with missing data with application to low-n-rank tensor completion publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-013-0269-9 – volume: 10 start-page: 757 issue: 4 year: 2016 ident: 10.1016/j.image.2018.11.012_b12 article-title: Tensor cp decomposition with structured factor matrices: Algorithms and Performance publication-title: IEEE J. Sel. Top. Sign. Proces. doi: 10.1109/JSTSP.2015.2509907 – volume: 48 start-page: 1 year: 2015 ident: 10.1016/j.image.2018.11.012_b38 article-title: Tensor numerical methods for multidimensional PDES: theoretical analysis and initial applications publication-title: ESAIM: Proc. Surv. doi: 10.1051/proc/201448001 – volume: 35 start-page: 482 issue: 6 year: 1988 ident: 10.1016/j.image.2018.11.012_b9 article-title: Topographic components model for event-related potentials and some biophysical considerations publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.2119 – volume: 31 start-page: 279 issue: 3 year: 1966 ident: 10.1016/j.image.2018.11.012_b13 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika doi: 10.1007/BF02289464 – start-page: 213 year: 2009 ident: 10.1016/j.image.2018.11.012_b4 article-title: Triplerank: Ranking semantic web data by tensor decomposition – volume: 85 start-page: 2338 issue: 12 year: 2005 ident: 10.1016/j.image.2018.11.012_b8 article-title: Multidimensional filtering based on a tensor approach publication-title: Signal Process. doi: 10.1016/j.sigpro.2004.11.029 – ident: 10.1016/j.image.2018.11.012_b26 – volume: 21 start-page: 1324 issue: 4 year: 2000 ident: 10.1016/j.image.2018.11.012_b14 article-title: On the best rank-1 and rank-(r 1, r 2,..., rn) approximation of higher-order tensors publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479898346995 – ident: 10.1016/j.image.2018.11.012_b24 – ident: 10.1016/j.image.2018.11.012_b35 doi: 10.2172/989350 – volume: 56 start-page: 1096 issue: 3 year: 2008 ident: 10.1016/j.image.2018.11.012_b7 article-title: Blind identification of underdetermined mixtures by simultaneous matrix diagonalization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.908929 – year: 2001 ident: 10.1016/j.image.2018.11.012_b10 article-title: Linear image coding for regression and classification using the tensor-rank principle – volume: 23 start-page: 695 issue: 2 year: 2013 ident: 10.1016/j.image.2018.11.012_b11 article-title: Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-(L_r,L_r,1) terms, and a new generalization publication-title: SIAM J. Optim. doi: 10.1137/120868323 – volume: 37 start-page: 1751 issue: 9 year: 2015 ident: 10.1016/j.image.2018.11.012_b6 article-title: Bayesian cp factorization of incomplete tensors with automatic rank determination publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2392756 – volume: 26 start-page: 2466 issue: 5 year: 2017 ident: 10.1016/j.image.2018.11.012_b19 article-title: Efficient tensor completion for color image and video recovery: Low-rank tensor train publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2672439 – start-page: 69 year: 2011 ident: 10.1016/j.image.2018.11.012_b30 article-title: Large-scale matrix factorization with distributed stochastic gradient descent – start-page: 2038 year: 2016 ident: 10.1016/j.image.2018.11.012_b15 article-title: Tensor switching networks – volume: 1 start-page: 1 issue: r1 year: 2017 ident: 10.1016/j.image.2018.11.012_b25 article-title: Efficient low rank tensor ring completion publication-title: Rn – start-page: 3891 year: 2017 ident: 10.1016/j.image.2018.11.012_b20 article-title: Tensor-Train Recurrent Neural Networks for Video Classification – ident: 10.1016/j.image.2018.11.012_b39 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 10.1016/j.image.2018.11.012_b2 article-title: Tensor decompositions and applications publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 106 start-page: 41 issue: 1 year: 2011 ident: 10.1016/j.image.2018.11.012_b5 article-title: Scalable tensor factorizations for incomplete data publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2010.08.004 – ident: 10.1016/j.image.2018.11.012_b37 – volume: 35 start-page: 7 issue: 67–68 year: 1999 ident: 10.1016/j.image.2018.11.012_b33 article-title: Numerical optimization publication-title: Springer Sci. – start-page: 792 year: 2005 ident: 10.1016/j.image.2018.11.012_b1 article-title: Non-negative tensor factorization with applications to statistics and computer vision – volume: 35 start-page: 208 issue: 1 year: 2013 ident: 10.1016/j.image.2018.11.012_b16 article-title: Tensor completion for estimating missing values in visual data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.39 – ident: 10.1016/j.image.2018.11.012_b27 – volume: 9 start-page: 249 issue: 4–5 year: 2016 ident: 10.1016/j.image.2018.11.012_b29 article-title: Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000059 – start-page: 3531 year: 2016 ident: 10.1016/j.image.2018.11.012_b32 article-title: Online and differentially-private tensor decomposition – ident: 10.1016/j.image.2018.11.012_b21 – year: 2018 ident: 10.1016/j.image.2018.11.012_b28 article-title: Image completion using low tensor tree rank and total variation minimization publication-title: IEEE Trans. Multimed. – volume: 33 start-page: 2295 issue: 5 year: 2011 ident: 10.1016/j.image.2018.11.012_b18 article-title: Tensor-train decomposition publication-title: SIAM J. Sci. Comput. doi: 10.1137/090752286 – ident: 10.1016/j.image.2018.11.012_b23 – volume: 52 start-page: 4729 issue: 8 year: 2014 ident: 10.1016/j.image.2018.11.012_b40 article-title: Hyperspectral image restoration using low-rank matrix recovery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2284280 – start-page: 222 year: 2017 ident: 10.1016/j.image.2018.11.012_b22 article-title: Completion of high order tensor data with missing entries via tensor-train decomposition |
| SSID | ssj0002409 |
| Score | 2.4761908 |
| Snippet | Tensor train (TT) decomposition has drawn people’s attention due to its powerful representation ability and performance stability in high-order tensors. In... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 53 |
| SubjectTerms | Algorithms Decomposition Gradient-based optimization Higher-order tensorization Mathematical analysis Optimization Tensor completion Tensor train decomposition Tensors Visual data recovery |
| Title | High-order tensor completion via gradient-based optimization under tensor train format |
| URI | https://dx.doi.org/10.1016/j.image.2018.11.012 https://www.proquest.com/docview/2212703455 |
| Volume | 73 |
| WOSCitedRecordID | wos000463307000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002409 issn: 0923-5965 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FlAMcChQQLQX5gLiEjdbf3mOFUmhVBRBpldtqvV6nrlo7JE7UH8GPZvbDjktFBAcuVrTxxo7fy-zM5s0MQu9EkHCZSw97GY9xkKQCp5JyAMRNgT7goFCum03E43EyndKvvd7PJhdmfR2XZXJ7S-f_FWoYA7BV6uw_wN1-KAzAawAdjgA7HP8KeKXcwLqi5kCp06uFkY1LDfS64IPZQsu8aqxWsGxQgdG4sdmYuituO0-3j7DpjV0n9nsxUz7s3OQYqM4Lg5Mbpf0R3WyT1p6sbHpDVc4uedXZqda7tN-KtGjP_bQyydrF5WqjIDLnnQKP62adtdsULu2oW_TeWZs_c9Hdg_R8HFLTLGIojQVOYoq9yPZ2sSY69js21hQXvmf6zS7E1bBQX1hp9pKhKs9qRdp3Cm2Pv7Dj87MzNhlNJ-_nP7DqQab-q7cNWR6gHQ_CKNJHO0cno-lpu7KD92NqN9rbbqpYab3gvev-ydP5bc3XjszkKdq1EYhzZJjzDPVkuYee2GjEsbZ-CUNNw49mbA897lSvfI4uNkxzDGOcDdMcYJpzl2lOl2mOZlozTzPNMUx7gc6PR5OPn7Ft04EFOLM1znlIZZ5FNAjDPJSxoCnNIy8lPs98kmWEQ4gci4gIz5V5AvGDCDNBeKIlWNL3X6J-WZXyFXI4CbgvXZJyPw8iCC5UV6uQZIGbRzwT3j7ymkfKhK1hr-7wmjVixSumcWAKB4huGeCwjz60k-amhMv206MGK2a9UONdMmDa9omHDbLM2oMl81QHBeLDoznY_vZr9GjzszlE_Xqxkm_QQ7Gui-XirWXiL1COs78 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-order+tensor+completion+via+gradient-based+optimization+under+tensor+train+format&rft.jtitle=Signal+processing.+Image+communication&rft.au=Yuan%2C+Longhao&rft.au=Zhao%2C+Qibin&rft.au=Gui%2C+Lihua&rft.au=Cao%2C+Jianting&rft.date=2019-04-01&rft.pub=Elsevier+BV&rft.issn=0923-5965&rft.eissn=1879-2677&rft.volume=73&rft.spage=53&rft_id=info:doi/10.1016%2Fj.image.2018.11.012&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-5965&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-5965&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-5965&client=summon |