A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles

•Three mobility scenarios based on the shared socioeconomic pathways including new registration figures and thus vehicle sales and production are formed.•Two technology scenarios based on a forecast on the market share of lithium-ion battery cathode chemistries are developed.•The future demand for e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resources, conservation and recycling Jg. 192; S. 106920
Hauptverfasser: Maisel, Franziska, Neef, Christoph, Marscheider-Weidemann, Frank, Nissen, Nils F.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.05.2023
Schlagworte:
ISSN:0921-3449, 1879-0658
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Three mobility scenarios based on the shared socioeconomic pathways including new registration figures and thus vehicle sales and production are formed.•Two technology scenarios based on a forecast on the market share of lithium-ion battery cathode chemistries are developed.•The future demand for electric vehicle battery cathode raw materials lithium, cobalt, nickel and manganese was calculated.•The future material demand in 2040 for lithium, cobalt and nickel for lithium-ion batteries in electric vehicles exceeds current raw material production.•The recycling potential for lithium and nickel is more than half the raw material demand for lithium-ion batteries in 2040. The market for electromobility has grown constantly in the last years. To ensure a future supply of raw materials for the production of new batteries for electric vehicles, it is essential to estimate the future demand for battery metals. This study focuses on the future demand for electric vehicle battery cathode raw materials lithium, cobalt, nickel, and manganese by considering different technology and growth scenarios. The results show that in 2040 the future material demand for lithium, cobalt, and nickel for Lithium-Ion Batteries in electric vehicles exceeds current raw material production. Depending on the growth and technology scenario, the future demand for lithium and cobalt exceeds today's production by up to 8 times in 2040. Nickel exceeds today's production in one scenario. For manganese, future demand in 2040 remains far below today's production. The recycling potential for lithium and nickel is more than half the raw material demand for Lithium-Ion Batteries in 2040. For cobalt, the recycling potential even exceeds the raw material demand in 2040. In conclusion, it remains a challenge for the industry to massively scale up resource production and focus on the recycling of battery metals in the future to meet the increasing consumption of electromobility.
AbstractList •Three mobility scenarios based on the shared socioeconomic pathways including new registration figures and thus vehicle sales and production are formed.•Two technology scenarios based on a forecast on the market share of lithium-ion battery cathode chemistries are developed.•The future demand for electric vehicle battery cathode raw materials lithium, cobalt, nickel and manganese was calculated.•The future material demand in 2040 for lithium, cobalt and nickel for lithium-ion batteries in electric vehicles exceeds current raw material production.•The recycling potential for lithium and nickel is more than half the raw material demand for lithium-ion batteries in 2040. The market for electromobility has grown constantly in the last years. To ensure a future supply of raw materials for the production of new batteries for electric vehicles, it is essential to estimate the future demand for battery metals. This study focuses on the future demand for electric vehicle battery cathode raw materials lithium, cobalt, nickel, and manganese by considering different technology and growth scenarios. The results show that in 2040 the future material demand for lithium, cobalt, and nickel for Lithium-Ion Batteries in electric vehicles exceeds current raw material production. Depending on the growth and technology scenario, the future demand for lithium and cobalt exceeds today's production by up to 8 times in 2040. Nickel exceeds today's production in one scenario. For manganese, future demand in 2040 remains far below today's production. The recycling potential for lithium and nickel is more than half the raw material demand for Lithium-Ion Batteries in 2040. For cobalt, the recycling potential even exceeds the raw material demand in 2040. In conclusion, it remains a challenge for the industry to massively scale up resource production and focus on the recycling of battery metals in the future to meet the increasing consumption of electromobility.
The market for electromobility has grown constantly in the last years. To ensure a future supply of raw materials for the production of new batteries for electric vehicles, it is essential to estimate the future demand for battery metals. This study focuses on the future demand for electric vehicle battery cathode raw materials lithium, cobalt, nickel, and manganese by considering different technology and growth scenarios. The results show that in 2040 the future material demand for lithium, cobalt, and nickel for Lithium-Ion Batteries in electric vehicles exceeds current raw material production. Depending on the growth and technology scenario, the future demand for lithium and cobalt exceeds today's production by up to 8 times in 2040. Nickel exceeds today's production in one scenario. For manganese, future demand in 2040 remains far below today's production. The recycling potential for lithium and nickel is more than half the raw material demand for Lithium-Ion Batteries in 2040. For cobalt, the recycling potential even exceeds the raw material demand in 2040. In conclusion, it remains a challenge for the industry to massively scale up resource production and focus on the recycling of battery metals in the future to meet the increasing consumption of electromobility.
ArticleNumber 106920
Author Nissen, Nils F.
Maisel, Franziska
Marscheider-Weidemann, Frank
Neef, Christoph
Author_xml – sequence: 1
  givenname: Franziska
  orcidid: 0000-0001-6768-4943
  surname: Maisel
  fullname: Maisel, Franziska
  email: franziska.maisel@izm.fraunhofer.de
  organization: Fraunhofer Institute for Reliability and Microintegration IZM, Germany
– sequence: 2
  givenname: Christoph
  surname: Neef
  fullname: Neef, Christoph
  organization: Fraunhofer Institute for Systems and Innovation Research ISI, Germany
– sequence: 3
  givenname: Frank
  surname: Marscheider-Weidemann
  fullname: Marscheider-Weidemann, Frank
  organization: Fraunhofer Institute for Systems and Innovation Research ISI, Germany
– sequence: 4
  givenname: Nils F.
  surname: Nissen
  fullname: Nissen, Nils F.
  organization: Fraunhofer Institute for Reliability and Microintegration IZM, Germany
BookMark eNqNkL1qHDEUhUWwIWvHz2CVaWajn_lT4WJZEjtgcOPUQiNdebVopI2kcfDbR8MGF2mS4iK4Ot-B-12hixADIHRLyZYS2n85bhNkHUMCvWWE8brtBSMf0IaOg2hI340XaEMEow1vW_ERXeV8JITwUfANCjtsY0VVLjgGbJeyJMBJ_cKzKpCc8tjArILB69Tgm_YuvOBTLBDK-h0t9q4c3DI3rjZMqqwcZOwCBg-6JKfxKxyc9pA_oUurfIabP-81-vHt6_P-oXl8uv--3z02mouhNLajQk09gBqt4ULogSvKzNR3VLctpd3UksGYXkx2ZAqY1ROztidGEU2FFvwafT73nlL8uUAucnZZg_cqQFyyZCNvGSVi7Gr07hzVKeacwErtiir1lpKU85ISuXqWR_nuWa6e5dlz5Ye_-FNys0pv_0HuziRUE68OkszaQdBgXI0WaaL7Z8dvB2aiKQ
CitedBy_id crossref_primary_10_1016_j_jece_2025_116811
crossref_primary_10_1016_j_jpowsour_2025_237495
crossref_primary_10_3390_membranes14120277
crossref_primary_10_1016_j_aitf_2025_100014
crossref_primary_10_1016_j_desal_2025_119395
crossref_primary_10_1016_j_jclepro_2024_142108
crossref_primary_10_1016_j_aej_2025_05_088
crossref_primary_10_1007_s40815_025_02097_8
crossref_primary_10_1016_j_chemosphere_2023_140573
crossref_primary_10_1016_j_jece_2024_113787
crossref_primary_10_1002_adfm_202511503
crossref_primary_10_3390_min14121230
crossref_primary_10_1007_s10163_025_02341_1
crossref_primary_10_1016_j_scitotenv_2024_174271
crossref_primary_10_24857_rgsa_v18n11_167
crossref_primary_10_3390_membranes15040097
crossref_primary_10_3390_wevj16040234
crossref_primary_10_1016_j_wasman_2023_12_043
crossref_primary_10_3390_en18061359
crossref_primary_10_3390_min15020101
crossref_primary_10_1016_j_jpowsour_2025_236832
crossref_primary_10_3390_jmse13091676
crossref_primary_10_1038_s41467_025_61090_9
crossref_primary_10_1016_j_eist_2025_101044
crossref_primary_10_1016_j_psep_2025_106919
crossref_primary_10_1016_j_eiar_2025_107996
crossref_primary_10_1016_j_cej_2024_148941
crossref_primary_10_1016_j_exis_2023_101373
crossref_primary_10_1002_aenm_202405371
crossref_primary_10_1016_j_desal_2025_118570
crossref_primary_10_1016_j_ensm_2024_103964
crossref_primary_10_1177_0958305X241256035
crossref_primary_10_1039_D5EE00415B
crossref_primary_10_1016_j_jpowsour_2024_236157
crossref_primary_10_1016_j_cclet_2024_109500
crossref_primary_10_1038_s43246_024_00619_9
crossref_primary_10_3390_batteries10010038
crossref_primary_10_1016_j_frl_2024_105871
crossref_primary_10_3390_batteries11020051
crossref_primary_10_1002_cssc_202401722
crossref_primary_10_1016_j_resconrec_2025_108377
crossref_primary_10_1002_adfm_202406384
crossref_primary_10_1016_j_desal_2024_118224
crossref_primary_10_1016_j_resconrec_2024_107583
crossref_primary_10_1016_j_desal_2024_118121
crossref_primary_10_1002_sres_3183
crossref_primary_10_1016_j_nxener_2025_100357
crossref_primary_10_3389_fmats_2023_1152018
crossref_primary_10_1016_j_cej_2024_151921
crossref_primary_10_1016_j_jclepro_2023_139272
crossref_primary_10_1016_j_isci_2025_113267
crossref_primary_10_1038_s41467_024_51152_9
crossref_primary_10_1016_j_seppur_2025_132354
crossref_primary_10_1007_s11814_024_00288_x
crossref_primary_10_1016_j_jechem_2023_10_012
crossref_primary_10_1016_j_mineng_2023_108403
crossref_primary_10_1016_j_seppur_2024_130847
crossref_primary_10_1007_s43546_024_00624_7
crossref_primary_10_1016_j_rser_2025_115797
crossref_primary_10_1016_j_desal_2023_116978
crossref_primary_10_1016_j_oneear_2024_06_017
crossref_primary_10_1016_j_resconrec_2025_108161
crossref_primary_10_1016_j_ceja_2025_100757
crossref_primary_10_1109_TITS_2024_3403518
crossref_primary_10_3390_w17111670
crossref_primary_10_1016_j_tre_2024_103806
crossref_primary_10_5382_econgeo_5133
crossref_primary_10_1038_s41467_024_54503_8
crossref_primary_10_1111_jmi_70000
crossref_primary_10_1016_j_hazadv_2025_100775
crossref_primary_10_1002_cite_202300138
crossref_primary_10_1016_j_enpol_2024_114045
crossref_primary_10_1016_j_est_2023_109847
crossref_primary_10_1016_j_resourpol_2023_103861
crossref_primary_10_17323_fstig_2025_24480
crossref_primary_10_2478_ttj_2024_0028
crossref_primary_10_1016_j_desal_2023_117142
crossref_primary_10_54033_cadpedv22n10_280
crossref_primary_10_1016_j_jece_2025_116600
crossref_primary_10_1016_j_resconrec_2024_107449
crossref_primary_10_1007_s42864_023_00245_x
crossref_primary_10_1016_j_watres_2025_123862
crossref_primary_10_1016_j_jclepro_2024_143088
crossref_primary_10_3390_min14090851
crossref_primary_10_1007_s40831_025_01159_3
crossref_primary_10_1016_j_est_2024_111896
crossref_primary_10_1016_j_seppur_2025_132104
crossref_primary_10_1016_j_psep_2025_107397
crossref_primary_10_1039_D3EW00854A
crossref_primary_10_1016_j_carbpol_2024_122973
crossref_primary_10_1007_s40831_025_01049_8
crossref_primary_10_1016_j_jpowsour_2023_233995
crossref_primary_10_1016_j_jiec_2024_06_010
crossref_primary_10_3390_su17188388
crossref_primary_10_1016_j_scitotenv_2025_178992
crossref_primary_10_1016_j_jiec_2024_10_013
crossref_primary_10_1149_1945_7111_addd50
crossref_primary_10_3390_met15080886
crossref_primary_10_1039_D5CC02392K
crossref_primary_10_1002_ente_202401046
crossref_primary_10_1016_j_jallcom_2024_176201
crossref_primary_10_1038_s41598_025_86250_1
crossref_primary_10_1007_s10311_023_01669_0
crossref_primary_10_3390_chemosensors13090348
crossref_primary_10_1016_j_resourpol_2024_105399
crossref_primary_10_1016_j_spc_2025_02_013
crossref_primary_10_1016_j_jclepro_2024_143756
crossref_primary_10_1002_adts_202300302
crossref_primary_10_3390_batteries10110403
crossref_primary_10_1016_j_csite_2025_106136
crossref_primary_10_1007_s00604_025_07459_5
crossref_primary_10_1080_1540496X_2025_2535705
crossref_primary_10_1007_s10163_024_01982_y
crossref_primary_10_1038_s41560_025_01722_y
crossref_primary_10_1149_1945_7111_ad5d1e
crossref_primary_10_1021_acsenergylett_5c02782
crossref_primary_10_3390_min15080859
crossref_primary_10_1016_j_nxener_2023_100091
crossref_primary_10_1016_j_jclepro_2025_145254
crossref_primary_10_1016_j_procir_2024_02_007
crossref_primary_10_1063_5_0270918
crossref_primary_10_1016_j_est_2024_111661
crossref_primary_10_1016_j_seppur_2024_128982
crossref_primary_10_1016_j_jenvman_2025_125783
crossref_primary_10_1021_acs_est_4c13838
crossref_primary_10_1016_j_rser_2024_114806
crossref_primary_10_1016_j_sftr_2025_100847
crossref_primary_10_1016_j_trd_2024_104261
crossref_primary_10_54337_plate2025_10339
crossref_primary_10_1016_j_crsus_2025_100404
crossref_primary_10_1016_j_jallcom_2024_174692
crossref_primary_10_1016_j_susmat_2024_e01108
crossref_primary_10_1002_prs_12618
crossref_primary_10_1016_j_jece_2025_116624
crossref_primary_10_1088_1748_9326_ad69ac
crossref_primary_10_3390_su17072922
crossref_primary_10_1016_j_jclepro_2024_140636
crossref_primary_10_1016_j_energy_2025_137215
crossref_primary_10_1016_j_jclepro_2025_144696
crossref_primary_10_1016_j_spc_2024_07_027
crossref_primary_10_1016_j_jclepro_2023_140099
crossref_primary_10_1016_j_est_2023_109175
crossref_primary_10_1007_s00521_024_10210_5
crossref_primary_10_1016_j_desal_2024_118309
crossref_primary_10_1021_acs_langmuir_5c03935
crossref_primary_10_1016_j_molliq_2025_128161
crossref_primary_10_1016_j_psep_2024_08_027
crossref_primary_10_1016_j_cie_2025_110900
crossref_primary_10_3390_pr12091816
crossref_primary_10_1007_s41870_025_02712_9
crossref_primary_10_1016_j_desal_2024_117698
crossref_primary_10_1039_D5EE02287H
crossref_primary_10_1016_j_wri_2025_100317
crossref_primary_10_1016_j_jclepro_2023_139073
crossref_primary_10_1016_j_seppur_2025_132671
crossref_primary_10_1016_j_oregeorev_2024_106179
crossref_primary_10_1002_ese3_1477
crossref_primary_10_1111_jiec_13527
crossref_primary_10_1016_j_fuel_2023_129629
crossref_primary_10_1002_pol_20250060
crossref_primary_10_1016_j_apenergy_2024_123897
crossref_primary_10_1016_j_psep_2025_107459
crossref_primary_10_1016_j_resconrec_2025_108246
crossref_primary_10_1103_99jn_17v6
crossref_primary_10_1007_s11664_024_10953_w
crossref_primary_10_1016_j_resconrec_2024_107643
crossref_primary_10_1038_s43247_025_02085_8
crossref_primary_10_1016_j_procir_2024_12_006
crossref_primary_10_1002_cssc_202500799
crossref_primary_10_1016_j_jenvman_2024_120774
crossref_primary_10_1016_j_jhazmat_2025_139545
crossref_primary_10_1016_j_scitotenv_2024_174862
crossref_primary_10_1186_s13065_025_01445_x
crossref_primary_10_1088_1755_1315_1458_1_012010
crossref_primary_10_1016_j_est_2024_112820
crossref_primary_10_1016_j_mineng_2025_109698
crossref_primary_10_1016_j_rser_2024_114654
crossref_primary_10_1016_j_seppur_2024_130358
crossref_primary_10_1108_IJPPM_01_2024_0015
crossref_primary_10_1016_j_mineng_2025_109602
crossref_primary_10_1021_acs_est_4c12619
crossref_primary_10_1109_ACCESS_2025_3557405
crossref_primary_10_3390_batteries11050185
crossref_primary_10_1016_j_ecmx_2025_101058
crossref_primary_10_1016_j_jenvman_2024_120021
crossref_primary_10_1016_j_resconrec_2025_108477
crossref_primary_10_1016_j_energy_2025_136230
crossref_primary_10_1016_j_jclepro_2023_137797
crossref_primary_10_1039_D5GC02519B
Cites_doi 10.1016/j.ijheatmasstransfer.2016.07.088
10.1149/2.0111514jes
10.1016/j.jclepro.2021.126954
10.1016/j.gloenvcha.2015.02.005
10.1016/j.resconrec.2020.105122
10.1016/j.wasman.2021.11.038
10.1111/jiec.13244
10.1016/j.rser.2022.112515
10.1016/j.promfg.2019.04.033
10.1016/j.gloenvcha.2014.06.004
10.1016/j.egyr.2022.03.016
10.1111/jiec.12949
10.1016/j.gloenvcha.2015.06.004
10.1016/j.rser.2018.03.002
10.1021/acs.est.9b04975
10.1002/aenm.202102028
10.1016/j.gloenvcha.2015.02.012
10.3846/jeelm.2021.14220
10.3390/en12050955
10.1016/j.gloenvcha.2016.05.009
10.1002/aenm.202102917
10.1021/acsenergylett.1c02602
10.1016/j.gloenvcha.2015.03.008
10.1038/s43246-020-00095-x
10.1016/j.ensm.2017.05.013
10.3390/met10081107
10.1007/s41918-018-0022-z
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.resconrec.2023.106920
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Environmental Sciences
EISSN 1879-0658
ExternalDocumentID 10_1016_j_resconrec_2023_106920
S0921344923000575
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
9JN
9JO
AACTN
AAEDT
AAEDW
AAFJI
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
WUQ
ZY4
~A~
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c397t-f519ab6eea8fd399c73a12db651c44115b407dd69bf82ae2fcb2ff60da0c19c93
ISICitedReferencesCount 212
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003081200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-3449
IngestDate Thu Oct 02 06:30:32 EDT 2025
Sat Nov 29 07:15:49 EST 2025
Tue Nov 18 20:35:48 EST 2025
Fri Feb 23 02:37:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
EV
LIB
Electric vehicles
Raw materials
Recycling
Future metal supply
Language English
License This is an open access article under the CC BY-NC license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c397t-f519ab6eea8fd399c73a12db651c44115b407dd69bf82ae2fcb2ff60da0c19c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6768-4943
OpenAccessLink https://dx.doi.org/10.1016/j.resconrec.2023.106920
PQID 2834210985
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834210985
crossref_citationtrail_10_1016_j_resconrec_2023_106920
crossref_primary_10_1016_j_resconrec_2023_106920
elsevier_sciencedirect_doi_10_1016_j_resconrec_2023_106920
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Resources, conservation and recycling
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiang, O'Neill (bib0029) 2017; 42
Kampker, Vallée, Schnettler (bib0030) 2018
European Commission (2020d): Strategic research agenda for batteries 2020. Hg. v. European commission. Batteries Europe.
Thielmann, A.; Sauer, A.; Wietschel, M. (2015): Gesamt-roadmap Energiespeicher für die Elektromobilität 2030. Fraunhofer-Institut für System- und Innovationsforschung (ISI).
Murdock, Toghill, Tapia-Ruiz (bib0043) 2021; 11
Gerold, Windisch-Kern, Nigl, Jandric, Altendorfer, Rutrecht (bib0023) 2022; 138
Liu, Liu, Li, Liu, Ogunmoroti, Li (bib0038) 2021; 164
Sojka, R. (2020): Safe treatment of lithium-based batteries through thermal conditioning. Hg. v. Thomé-Kozmiensky Verlag GmbH. ACCUREC recycling.
Zhao, Tom (2018): Sustainable developement strategy for EV battery. BYD.
Wood Mackenzie (2020): Can LFP technology retain its battery market share? Wood mackenzie. Online verfügbar unter
Brückner, Frank, Elwert (bib0006) 2020; 10
Dellink, Rob; Chateau, Jean; Lanzi, Elisa; Magné, Bertrand (2017): Long-term economic growth projections in the shared socioeconomic pathways. In
Li, Yang, Long, Mamaril, Chi (bib0037) 2021; 29
Peng, Jiang (bib0047) 2016; 103
Agarwal, S. (2021): Status of the rechargeable li-ion battery industry 2021. Market and technology report 2021. Yole developement.
33, S. 272–279. DOI: 10.1016/j.promfg.2019.04.033.
Huisman, Pavel, Bobba, Carrara, Mathieux (bib0026) 2020
Neumann, Petranikova, Meeus, Gamarra, Younesi, Winter, Nowak (bib0044) 2022; 12
Marscheider-Weidemann, Langkau, Baur, Billaud, Deubzer, Eberling (bib0040) 2021
Pillot, C. (2021): The Rechargeable Battery Market and Main Trends 2020-2030. Avicenne Energy. Novi, Michigan, USA.
Zubi, Dufo-López, Carvalho, Pasaoglu (bib0067) 2018; 89
Ding, Cano, Yu, Lu, Chen (bib0011) 2019; 2
Matos, Mathieux, Ciacci, Lundhaug, León, Müller (bib0041) 2022
Wang, Liu, Dutta, Alessi, Rinklebe, Ok, Tsang (bib0063) 2022; 163
Crespo Cuaresma (bib0008) 2017; 42
(bib0015) 2020
Heidrich, Baars, Domenech, Bleischwitz, Melin (bib0024) 2021; 4
Danino-Perraud (bib0009) 2020
Heimes, Kampker, Dorn, Offermanns, Bockey, Wennemar (bib0025) 2022
Steward, Darlene; Mayyas, Ahmad; Mann, Margaret (2019): Economics and challenges of li-ion battery recycling from end-of-life vehicles. In
USGS (2022d): Mineral commodity summaries 2022 - Nickel. U.S. geological survey. Online verfügbar unter
(bib0013) 2017
Khan, Ali, Pecht (bib0033) 2021; 40
Rahimzei, E.; Sann, K.; Vogel, M. (2015): Kompendium: li-Ionen-Batterien. Grundlagen, Bewertungskriterien, Gesetze und Normen. VDE Verband der Elektrotechnik Elektronik Informationstechnik e. V.
USGS (2022a): Mineral commodity summaries 2022 - Cobalt. U.S. geological survey. Online verfügbar unter
Riahi, van Vuuren, Kriegler, Edmonds, O'Neill, Fujimori (bib0052) 2017; 42
USGS (2022b): Mineral commodity summaries 2022 - Lithium. U.S. geological survey. Online verfügbar unter
(bib0016) 2020
zuletzt geprüft am 10.05.2022.
Feng, Ouyang, Liu, Lu, Xia, He (bib0020) 2018; 10
Boon-Brett, Di Persio, Lebedeva, Steen (bib0005) 2017
Baum, Bird, Yu, Ma (bib0004) 2022; 7
Lutz, Becker, Ulrich, Distelkamp (bib0039) 2019
Rozier, Tarascon (bib0053) 2015; 162
Korthauer (bib0034) 2013
Nwanya, Nzereogu, Omah, Ezema, Iwuoha (bib0045) 2022; 9
(bib0019) 2022
Pachauri, Meyer (bib0046) 2015
zuletzt aktualisiert am 19.04.2022.
USGS (2022c): Mineral commodity summaries 2022 - Manganese. U.S. geological survey. Online verfügbar unter
Fischhaber, S.; Regett, A.; Schuster, S.F.; Hesse, H. (2016): Second-Life-Konzepte für Lithium-Ionen-Batterien aus Elektrofahrzeugen. Ergebniskonferenz Schaufenster Elektromobilität.
IEA (2019): Global EV outlook 2019: oECD.
Fu, Beatty, Gaustad, Ceder, Roth, Kirchain (bib0022) 2020; 54
Kc, Lutz (bib0031) 2017; 42
Leimbach, Kriegler, Roming, Schwanitz (bib0036) 2017; 42
Research Interfaces (2018): What do we know about next-generation NMC 811 cathode? Research interfaces. Online verfügbar unter
IEA (2022): Global EV outlook 2022: oECD.
Pillot, C. (2017): The Rechargeable Battery Market and Main Trends 2011-2020. Avicenne Energy. Novi, Michigan, USA.
Englberger, Hesse, Kucevic, Jossen (bib0012) 2019; 12
Alessia, Alessandro, Maria, Carlos, Francesca (bib0002) 2021; 300
Sharova, V.; Wolff, P.; Konersmann, B.; Ferstl, F.; Stanek, R.; Hackmann, M. (2020): Evaluation of Lithium-Ion Battery Cell Value Chain. Hans Böckler Stiftung.
European Commission (2019): The European green deal. European commission. Brussels, Belgium. Online verfügbar unter
Ambrose, Kendall (bib0003) 2020; 24
42, S. 200–214. DOI: 10.1016/j.gloenvcha.2015.06.004.
Thielmann, A.; Neef, C.; Hettesheimer, T.; Döscher, H.; Wietschel, M.; Tübke, J. (2017): Energiespeicher-roadmap (Update 2017). Hochenergie-Batterien 2030+ Und Perspektiven zukünftiger Batterietechnologie. Hg. v. Fraunhofer-Institut für System- und Innovationsforschung (ISI). Karlsruhe, Germany.
Xu, Dai, Gaines, Hu, Tukker, Steubing (bib0065) 2020; 1
Chau, Liu, Placke (bib0007) 2022; 8
(bib0017) 2020
Keil, P.; Schuster, S.F.; Lüders, C. von; Hesse, H. (2015): Lifetime Analyses of Lithium-Ion EV Batteries. 3rd Electromobility Challenging Issues conference (ECI), Singapore, 1st - 4th December 2015. Institute for Electrical Energy Storage Technology Munich.
Mayyas, Steward, Mann (bib0042) 2019; 19
zuletzt geprüft am 19.04.2022.
Kurzweil, Dietlmeier (bib0035) 2018
zuletzt geprüft am 09.05.2022.
Pachauri (10.1016/j.resconrec.2023.106920_bib0046) 2015
Ding (10.1016/j.resconrec.2023.106920_bib0011) 2019; 2
Boon-Brett (10.1016/j.resconrec.2023.106920_bib0005) 2017
(10.1016/j.resconrec.2023.106920_bib0013) 2017
Mayyas (10.1016/j.resconrec.2023.106920_bib0042) 2019; 19
Ambrose (10.1016/j.resconrec.2023.106920_bib0003) 2020; 24
Crespo Cuaresma (10.1016/j.resconrec.2023.106920_bib0008) 2017; 42
Riahi (10.1016/j.resconrec.2023.106920_bib0052) 2017; 42
10.1016/j.resconrec.2023.106920_bib0049
Nwanya (10.1016/j.resconrec.2023.106920_bib0045) 2022; 9
10.1016/j.resconrec.2023.106920_bib0001
10.1016/j.resconrec.2023.106920_bib0048
Liu (10.1016/j.resconrec.2023.106920_bib0038) 2021; 164
Alessia (10.1016/j.resconrec.2023.106920_bib0002) 2021; 300
Chau (10.1016/j.resconrec.2023.106920_bib0007) 2022; 8
Huisman (10.1016/j.resconrec.2023.106920_bib0026) 2020
Matos (10.1016/j.resconrec.2023.106920_bib0041) 2022
Lutz (10.1016/j.resconrec.2023.106920_bib0039) 2019
Danino-Perraud (10.1016/j.resconrec.2023.106920_bib0009) 2020
Murdock (10.1016/j.resconrec.2023.106920_bib0043) 2021; 11
10.1016/j.resconrec.2023.106920_bib0018
Kampker (10.1016/j.resconrec.2023.106920_bib0030) 2018
10.1016/j.resconrec.2023.106920_bib0056
Neumann (10.1016/j.resconrec.2023.106920_bib0044) 2022; 12
10.1016/j.resconrec.2023.106920_bib0057
10.1016/j.resconrec.2023.106920_bib0014
10.1016/j.resconrec.2023.106920_bib0058
Li (10.1016/j.resconrec.2023.106920_bib0037) 2021; 29
10.1016/j.resconrec.2023.106920_bib0059
10.1016/j.resconrec.2023.106920_bib0010
10.1016/j.resconrec.2023.106920_bib0054
10.1016/j.resconrec.2023.106920_bib0055
Heidrich (10.1016/j.resconrec.2023.106920_bib0024) 2021; 4
Kurzweil (10.1016/j.resconrec.2023.106920_bib0035) 2018
10.1016/j.resconrec.2023.106920_bib0050
10.1016/j.resconrec.2023.106920_bib0051
(10.1016/j.resconrec.2023.106920_bib0017) 2020
Baum (10.1016/j.resconrec.2023.106920_bib0004) 2022; 7
Heimes (10.1016/j.resconrec.2023.106920_bib0025) 2022
Kc (10.1016/j.resconrec.2023.106920_bib0031) 2017; 42
10.1016/j.resconrec.2023.106920_bib0027
Jiang (10.1016/j.resconrec.2023.106920_bib0029) 2017; 42
(10.1016/j.resconrec.2023.106920_bib0019) 2022
10.1016/j.resconrec.2023.106920_bib0028
(10.1016/j.resconrec.2023.106920_bib0015) 2020
Marscheider-Weidemann (10.1016/j.resconrec.2023.106920_bib0040) 2021
Leimbach (10.1016/j.resconrec.2023.106920_bib0036) 2017; 42
Peng (10.1016/j.resconrec.2023.106920_bib0047) 2016; 103
10.1016/j.resconrec.2023.106920_bib0064
10.1016/j.resconrec.2023.106920_bib0021
10.1016/j.resconrec.2023.106920_bib0066
10.1016/j.resconrec.2023.106920_bib0060
10.1016/j.resconrec.2023.106920_bib0061
Zubi (10.1016/j.resconrec.2023.106920_bib0067) 2018; 89
10.1016/j.resconrec.2023.106920_bib0062
Khan (10.1016/j.resconrec.2023.106920_bib0033) 2021; 40
(10.1016/j.resconrec.2023.106920_bib0016) 2020
Fu (10.1016/j.resconrec.2023.106920_bib0022) 2020; 54
Rozier (10.1016/j.resconrec.2023.106920_bib0053) 2015; 162
Brückner (10.1016/j.resconrec.2023.106920_bib0006) 2020; 10
Gerold (10.1016/j.resconrec.2023.106920_bib0023) 2022; 138
Korthauer (10.1016/j.resconrec.2023.106920_bib0034) 2013
10.1016/j.resconrec.2023.106920_bib0032
Englberger (10.1016/j.resconrec.2023.106920_bib0012) 2019; 12
Xu (10.1016/j.resconrec.2023.106920_bib0065) 2020; 1
Wang (10.1016/j.resconrec.2023.106920_bib0063) 2022; 163
Feng (10.1016/j.resconrec.2023.106920_bib0020) 2018; 10
References_xml – reference: Pillot, C. (2021): The Rechargeable Battery Market and Main Trends 2020-2030. Avicenne Energy. Novi, Michigan, USA.
– reference: Rahimzei, E.; Sann, K.; Vogel, M. (2015): Kompendium: li-Ionen-Batterien. Grundlagen, Bewertungskriterien, Gesetze und Normen. VDE Verband der Elektrotechnik Elektronik Informationstechnik e. V.
– year: 2018
  ident: bib0030
  article-title: Elektromobilität. Grundlagen einer Zukunftstechnologie. 2. Auflage 2018
– volume: 40
  year: 2021
  ident: bib0033
  article-title: Circular economy of Li batteries: technologies and trends
  publication-title: J. Energy Storage
– reference: Dellink, Rob; Chateau, Jean; Lanzi, Elisa; Magné, Bertrand (2017): Long-term economic growth projections in the shared socioeconomic pathways. In:
– year: 2017
  ident: bib0013
  article-title: European battery alliance. European commission
  publication-title: Online verfügbar unter
– reference: , zuletzt aktualisiert am 19.04.2022.
– volume: 42
  start-page: 193
  year: 2017
  end-page: 199
  ident: bib0029
  article-title: Global urbanization projections for the Shared Socioeconomic Pathways
  publication-title: Glob. Environ. Change: Human and Policy Dimensions
– reference: Agarwal, S. (2021): Status of the rechargeable li-ion battery industry 2021. Market and technology report 2021. Yole developement.
– reference: Zhao, Tom (2018): Sustainable developement strategy for EV battery. BYD.
– volume: 54
  start-page: 2985
  year: 2020
  end-page: 2993
  ident: bib0022
  article-title: Perspectives on cobalt supply through 2030 in the face of changing demand
  publication-title: Environ. Sci. Technol.
– year: 2021
  ident: bib0040
  article-title: Raw Materials For Emerging Technologies 2021. A commissioned study. Datenstand: Mai 2021
– year: 2020
  ident: bib0017
  article-title: Proposal for a regulation concerning batteries and waste batteries, repealing Directive 2006/66/EC and amending Regulation (EU) No 2019/1020. Proposal for the new battery directive. European commission
  publication-title: Brussels, Belgium. Online verfügbar unter
– reference: IEA (2019): Global EV outlook 2019: oECD.
– reference: European Commission (2019): The European green deal. European commission. Brussels, Belgium. Online verfügbar unter
– volume: 89
  start-page: 292
  year: 2018
  end-page: 308
  ident: bib0067
  article-title: The lithium-ion battery: state of the art and future perspectives
  publication-title: Renew. Sustain. Energy Rev.
– year: 2020
  ident: bib0009
  article-title: The recycling of lithium-ion batteries: a stratetic pillar for the European battery alliance
  publication-title: Institute francais des relations internationales (Ifri)
– year: 2020
  ident: bib0016
  article-title: Critical Raw Materials Resilience: charting a Path towards greater Security and Sustainability
  publication-title: Eur. Commission. Brussels, Belgium
– reference: Pillot, C. (2017): The Rechargeable Battery Market and Main Trends 2011-2020. Avicenne Energy. Novi, Michigan, USA.
– volume: 42
  start-page: 226
  year: 2017
  end-page: 236
  ident: bib0008
  article-title: Income projections for climate change research: a framework based on human capital dynamics
  publication-title: Glob. Environ. Change: Human And Policy Dimensions
– volume: 163
  year: 2022
  ident: bib0063
  article-title: Recycling of lithium iron phosphate batteries: status, technologies, challenges, and prospects
  publication-title: Renew. Sustain. Energy Rev.
– reference: 42, S. 200–214. DOI: 10.1016/j.gloenvcha.2015.06.004.
– volume: 12
  start-page: 955
  year: 2019
  ident: bib0012
  article-title: A techno-economic analysis of vehicle-to-building: battery degradation and efficiency analysis in the context of coordinated electric vehicle charging
  publication-title: Energies
– reference: Fischhaber, S.; Regett, A.; Schuster, S.F.; Hesse, H. (2016): Second-Life-Konzepte für Lithium-Ionen-Batterien aus Elektrofahrzeugen. Ergebniskonferenz Schaufenster Elektromobilität.
– volume: 42
  start-page: 215
  year: 2017
  end-page: 225
  ident: bib0036
  article-title: Future growth patterns of world regions – A GDP scenario approach
  publication-title: Glob. Environ. Change: Human and Policy Dimensions
– volume: 4
  start-page: 71
  year: 2021
  end-page: 79
  ident: bib0024
  article-title: Circular economy strategies for electric vehicle batteries reduce reliance on raw materials
  publication-title: Nat. Sustain.
– year: 2022
  ident: bib0025
  publication-title: Battery Atlas 2022. RWTH Aachen University
– volume: 24
  start-page: 80
  year: 2020
  end-page: 89
  ident: bib0003
  article-title: Understanding the future of lithium: part 1, resource model
  publication-title: J. Ind. Ecol.
– reference: Sojka, R. (2020): Safe treatment of lithium-based batteries through thermal conditioning. Hg. v. Thomé-Kozmiensky Verlag GmbH. ACCUREC recycling.
– reference: 33, S. 272–279. DOI: 10.1016/j.promfg.2019.04.033.
– reference: Steward, Darlene; Mayyas, Ahmad; Mann, Margaret (2019): Economics and challenges of li-ion battery recycling from end-of-life vehicles. In:
– volume: 42
  start-page: 153
  year: 2017
  end-page: 168
  ident: bib0052
  article-title: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview
  publication-title: Glob. Environ. Change: Human and Policy Dimensions
– reference: IEA (2022): Global EV outlook 2022: oECD.
– volume: 164
  year: 2021
  ident: bib0038
  article-title: Dynamic material flow analysis of critical metals for lithium-ion battery system in China from 2000 to 2018
  publication-title: Resour. Conserv. Recycl.
– volume: 1
  year: 2020
  ident: bib0065
  article-title: Future material demand for automotive lithium-based batteries
  publication-title: Commun. Mater.
– year: 2015
  ident: bib0046
  article-title: Climate Change 2014. Synthesis report. Intergovernmental Panel On Climate Change
– reference: Thielmann, A.; Neef, C.; Hettesheimer, T.; Döscher, H.; Wietschel, M.; Tübke, J. (2017): Energiespeicher-roadmap (Update 2017). Hochenergie-Batterien 2030+ Und Perspektiven zukünftiger Batterietechnologie. Hg. v. Fraunhofer-Institut für System- und Innovationsforschung (ISI). Karlsruhe, Germany.
– volume: 19
  start-page: e00087
  year: 2019
  ident: bib0042
  article-title: The case for recycling: overview and challenges in the material supply chain for automotive li-ion batteries
  publication-title: Sustain. Mater. Technol.
– reference: Thielmann, A.; Sauer, A.; Wietschel, M. (2015): Gesamt-roadmap Energiespeicher für die Elektromobilität 2030. Fraunhofer-Institut für System- und Innovationsforschung (ISI).
– reference: , zuletzt geprüft am 10.05.2022.
– volume: 2
  start-page: 1
  year: 2019
  end-page: 28
  ident: bib0011
  article-title: Automotive Li-Ion Batteries: current Status and Future Perspectives
  publication-title: Electrochem. Energ. Rev.
– volume: 9
  year: 2022
  ident: bib0045
  article-title: Anode materials for lithium-ion batteries: a review
  publication-title: Appl. Surface Sci. Adv.
– year: 2018
  ident: bib0035
  article-title: Elektrochemische Speicher. Superkondensatoren, Batterien, Elektrolyse-Wasserstoff, Rechtliche Rahmenbedingungen. 2
– volume: 12
  year: 2022
  ident: bib0044
  article-title: Recycling of lithium-ion batteries—current state of the art, circular economy, and next generation recycling
  publication-title: Adv. Energy Mater.
– reference: Research Interfaces (2018): What do we know about next-generation NMC 811 cathode? Research interfaces. Online verfügbar unter
– volume: 7
  start-page: 712
  year: 2022
  end-page: 719
  ident: bib0004
  article-title: Lithium-ion battery recycling-overview of techniques and trends
  publication-title: ACS Energy Lett.
– year: 2013
  ident: bib0034
  article-title: Handbuch Lithium-Ionen-Batterien. Aufl. 2013
– year: 2017
  ident: bib0005
  article-title: EU competitiveness in advanced li-ion batteries for e-mobility and stationary storage applications. Opportunities and actions. Luxembourg: publications office of the European union (EUR, scientific and technical research series, 28837)
– year: 2022
  ident: bib0041
  article-title: Material system analysis: a novel multilayer system approach to correlate EU flows and stocks of Li-ion batteries and their raw materials
  publication-title: J. Ind. Ecol.
– reference: Keil, P.; Schuster, S.F.; Lüders, C. von; Hesse, H. (2015): Lifetime Analyses of Lithium-Ion EV Batteries. 3rd Electromobility Challenging Issues conference (ECI), Singapore, 1st - 4th December 2015. Institute for Electrical Energy Storage Technology Munich.
– reference: , zuletzt geprüft am 09.05.2022.
– year: 2022
  ident: bib0019
  article-title: EU ban on the sale of new petrol and diesel cars from 2035 explained
  publication-title: Online verfügbar unter
– volume: 10
  start-page: 1107
  year: 2020
  ident: bib0006
  article-title: Industrial recycling of lithium-ion batteries—a critical review of metallurgical process routes
  publication-title: Metals (Basel)
– year: 2020
  ident: bib0026
  article-title: Critical raw materials for strategic technologies and sectors in the EU. A foresight study. Luxemburg: publications Office of the European Union
  publication-title: Online verfügbar unter
– volume: 162
  start-page: A2490
  year: 2015
  end-page: A2499
  ident: bib0053
  article-title: Review—Li-rich layered oxide cathodes for next-generation li-ion batteries: chances and challenges
  publication-title: J. Electrochem. Soc.
– year: 2020
  ident: bib0015
  article-title: Battery 2030+: sustainable batteries of the future
  publication-title: European Commission
– reference: Wood Mackenzie (2020): Can LFP technology retain its battery market share? Wood mackenzie. Online verfügbar unter
– reference: USGS (2022a): Mineral commodity summaries 2022 - Cobalt. U.S. geological survey. Online verfügbar unter
– year: 2019
  ident: bib0039
  article-title: Sozioökonomische Szenarien als Grundlage der Vulnerabilitätsanalysen für Deutschland. Teilbericht des Vorhabens, Politikinstrumente zur Klimaanpassung“
– volume: 29
  start-page: 111
  year: 2021
  end-page: 122
  ident: bib0037
  article-title: Treatment of electric vehicle battery waste in China: a review of existing policies
  publication-title: J. Environ. Eng. Landscape Manag.
– volume: 300
  year: 2021
  ident: bib0002
  article-title: Challenges for sustainable lithium supply: a critical review
  publication-title: J. Clean. Prod.
– volume: 11
  year: 2021
  ident: bib0043
  article-title: A perspective on the sustainability of cathode materials used in lithium-ion batteries
  publication-title: Adv. Energy Mater.
– reference: USGS (2022c): Mineral commodity summaries 2022 - Manganese. U.S. geological survey. Online verfügbar unter
– volume: 42
  start-page: 181
  year: 2017
  end-page: 192
  ident: bib0031
  article-title: The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100
  publication-title: Global Environ. Change: Human and Policy Dimensions
– reference: USGS (2022d): Mineral commodity summaries 2022 - Nickel. U.S. geological survey. Online verfügbar unter
– reference: , zuletzt geprüft am 19.04.2022.
– reference: USGS (2022b): Mineral commodity summaries 2022 - Lithium. U.S. geological survey. Online verfügbar unter
– reference: Sharova, V.; Wolff, P.; Konersmann, B.; Ferstl, F.; Stanek, R.; Hackmann, M. (2020): Evaluation of Lithium-Ion Battery Cell Value Chain. Hans Böckler Stiftung.
– volume: 10
  start-page: 246
  year: 2018
  end-page: 267
  ident: bib0020
  article-title: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review
  publication-title: Energy Storage Mater.
– volume: 103
  start-page: 1008
  year: 2016
  end-page: 1016
  ident: bib0047
  article-title: Thermal safety of lithium-ion batteries with various cathode materials: a numerical study
  publication-title: Int. J. Heat Mass Transf.
– volume: 138
  start-page: 125
  year: 2022
  end-page: 139
  ident: bib0023
  article-title: Recycling chains for lithium-ion batteries: a critical examination of current challenges, opportunities and process dependencies
  publication-title: Waste Manag.
– volume: 8
  start-page: 4058
  year: 2022
  end-page: 4084
  ident: bib0007
  article-title: Overview of batteries and battery management for electric vehicles
  publication-title: Energy Reports
– reference: European Commission (2020d): Strategic research agenda for batteries 2020. Hg. v. European commission. Batteries Europe.
– volume: 103
  start-page: 1008
  year: 2016
  ident: 10.1016/j.resconrec.2023.106920_bib0047
  article-title: Thermal safety of lithium-ion batteries with various cathode materials: a numerical study
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.07.088
– volume: 162
  start-page: A2490
  issue: 14
  year: 2015
  ident: 10.1016/j.resconrec.2023.106920_bib0053
  article-title: Review—Li-rich layered oxide cathodes for next-generation li-ion batteries: chances and challenges
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0111514jes
– volume: 300
  year: 2021
  ident: 10.1016/j.resconrec.2023.106920_bib0002
  article-title: Challenges for sustainable lithium supply: a critical review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126954
– volume: 42
  start-page: 215
  year: 2017
  ident: 10.1016/j.resconrec.2023.106920_bib0036
  article-title: Future growth patterns of world regions – A GDP scenario approach
  publication-title: Glob. Environ. Change: Human and Policy Dimensions
  doi: 10.1016/j.gloenvcha.2015.02.005
– volume: 164
  year: 2021
  ident: 10.1016/j.resconrec.2023.106920_bib0038
  article-title: Dynamic material flow analysis of critical metals for lithium-ion battery system in China from 2000 to 2018
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2020.105122
– volume: 138
  start-page: 125
  year: 2022
  ident: 10.1016/j.resconrec.2023.106920_bib0023
  article-title: Recycling chains for lithium-ion batteries: a critical examination of current challenges, opportunities and process dependencies
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2021.11.038
– year: 2022
  ident: 10.1016/j.resconrec.2023.106920_bib0041
  article-title: Material system analysis: a novel multilayer system approach to correlate EU flows and stocks of Li-ion batteries and their raw materials
  publication-title: J. Ind. Ecol.
  doi: 10.1111/jiec.13244
– ident: 10.1016/j.resconrec.2023.106920_bib0050
– ident: 10.1016/j.resconrec.2023.106920_bib0054
– volume: 4
  start-page: 71
  issue: 1
  year: 2021
  ident: 10.1016/j.resconrec.2023.106920_bib0024
  article-title: Circular economy strategies for electric vehicle batteries reduce reliance on raw materials
  publication-title: Nat. Sustain.
– ident: 10.1016/j.resconrec.2023.106920_bib0048
– ident: 10.1016/j.resconrec.2023.106920_bib0058
– ident: 10.1016/j.resconrec.2023.106920_bib0021
– volume: 163
  year: 2022
  ident: 10.1016/j.resconrec.2023.106920_bib0063
  article-title: Recycling of lithium iron phosphate batteries: status, technologies, challenges, and prospects
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112515
– volume: 19
  start-page: e00087
  year: 2019
  ident: 10.1016/j.resconrec.2023.106920_bib0042
  article-title: The case for recycling: overview and challenges in the material supply chain for automotive li-ion batteries
  publication-title: Sustain. Mater. Technol.
– ident: 10.1016/j.resconrec.2023.106920_bib0056
  doi: 10.1016/j.promfg.2019.04.033
– volume: 42
  start-page: 181
  year: 2017
  ident: 10.1016/j.resconrec.2023.106920_bib0031
  article-title: The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100
  publication-title: Global Environ. Change: Human and Policy Dimensions
  doi: 10.1016/j.gloenvcha.2014.06.004
– ident: 10.1016/j.resconrec.2023.106920_bib0064
– volume: 8
  start-page: 4058
  year: 2022
  ident: 10.1016/j.resconrec.2023.106920_bib0007
  article-title: Overview of batteries and battery management for electric vehicles
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2022.03.016
– year: 2015
  ident: 10.1016/j.resconrec.2023.106920_bib0046
– year: 2022
  ident: 10.1016/j.resconrec.2023.106920_bib0025
– volume: 24
  start-page: 80
  issue: 1
  year: 2020
  ident: 10.1016/j.resconrec.2023.106920_bib0003
  article-title: Understanding the future of lithium: part 1, resource model
  publication-title: J. Ind. Ecol.
  doi: 10.1111/jiec.12949
– ident: 10.1016/j.resconrec.2023.106920_bib0010
  doi: 10.1016/j.gloenvcha.2015.06.004
– volume: 89
  start-page: 292
  year: 2018
  ident: 10.1016/j.resconrec.2023.106920_bib0067
  article-title: The lithium-ion battery: state of the art and future perspectives
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.002
– volume: 54
  start-page: 2985
  issue: 5
  year: 2020
  ident: 10.1016/j.resconrec.2023.106920_bib0022
  article-title: Perspectives on cobalt supply through 2030 in the face of changing demand
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b04975
– volume: 11
  issue: 39
  year: 2021
  ident: 10.1016/j.resconrec.2023.106920_bib0043
  article-title: A perspective on the sustainability of cathode materials used in lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102028
– ident: 10.1016/j.resconrec.2023.106920_bib0057
– year: 2020
  ident: 10.1016/j.resconrec.2023.106920_bib0016
  article-title: Critical Raw Materials Resilience: charting a Path towards greater Security and Sustainability
  publication-title: Eur. Commission. Brussels, Belgium
– year: 2020
  ident: 10.1016/j.resconrec.2023.106920_bib0017
  article-title: Proposal for a regulation concerning batteries and waste batteries, repealing Directive 2006/66/EC and amending Regulation (EU) No 2019/1020. Proposal for the new battery directive. European commission
– year: 2018
  ident: 10.1016/j.resconrec.2023.106920_bib0035
– ident: 10.1016/j.resconrec.2023.106920_bib0060
– ident: 10.1016/j.resconrec.2023.106920_bib0001
– volume: 42
  start-page: 226
  year: 2017
  ident: 10.1016/j.resconrec.2023.106920_bib0008
  article-title: Income projections for climate change research: a framework based on human capital dynamics
  publication-title: Glob. Environ. Change: Human And Policy Dimensions
  doi: 10.1016/j.gloenvcha.2015.02.012
– year: 2020
  ident: 10.1016/j.resconrec.2023.106920_bib0026
  article-title: Critical raw materials for strategic technologies and sectors in the EU. A foresight study. Luxemburg: publications Office of the European Union
  publication-title: Online verfügbar unter
– volume: 29
  start-page: 111
  issue: 2
  year: 2021
  ident: 10.1016/j.resconrec.2023.106920_bib0037
  article-title: Treatment of electric vehicle battery waste in China: a review of existing policies
  publication-title: J. Environ. Eng. Landscape Manag.
  doi: 10.3846/jeelm.2021.14220
– year: 2019
  ident: 10.1016/j.resconrec.2023.106920_bib0039
– volume: 12
  start-page: 955
  issue: 5
  year: 2019
  ident: 10.1016/j.resconrec.2023.106920_bib0012
  article-title: A techno-economic analysis of vehicle-to-building: battery degradation and efficiency analysis in the context of coordinated electric vehicle charging
  publication-title: Energies
  doi: 10.3390/en12050955
– ident: 10.1016/j.resconrec.2023.106920_bib0061
– year: 2022
  ident: 10.1016/j.resconrec.2023.106920_bib0019
  article-title: EU ban on the sale of new petrol and diesel cars from 2035 explained
  publication-title: Online verfügbar unter
– year: 2017
  ident: 10.1016/j.resconrec.2023.106920_bib0013
  article-title: European battery alliance. European commission
– ident: 10.1016/j.resconrec.2023.106920_bib0032
– ident: 10.1016/j.resconrec.2023.106920_bib0027
– volume: 42
  start-page: 153
  year: 2017
  ident: 10.1016/j.resconrec.2023.106920_bib0052
  article-title: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview
  publication-title: Glob. Environ. Change: Human and Policy Dimensions
  doi: 10.1016/j.gloenvcha.2016.05.009
– volume: 12
  issue: 17
  year: 2022
  ident: 10.1016/j.resconrec.2023.106920_bib0044
  article-title: Recycling of lithium-ion batteries—current state of the art, circular economy, and next generation recycling
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102917
– volume: 7
  start-page: 712
  issue: 2
  year: 2022
  ident: 10.1016/j.resconrec.2023.106920_bib0004
  article-title: Lithium-ion battery recycling-overview of techniques and trends
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02602
– volume: 42
  start-page: 193
  year: 2017
  ident: 10.1016/j.resconrec.2023.106920_bib0029
  article-title: Global urbanization projections for the Shared Socioeconomic Pathways
  publication-title: Glob. Environ. Change: Human and Policy Dimensions
  doi: 10.1016/j.gloenvcha.2015.03.008
– volume: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.resconrec.2023.106920_bib0065
  article-title: Future material demand for automotive lithium-based batteries
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-020-00095-x
– volume: 40
  year: 2021
  ident: 10.1016/j.resconrec.2023.106920_bib0033
  article-title: Circular economy of Li batteries: technologies and trends
  publication-title: J. Energy Storage
– volume: 9
  year: 2022
  ident: 10.1016/j.resconrec.2023.106920_bib0045
  article-title: Anode materials for lithium-ion batteries: a review
  publication-title: Appl. Surface Sci. Adv.
– ident: 10.1016/j.resconrec.2023.106920_bib0014
– volume: 10
  start-page: 246
  year: 2018
  ident: 10.1016/j.resconrec.2023.106920_bib0020
  article-title: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.05.013
– ident: 10.1016/j.resconrec.2023.106920_bib0062
– year: 2020
  ident: 10.1016/j.resconrec.2023.106920_bib0015
  article-title: Battery 2030+: sustainable batteries of the future
– ident: 10.1016/j.resconrec.2023.106920_bib0018
– ident: 10.1016/j.resconrec.2023.106920_bib0066
– volume: 10
  start-page: 1107
  issue: 8
  year: 2020
  ident: 10.1016/j.resconrec.2023.106920_bib0006
  article-title: Industrial recycling of lithium-ion batteries—a critical review of metallurgical process routes
  publication-title: Metals (Basel)
  doi: 10.3390/met10081107
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.resconrec.2023.106920_bib0011
  article-title: Automotive Li-Ion Batteries: current Status and Future Perspectives
  publication-title: Electrochem. Energ. Rev.
  doi: 10.1007/s41918-018-0022-z
– year: 2013
  ident: 10.1016/j.resconrec.2023.106920_bib0034
– ident: 10.1016/j.resconrec.2023.106920_bib0028
– ident: 10.1016/j.resconrec.2023.106920_bib0051
– ident: 10.1016/j.resconrec.2023.106920_bib0049
– year: 2017
  ident: 10.1016/j.resconrec.2023.106920_bib0005
  article-title: EU competitiveness in advanced li-ion batteries for e-mobility and stationary storage applications. Opportunities and actions. Luxembourg: publications office of the European union (EUR, scientific and technical research series, 28837)
– ident: 10.1016/j.resconrec.2023.106920_bib0055
– year: 2021
  ident: 10.1016/j.resconrec.2023.106920_bib0040
– ident: 10.1016/j.resconrec.2023.106920_bib0059
– year: 2020
  ident: 10.1016/j.resconrec.2023.106920_bib0009
  article-title: The recycling of lithium-ion batteries: a stratetic pillar for the European battery alliance
– year: 2018
  ident: 10.1016/j.resconrec.2023.106920_bib0030
SSID ssj0003893
Score 2.7090921
Snippet •Three mobility scenarios based on the shared socioeconomic pathways including new registration figures and thus vehicle sales and production are formed.•Two...
The market for electromobility has grown constantly in the last years. To ensure a future supply of raw materials for the production of new batteries for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106920
SubjectTerms batteries
cathodes
cobalt
Electric vehicles
Future metal supply
industry
LIB
lithium
Lithium-ion batteries
manganese
markets
nickel
Raw materials
Recycling
Title A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles
URI https://dx.doi.org/10.1016/j.resconrec.2023.106920
https://www.proquest.com/docview/2834210985
Volume 192
WOSCitedRecordID wos001003081200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003893
  issn: 0921-3449
  databaseCode: AIEXJ
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKBhIcEBQmxpeMhLhUmRInTWNuFUrFUCkT6qC3yHYcLaNNS5OOjRv_Oc-xnXR8aOPAoWlk9dlN369-P9vvA6GXBExQGgrPiUjmO0HqZQ4LOXO8gIO1454kkS42MZhMotmMHnU6P2wszNl8UBTR-Tld_VdVQxsoW4XO_oO6m06hAe5B6XAFtcP1Woof9lS5TcHKSh0EjOqcIb2P7FvvPavq8WGOWZgUrYo1Xog6Iv1oWSnHIc1Nx3l1km8WziH0oDNw5rXjVi-uq-bkovdJntQOddvk1h4F1NAQyk3bbPhqJ3Y7VLsJrko9Wfb8PS-_NCZiImV2KfVBK7OG5bjKzbV2Pqu3BWsJeBN0NFFOBjqQLJ-XxnnZbG2QLUdCu0dJPMcPdE7T3-Z6ve1werCWJTwSPMSB6gPaQ0rc1rzZI_3Jh2R0PB4n03g2fbX66qjCY-qA3lRhuYF2yaBPYWLcHR7Gs3eNOVeMrk7YaL7LJSfBP479N4rzi7GvGcz0Hrprlh54qCFzH3Vk0UW34jpt-UUX3dlKTdlFe3EbAQlCxgSUD1AxxBZfeFlgjS8M-MIWX1jjC6tXgy_c4AsvM7yFL9zgC-cFtvjCFl8P0fEonr5565iiHY4Aals5GSwJGA-lZFGWAvsVA595JOVh3xNAvb0-D9xBmoaUZxFhkmSCkywL3ZS5wqOC-ntop1gW8hHCnMPUQblgEc2A57vcl1EKAikNwsBN6T4K7e-cCJPRXhVWmSfWdfE0aRSUKAUlWkH7yG0EVzqpy9Uir60iE8NNNedMAI5XC7-wqk9g9lZHcqyQy02ZALkPiOfSqP_4Gp95gm63f5OnaKdab-QzdFOcVXm5fm6A-xOOe8L4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Forecast+on+Future+Raw+Material+Demand+and+Recycling+Potential+of+Lithium-Ion+Batteries+in+Electric+Vehicles&rft.jtitle=Resources%2C+conservation+and+recycling&rft.au=Maisel%2C+Franziska&rft.au=Neef%2C+Christoph&rft.au=Marscheider-Weidemann%2C+Frank&rft.au=Nissen%2C+Nils+F&rft.date=2023-05-01&rft.issn=0921-3449&rft_id=info:doi/10.1016%2Fj.resconrec.2023.106920&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-3449&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-3449&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-3449&client=summon