Structural damage identification using improved Jaya algorithm based on sparse regularization and Bayesian inference

•This paper proposes an improved Jaya algorithm for damage identification.•Objective function is improved based on sparse regularization and Bayesian inference.•Benchmark studies are conducted to demonstrate the improvement of this approach.•Numerical and experimental investigations are conducted to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing Jg. 132; S. 211 - 231
Hauptverfasser: Ding, Zhenghao, Li, Jun, Hao, Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin Elsevier Ltd 01.10.2019
Elsevier BV
Schlagworte:
ISSN:0888-3270, 1096-1216
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•This paper proposes an improved Jaya algorithm for damage identification.•Objective function is improved based on sparse regularization and Bayesian inference.•Benchmark studies are conducted to demonstrate the improvement of this approach.•Numerical and experimental investigations are conducted to demonstrate the performance.•Good identification results are obtained with a limited quantity of modal data. Structural damage identification can be considered as an optimization problem, by defining an appropriate objective function relevant to structural parameters to be identified with optimization techniques. This paper proposes a new heuristic algorithm, named improved Jaya (I-Jaya) algorithm, for structural damage identification with the modified objective function based on sparse regularization and Bayesian inference. To improve the global optimization capacity and robustness of the original Jaya algorithm, a clustering strategy is employed to replace solutions with low-quality objective values and a new updated equation is used for the best-so-far solution. The objective function that is sensitive and robust for effective and reliable damage identification is developed through sparse regularization and Bayesian inference and used for optimization analysis with the proposed I-Jaya algorithm. Benchmark tests are conducted to verify the improvement in the developed algorithm. Numerical studies on a truss structure and experimental validations on an experimental reinforced concrete bridge model are performed to verify the developed approach. A limited quantity of modal data, which is distinctively less than the number of unknown system parameters, are used for structural damage identification. Significant measurement noise effect and modelling errors are considered. Damage identification results demonstrate that the proposed method based on the I-Jaya algorithm and the modified objective function based on sparse regularization and Bayesian inference can provide accurate and reliable damage identification, indicating the proposed method is a promising approach for structural damage detection using data with significant uncertainties and limited measurement information.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0888-3270
1096-1216
DOI:10.1016/j.ymssp.2019.06.029