A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles
•Three mobility scenarios based on the shared socioeconomic pathways including new registration figures and thus vehicle sales and production are formed.•Two technology scenarios based on a forecast on the market share of lithium-ion battery cathode chemistries are developed.•The future demand for e...
Gespeichert in:
| Veröffentlicht in: | Resources, conservation and recycling Jg. 192; S. 106920 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.05.2023
|
| Schlagworte: | |
| ISSN: | 0921-3449, 1879-0658 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Three mobility scenarios based on the shared socioeconomic pathways including new registration figures and thus vehicle sales and production are formed.•Two technology scenarios based on a forecast on the market share of lithium-ion battery cathode chemistries are developed.•The future demand for electric vehicle battery cathode raw materials lithium, cobalt, nickel and manganese was calculated.•The future material demand in 2040 for lithium, cobalt and nickel for lithium-ion batteries in electric vehicles exceeds current raw material production.•The recycling potential for lithium and nickel is more than half the raw material demand for lithium-ion batteries in 2040.
The market for electromobility has grown constantly in the last years. To ensure a future supply of raw materials for the production of new batteries for electric vehicles, it is essential to estimate the future demand for battery metals. This study focuses on the future demand for electric vehicle battery cathode raw materials lithium, cobalt, nickel, and manganese by considering different technology and growth scenarios. The results show that in 2040 the future material demand for lithium, cobalt, and nickel for Lithium-Ion Batteries in electric vehicles exceeds current raw material production. Depending on the growth and technology scenario, the future demand for lithium and cobalt exceeds today's production by up to 8 times in 2040. Nickel exceeds today's production in one scenario. For manganese, future demand in 2040 remains far below today's production. The recycling potential for lithium and nickel is more than half the raw material demand for Lithium-Ion Batteries in 2040. For cobalt, the recycling potential even exceeds the raw material demand in 2040. In conclusion, it remains a challenge for the industry to massively scale up resource production and focus on the recycling of battery metals in the future to meet the increasing consumption of electromobility. |
|---|---|
| AbstractList | •Three mobility scenarios based on the shared socioeconomic pathways including new registration figures and thus vehicle sales and production are formed.•Two technology scenarios based on a forecast on the market share of lithium-ion battery cathode chemistries are developed.•The future demand for electric vehicle battery cathode raw materials lithium, cobalt, nickel and manganese was calculated.•The future material demand in 2040 for lithium, cobalt and nickel for lithium-ion batteries in electric vehicles exceeds current raw material production.•The recycling potential for lithium and nickel is more than half the raw material demand for lithium-ion batteries in 2040.
The market for electromobility has grown constantly in the last years. To ensure a future supply of raw materials for the production of new batteries for electric vehicles, it is essential to estimate the future demand for battery metals. This study focuses on the future demand for electric vehicle battery cathode raw materials lithium, cobalt, nickel, and manganese by considering different technology and growth scenarios. The results show that in 2040 the future material demand for lithium, cobalt, and nickel for Lithium-Ion Batteries in electric vehicles exceeds current raw material production. Depending on the growth and technology scenario, the future demand for lithium and cobalt exceeds today's production by up to 8 times in 2040. Nickel exceeds today's production in one scenario. For manganese, future demand in 2040 remains far below today's production. The recycling potential for lithium and nickel is more than half the raw material demand for Lithium-Ion Batteries in 2040. For cobalt, the recycling potential even exceeds the raw material demand in 2040. In conclusion, it remains a challenge for the industry to massively scale up resource production and focus on the recycling of battery metals in the future to meet the increasing consumption of electromobility. The market for electromobility has grown constantly in the last years. To ensure a future supply of raw materials for the production of new batteries for electric vehicles, it is essential to estimate the future demand for battery metals. This study focuses on the future demand for electric vehicle battery cathode raw materials lithium, cobalt, nickel, and manganese by considering different technology and growth scenarios. The results show that in 2040 the future material demand for lithium, cobalt, and nickel for Lithium-Ion Batteries in electric vehicles exceeds current raw material production. Depending on the growth and technology scenario, the future demand for lithium and cobalt exceeds today's production by up to 8 times in 2040. Nickel exceeds today's production in one scenario. For manganese, future demand in 2040 remains far below today's production. The recycling potential for lithium and nickel is more than half the raw material demand for Lithium-Ion Batteries in 2040. For cobalt, the recycling potential even exceeds the raw material demand in 2040. In conclusion, it remains a challenge for the industry to massively scale up resource production and focus on the recycling of battery metals in the future to meet the increasing consumption of electromobility. |
| ArticleNumber | 106920 |
| Author | Nissen, Nils F. Maisel, Franziska Marscheider-Weidemann, Frank Neef, Christoph |
| Author_xml | – sequence: 1 givenname: Franziska orcidid: 0000-0001-6768-4943 surname: Maisel fullname: Maisel, Franziska email: franziska.maisel@izm.fraunhofer.de organization: Fraunhofer Institute for Reliability and Microintegration IZM, Germany – sequence: 2 givenname: Christoph surname: Neef fullname: Neef, Christoph organization: Fraunhofer Institute for Systems and Innovation Research ISI, Germany – sequence: 3 givenname: Frank surname: Marscheider-Weidemann fullname: Marscheider-Weidemann, Frank organization: Fraunhofer Institute for Systems and Innovation Research ISI, Germany – sequence: 4 givenname: Nils F. surname: Nissen fullname: Nissen, Nils F. organization: Fraunhofer Institute for Reliability and Microintegration IZM, Germany |
| BookMark | eNqNkL1qHDEUhUWwIWvHz2CVaWajn_lT4WJZEjtgcOPUQiNdebVopI2kcfDbR8MGF2mS4iK4Ot-B-12hixADIHRLyZYS2n85bhNkHUMCvWWE8brtBSMf0IaOg2hI340XaEMEow1vW_ERXeV8JITwUfANCjtsY0VVLjgGbJeyJMBJ_cKzKpCc8tjArILB69Tgm_YuvOBTLBDK-h0t9q4c3DI3rjZMqqwcZOwCBg-6JKfxKxyc9pA_oUurfIabP-81-vHt6_P-oXl8uv--3z02mouhNLajQk09gBqt4ULogSvKzNR3VLctpd3UksGYXkx2ZAqY1ROztidGEU2FFvwafT73nlL8uUAucnZZg_cqQFyyZCNvGSVi7Gr07hzVKeacwErtiir1lpKU85ISuXqWR_nuWa6e5dlz5Ye_-FNys0pv_0HuziRUE68OkszaQdBgXI0WaaL7Z8dvB2aiKQ |
| CitedBy_id | crossref_primary_10_1016_j_jece_2025_116811 crossref_primary_10_1016_j_jpowsour_2025_237495 crossref_primary_10_3390_membranes14120277 crossref_primary_10_1016_j_aitf_2025_100014 crossref_primary_10_1016_j_desal_2025_119395 crossref_primary_10_1016_j_jclepro_2024_142108 crossref_primary_10_1016_j_aej_2025_05_088 crossref_primary_10_1007_s40815_025_02097_8 crossref_primary_10_1016_j_chemosphere_2023_140573 crossref_primary_10_1016_j_jece_2024_113787 crossref_primary_10_1002_adfm_202511503 crossref_primary_10_3390_min14121230 crossref_primary_10_1007_s10163_025_02341_1 crossref_primary_10_1016_j_scitotenv_2024_174271 crossref_primary_10_24857_rgsa_v18n11_167 crossref_primary_10_3390_membranes15040097 crossref_primary_10_3390_wevj16040234 crossref_primary_10_1016_j_wasman_2023_12_043 crossref_primary_10_3390_en18061359 crossref_primary_10_3390_min15020101 crossref_primary_10_1016_j_jpowsour_2025_236832 crossref_primary_10_3390_jmse13091676 crossref_primary_10_1038_s41467_025_61090_9 crossref_primary_10_1016_j_eist_2025_101044 crossref_primary_10_1016_j_psep_2025_106919 crossref_primary_10_1016_j_eiar_2025_107996 crossref_primary_10_1016_j_cej_2024_148941 crossref_primary_10_1016_j_exis_2023_101373 crossref_primary_10_1002_aenm_202405371 crossref_primary_10_1016_j_desal_2025_118570 crossref_primary_10_1016_j_ensm_2024_103964 crossref_primary_10_1177_0958305X241256035 crossref_primary_10_1039_D5EE00415B crossref_primary_10_1016_j_jpowsour_2024_236157 crossref_primary_10_1016_j_cclet_2024_109500 crossref_primary_10_1038_s43246_024_00619_9 crossref_primary_10_3390_batteries10010038 crossref_primary_10_1016_j_frl_2024_105871 crossref_primary_10_3390_batteries11020051 crossref_primary_10_1002_cssc_202401722 crossref_primary_10_1016_j_resconrec_2025_108377 crossref_primary_10_1002_adfm_202406384 crossref_primary_10_1016_j_desal_2024_118224 crossref_primary_10_1016_j_resconrec_2024_107583 crossref_primary_10_1016_j_desal_2024_118121 crossref_primary_10_1002_sres_3183 crossref_primary_10_1016_j_nxener_2025_100357 crossref_primary_10_3389_fmats_2023_1152018 crossref_primary_10_1016_j_cej_2024_151921 crossref_primary_10_1016_j_jclepro_2023_139272 crossref_primary_10_1016_j_isci_2025_113267 crossref_primary_10_1038_s41467_024_51152_9 crossref_primary_10_1016_j_seppur_2025_132354 crossref_primary_10_1007_s11814_024_00288_x crossref_primary_10_1016_j_jechem_2023_10_012 crossref_primary_10_1016_j_mineng_2023_108403 crossref_primary_10_1016_j_seppur_2024_130847 crossref_primary_10_1007_s43546_024_00624_7 crossref_primary_10_1016_j_rser_2025_115797 crossref_primary_10_1016_j_desal_2023_116978 crossref_primary_10_1016_j_oneear_2024_06_017 crossref_primary_10_1016_j_resconrec_2025_108161 crossref_primary_10_1016_j_ceja_2025_100757 crossref_primary_10_1109_TITS_2024_3403518 crossref_primary_10_3390_w17111670 crossref_primary_10_1016_j_tre_2024_103806 crossref_primary_10_5382_econgeo_5133 crossref_primary_10_1038_s41467_024_54503_8 crossref_primary_10_1111_jmi_70000 crossref_primary_10_1016_j_hazadv_2025_100775 crossref_primary_10_1002_cite_202300138 crossref_primary_10_1016_j_enpol_2024_114045 crossref_primary_10_1016_j_est_2023_109847 crossref_primary_10_1016_j_resourpol_2023_103861 crossref_primary_10_17323_fstig_2025_24480 crossref_primary_10_2478_ttj_2024_0028 crossref_primary_10_1016_j_desal_2023_117142 crossref_primary_10_54033_cadpedv22n10_280 crossref_primary_10_1016_j_jece_2025_116600 crossref_primary_10_1016_j_resconrec_2024_107449 crossref_primary_10_1007_s42864_023_00245_x crossref_primary_10_1016_j_watres_2025_123862 crossref_primary_10_1016_j_jclepro_2024_143088 crossref_primary_10_3390_min14090851 crossref_primary_10_1007_s40831_025_01159_3 crossref_primary_10_1016_j_est_2024_111896 crossref_primary_10_1016_j_seppur_2025_132104 crossref_primary_10_1016_j_psep_2025_107397 crossref_primary_10_1039_D3EW00854A crossref_primary_10_1016_j_carbpol_2024_122973 crossref_primary_10_1007_s40831_025_01049_8 crossref_primary_10_1016_j_jpowsour_2023_233995 crossref_primary_10_1016_j_jiec_2024_06_010 crossref_primary_10_3390_su17188388 crossref_primary_10_1016_j_scitotenv_2025_178992 crossref_primary_10_1016_j_jiec_2024_10_013 crossref_primary_10_1149_1945_7111_addd50 crossref_primary_10_3390_met15080886 crossref_primary_10_1039_D5CC02392K crossref_primary_10_1002_ente_202401046 crossref_primary_10_1016_j_jallcom_2024_176201 crossref_primary_10_1038_s41598_025_86250_1 crossref_primary_10_1007_s10311_023_01669_0 crossref_primary_10_3390_chemosensors13090348 crossref_primary_10_1016_j_resourpol_2024_105399 crossref_primary_10_1016_j_spc_2025_02_013 crossref_primary_10_1016_j_jclepro_2024_143756 crossref_primary_10_1002_adts_202300302 crossref_primary_10_3390_batteries10110403 crossref_primary_10_1016_j_csite_2025_106136 crossref_primary_10_1007_s00604_025_07459_5 crossref_primary_10_1080_1540496X_2025_2535705 crossref_primary_10_1007_s10163_024_01982_y crossref_primary_10_1038_s41560_025_01722_y crossref_primary_10_1149_1945_7111_ad5d1e crossref_primary_10_1021_acsenergylett_5c02782 crossref_primary_10_3390_min15080859 crossref_primary_10_1016_j_nxener_2023_100091 crossref_primary_10_1016_j_jclepro_2025_145254 crossref_primary_10_1016_j_procir_2024_02_007 crossref_primary_10_1063_5_0270918 crossref_primary_10_1016_j_est_2024_111661 crossref_primary_10_1016_j_seppur_2024_128982 crossref_primary_10_1016_j_jenvman_2025_125783 crossref_primary_10_1021_acs_est_4c13838 crossref_primary_10_1016_j_rser_2024_114806 crossref_primary_10_1016_j_sftr_2025_100847 crossref_primary_10_1016_j_trd_2024_104261 crossref_primary_10_54337_plate2025_10339 crossref_primary_10_1016_j_crsus_2025_100404 crossref_primary_10_1016_j_jallcom_2024_174692 crossref_primary_10_1016_j_susmat_2024_e01108 crossref_primary_10_1002_prs_12618 crossref_primary_10_1016_j_jece_2025_116624 crossref_primary_10_1088_1748_9326_ad69ac crossref_primary_10_3390_su17072922 crossref_primary_10_1016_j_jclepro_2024_140636 crossref_primary_10_1016_j_energy_2025_137215 crossref_primary_10_1016_j_jclepro_2025_144696 crossref_primary_10_1016_j_spc_2024_07_027 crossref_primary_10_1016_j_jclepro_2023_140099 crossref_primary_10_1016_j_est_2023_109175 crossref_primary_10_1007_s00521_024_10210_5 crossref_primary_10_1016_j_desal_2024_118309 crossref_primary_10_1021_acs_langmuir_5c03935 crossref_primary_10_1016_j_molliq_2025_128161 crossref_primary_10_1016_j_psep_2024_08_027 crossref_primary_10_1016_j_cie_2025_110900 crossref_primary_10_3390_pr12091816 crossref_primary_10_1007_s41870_025_02712_9 crossref_primary_10_1016_j_desal_2024_117698 crossref_primary_10_1039_D5EE02287H crossref_primary_10_1016_j_wri_2025_100317 crossref_primary_10_1016_j_jclepro_2023_139073 crossref_primary_10_1016_j_seppur_2025_132671 crossref_primary_10_1016_j_oregeorev_2024_106179 crossref_primary_10_1002_ese3_1477 crossref_primary_10_1111_jiec_13527 crossref_primary_10_1016_j_fuel_2023_129629 crossref_primary_10_1002_pol_20250060 crossref_primary_10_1016_j_apenergy_2024_123897 crossref_primary_10_1016_j_psep_2025_107459 crossref_primary_10_1016_j_resconrec_2025_108246 crossref_primary_10_1103_99jn_17v6 crossref_primary_10_1007_s11664_024_10953_w crossref_primary_10_1016_j_resconrec_2024_107643 crossref_primary_10_1038_s43247_025_02085_8 crossref_primary_10_1016_j_procir_2024_12_006 crossref_primary_10_1002_cssc_202500799 crossref_primary_10_1016_j_jenvman_2024_120774 crossref_primary_10_1016_j_jhazmat_2025_139545 crossref_primary_10_1016_j_scitotenv_2024_174862 crossref_primary_10_1186_s13065_025_01445_x crossref_primary_10_1088_1755_1315_1458_1_012010 crossref_primary_10_1016_j_est_2024_112820 crossref_primary_10_1016_j_mineng_2025_109698 crossref_primary_10_1016_j_rser_2024_114654 crossref_primary_10_1016_j_seppur_2024_130358 crossref_primary_10_1108_IJPPM_01_2024_0015 crossref_primary_10_1016_j_mineng_2025_109602 crossref_primary_10_1021_acs_est_4c12619 crossref_primary_10_1109_ACCESS_2025_3557405 crossref_primary_10_3390_batteries11050185 crossref_primary_10_1016_j_ecmx_2025_101058 crossref_primary_10_1016_j_jenvman_2024_120021 crossref_primary_10_1016_j_resconrec_2025_108477 crossref_primary_10_1016_j_energy_2025_136230 crossref_primary_10_1016_j_jclepro_2023_137797 crossref_primary_10_1039_D5GC02519B |
| Cites_doi | 10.1016/j.ijheatmasstransfer.2016.07.088 10.1149/2.0111514jes 10.1016/j.jclepro.2021.126954 10.1016/j.gloenvcha.2015.02.005 10.1016/j.resconrec.2020.105122 10.1016/j.wasman.2021.11.038 10.1111/jiec.13244 10.1016/j.rser.2022.112515 10.1016/j.promfg.2019.04.033 10.1016/j.gloenvcha.2014.06.004 10.1016/j.egyr.2022.03.016 10.1111/jiec.12949 10.1016/j.gloenvcha.2015.06.004 10.1016/j.rser.2018.03.002 10.1021/acs.est.9b04975 10.1002/aenm.202102028 10.1016/j.gloenvcha.2015.02.012 10.3846/jeelm.2021.14220 10.3390/en12050955 10.1016/j.gloenvcha.2016.05.009 10.1002/aenm.202102917 10.1021/acsenergylett.1c02602 10.1016/j.gloenvcha.2015.03.008 10.1038/s43246-020-00095-x 10.1016/j.ensm.2017.05.013 10.3390/met10081107 10.1007/s41918-018-0022-z |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.resconrec.2023.106920 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Ecology Environmental Sciences |
| EISSN | 1879-0658 |
| ExternalDocumentID | 10_1016_j_resconrec_2023_106920 S0921344923000575 |
| GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JM 9JN 9JO AACTN AAEDT AAEDW AAFJI AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SES SEW SPC SPCBC SSB SSJ SSO SSR SSZ T5K WUQ ZY4 ~A~ ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c397t-f519ab6eea8fd399c73a12db651c44115b407dd69bf82ae2fcb2ff60da0c19c93 |
| ISICitedReferencesCount | 212 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003081200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-3449 |
| IngestDate | Thu Oct 02 06:30:32 EDT 2025 Sat Nov 29 07:15:49 EST 2025 Tue Nov 18 20:35:48 EST 2025 Fri Feb 23 02:37:34 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lithium-ion batteries EV LIB Electric vehicles Raw materials Recycling Future metal supply |
| Language | English |
| License | This is an open access article under the CC BY-NC license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c397t-f519ab6eea8fd399c73a12db651c44115b407dd69bf82ae2fcb2ff60da0c19c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6768-4943 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.resconrec.2023.106920 |
| PQID | 2834210985 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834210985 crossref_citationtrail_10_1016_j_resconrec_2023_106920 crossref_primary_10_1016_j_resconrec_2023_106920 elsevier_sciencedirect_doi_10_1016_j_resconrec_2023_106920 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Resources, conservation and recycling |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jiang, O'Neill (bib0029) 2017; 42 Kampker, Vallée, Schnettler (bib0030) 2018 European Commission (2020d): Strategic research agenda for batteries 2020. Hg. v. European commission. Batteries Europe. Thielmann, A.; Sauer, A.; Wietschel, M. (2015): Gesamt-roadmap Energiespeicher für die Elektromobilität 2030. Fraunhofer-Institut für System- und Innovationsforschung (ISI). Murdock, Toghill, Tapia-Ruiz (bib0043) 2021; 11 Gerold, Windisch-Kern, Nigl, Jandric, Altendorfer, Rutrecht (bib0023) 2022; 138 Liu, Liu, Li, Liu, Ogunmoroti, Li (bib0038) 2021; 164 Sojka, R. (2020): Safe treatment of lithium-based batteries through thermal conditioning. Hg. v. Thomé-Kozmiensky Verlag GmbH. ACCUREC recycling. Zhao, Tom (2018): Sustainable developement strategy for EV battery. BYD. Wood Mackenzie (2020): Can LFP technology retain its battery market share? Wood mackenzie. Online verfügbar unter Brückner, Frank, Elwert (bib0006) 2020; 10 Dellink, Rob; Chateau, Jean; Lanzi, Elisa; Magné, Bertrand (2017): Long-term economic growth projections in the shared socioeconomic pathways. In Li, Yang, Long, Mamaril, Chi (bib0037) 2021; 29 Peng, Jiang (bib0047) 2016; 103 Agarwal, S. (2021): Status of the rechargeable li-ion battery industry 2021. Market and technology report 2021. Yole developement. 33, S. 272–279. DOI: 10.1016/j.promfg.2019.04.033. Huisman, Pavel, Bobba, Carrara, Mathieux (bib0026) 2020 Neumann, Petranikova, Meeus, Gamarra, Younesi, Winter, Nowak (bib0044) 2022; 12 Marscheider-Weidemann, Langkau, Baur, Billaud, Deubzer, Eberling (bib0040) 2021 Pillot, C. (2021): The Rechargeable Battery Market and Main Trends 2020-2030. Avicenne Energy. Novi, Michigan, USA. Zubi, Dufo-López, Carvalho, Pasaoglu (bib0067) 2018; 89 Ding, Cano, Yu, Lu, Chen (bib0011) 2019; 2 Matos, Mathieux, Ciacci, Lundhaug, León, Müller (bib0041) 2022 Wang, Liu, Dutta, Alessi, Rinklebe, Ok, Tsang (bib0063) 2022; 163 Crespo Cuaresma (bib0008) 2017; 42 (bib0015) 2020 Heidrich, Baars, Domenech, Bleischwitz, Melin (bib0024) 2021; 4 Danino-Perraud (bib0009) 2020 Heimes, Kampker, Dorn, Offermanns, Bockey, Wennemar (bib0025) 2022 Steward, Darlene; Mayyas, Ahmad; Mann, Margaret (2019): Economics and challenges of li-ion battery recycling from end-of-life vehicles. In USGS (2022d): Mineral commodity summaries 2022 - Nickel. U.S. geological survey. Online verfügbar unter (bib0013) 2017 Khan, Ali, Pecht (bib0033) 2021; 40 Rahimzei, E.; Sann, K.; Vogel, M. (2015): Kompendium: li-Ionen-Batterien. Grundlagen, Bewertungskriterien, Gesetze und Normen. VDE Verband der Elektrotechnik Elektronik Informationstechnik e. V. USGS (2022a): Mineral commodity summaries 2022 - Cobalt. U.S. geological survey. Online verfügbar unter Riahi, van Vuuren, Kriegler, Edmonds, O'Neill, Fujimori (bib0052) 2017; 42 USGS (2022b): Mineral commodity summaries 2022 - Lithium. U.S. geological survey. Online verfügbar unter (bib0016) 2020 zuletzt geprüft am 10.05.2022. Feng, Ouyang, Liu, Lu, Xia, He (bib0020) 2018; 10 Boon-Brett, Di Persio, Lebedeva, Steen (bib0005) 2017 Baum, Bird, Yu, Ma (bib0004) 2022; 7 Lutz, Becker, Ulrich, Distelkamp (bib0039) 2019 Rozier, Tarascon (bib0053) 2015; 162 Korthauer (bib0034) 2013 Nwanya, Nzereogu, Omah, Ezema, Iwuoha (bib0045) 2022; 9 (bib0019) 2022 Pachauri, Meyer (bib0046) 2015 zuletzt aktualisiert am 19.04.2022. USGS (2022c): Mineral commodity summaries 2022 - Manganese. U.S. geological survey. Online verfügbar unter Fischhaber, S.; Regett, A.; Schuster, S.F.; Hesse, H. (2016): Second-Life-Konzepte für Lithium-Ionen-Batterien aus Elektrofahrzeugen. Ergebniskonferenz Schaufenster Elektromobilität. IEA (2019): Global EV outlook 2019: oECD. Fu, Beatty, Gaustad, Ceder, Roth, Kirchain (bib0022) 2020; 54 Kc, Lutz (bib0031) 2017; 42 Leimbach, Kriegler, Roming, Schwanitz (bib0036) 2017; 42 Research Interfaces (2018): What do we know about next-generation NMC 811 cathode? Research interfaces. Online verfügbar unter IEA (2022): Global EV outlook 2022: oECD. Pillot, C. (2017): The Rechargeable Battery Market and Main Trends 2011-2020. Avicenne Energy. Novi, Michigan, USA. Englberger, Hesse, Kucevic, Jossen (bib0012) 2019; 12 Alessia, Alessandro, Maria, Carlos, Francesca (bib0002) 2021; 300 Sharova, V.; Wolff, P.; Konersmann, B.; Ferstl, F.; Stanek, R.; Hackmann, M. (2020): Evaluation of Lithium-Ion Battery Cell Value Chain. Hans Böckler Stiftung. European Commission (2019): The European green deal. European commission. Brussels, Belgium. Online verfügbar unter Ambrose, Kendall (bib0003) 2020; 24 42, S. 200–214. DOI: 10.1016/j.gloenvcha.2015.06.004. Thielmann, A.; Neef, C.; Hettesheimer, T.; Döscher, H.; Wietschel, M.; Tübke, J. (2017): Energiespeicher-roadmap (Update 2017). Hochenergie-Batterien 2030+ Und Perspektiven zukünftiger Batterietechnologie. Hg. v. Fraunhofer-Institut für System- und Innovationsforschung (ISI). Karlsruhe, Germany. Xu, Dai, Gaines, Hu, Tukker, Steubing (bib0065) 2020; 1 Chau, Liu, Placke (bib0007) 2022; 8 (bib0017) 2020 Keil, P.; Schuster, S.F.; Lüders, C. von; Hesse, H. (2015): Lifetime Analyses of Lithium-Ion EV Batteries. 3rd Electromobility Challenging Issues conference (ECI), Singapore, 1st - 4th December 2015. Institute for Electrical Energy Storage Technology Munich. Mayyas, Steward, Mann (bib0042) 2019; 19 zuletzt geprüft am 19.04.2022. Kurzweil, Dietlmeier (bib0035) 2018 zuletzt geprüft am 09.05.2022. Pachauri (10.1016/j.resconrec.2023.106920_bib0046) 2015 Ding (10.1016/j.resconrec.2023.106920_bib0011) 2019; 2 Boon-Brett (10.1016/j.resconrec.2023.106920_bib0005) 2017 (10.1016/j.resconrec.2023.106920_bib0013) 2017 Mayyas (10.1016/j.resconrec.2023.106920_bib0042) 2019; 19 Ambrose (10.1016/j.resconrec.2023.106920_bib0003) 2020; 24 Crespo Cuaresma (10.1016/j.resconrec.2023.106920_bib0008) 2017; 42 Riahi (10.1016/j.resconrec.2023.106920_bib0052) 2017; 42 10.1016/j.resconrec.2023.106920_bib0049 Nwanya (10.1016/j.resconrec.2023.106920_bib0045) 2022; 9 10.1016/j.resconrec.2023.106920_bib0001 10.1016/j.resconrec.2023.106920_bib0048 Liu (10.1016/j.resconrec.2023.106920_bib0038) 2021; 164 Alessia (10.1016/j.resconrec.2023.106920_bib0002) 2021; 300 Chau (10.1016/j.resconrec.2023.106920_bib0007) 2022; 8 Huisman (10.1016/j.resconrec.2023.106920_bib0026) 2020 Matos (10.1016/j.resconrec.2023.106920_bib0041) 2022 Lutz (10.1016/j.resconrec.2023.106920_bib0039) 2019 Danino-Perraud (10.1016/j.resconrec.2023.106920_bib0009) 2020 Murdock (10.1016/j.resconrec.2023.106920_bib0043) 2021; 11 10.1016/j.resconrec.2023.106920_bib0018 Kampker (10.1016/j.resconrec.2023.106920_bib0030) 2018 10.1016/j.resconrec.2023.106920_bib0056 Neumann (10.1016/j.resconrec.2023.106920_bib0044) 2022; 12 10.1016/j.resconrec.2023.106920_bib0057 10.1016/j.resconrec.2023.106920_bib0014 10.1016/j.resconrec.2023.106920_bib0058 Li (10.1016/j.resconrec.2023.106920_bib0037) 2021; 29 10.1016/j.resconrec.2023.106920_bib0059 10.1016/j.resconrec.2023.106920_bib0010 10.1016/j.resconrec.2023.106920_bib0054 10.1016/j.resconrec.2023.106920_bib0055 Heidrich (10.1016/j.resconrec.2023.106920_bib0024) 2021; 4 Kurzweil (10.1016/j.resconrec.2023.106920_bib0035) 2018 10.1016/j.resconrec.2023.106920_bib0050 10.1016/j.resconrec.2023.106920_bib0051 (10.1016/j.resconrec.2023.106920_bib0017) 2020 Baum (10.1016/j.resconrec.2023.106920_bib0004) 2022; 7 Heimes (10.1016/j.resconrec.2023.106920_bib0025) 2022 Kc (10.1016/j.resconrec.2023.106920_bib0031) 2017; 42 10.1016/j.resconrec.2023.106920_bib0027 Jiang (10.1016/j.resconrec.2023.106920_bib0029) 2017; 42 (10.1016/j.resconrec.2023.106920_bib0019) 2022 10.1016/j.resconrec.2023.106920_bib0028 (10.1016/j.resconrec.2023.106920_bib0015) 2020 Marscheider-Weidemann (10.1016/j.resconrec.2023.106920_bib0040) 2021 Leimbach (10.1016/j.resconrec.2023.106920_bib0036) 2017; 42 Peng (10.1016/j.resconrec.2023.106920_bib0047) 2016; 103 10.1016/j.resconrec.2023.106920_bib0064 10.1016/j.resconrec.2023.106920_bib0021 10.1016/j.resconrec.2023.106920_bib0066 10.1016/j.resconrec.2023.106920_bib0060 10.1016/j.resconrec.2023.106920_bib0061 Zubi (10.1016/j.resconrec.2023.106920_bib0067) 2018; 89 10.1016/j.resconrec.2023.106920_bib0062 Khan (10.1016/j.resconrec.2023.106920_bib0033) 2021; 40 (10.1016/j.resconrec.2023.106920_bib0016) 2020 Fu (10.1016/j.resconrec.2023.106920_bib0022) 2020; 54 Rozier (10.1016/j.resconrec.2023.106920_bib0053) 2015; 162 Brückner (10.1016/j.resconrec.2023.106920_bib0006) 2020; 10 Gerold (10.1016/j.resconrec.2023.106920_bib0023) 2022; 138 Korthauer (10.1016/j.resconrec.2023.106920_bib0034) 2013 10.1016/j.resconrec.2023.106920_bib0032 Englberger (10.1016/j.resconrec.2023.106920_bib0012) 2019; 12 Xu (10.1016/j.resconrec.2023.106920_bib0065) 2020; 1 Wang (10.1016/j.resconrec.2023.106920_bib0063) 2022; 163 Feng (10.1016/j.resconrec.2023.106920_bib0020) 2018; 10 |
| References_xml | – reference: Pillot, C. (2021): The Rechargeable Battery Market and Main Trends 2020-2030. Avicenne Energy. Novi, Michigan, USA. – reference: Rahimzei, E.; Sann, K.; Vogel, M. (2015): Kompendium: li-Ionen-Batterien. Grundlagen, Bewertungskriterien, Gesetze und Normen. VDE Verband der Elektrotechnik Elektronik Informationstechnik e. V. – year: 2018 ident: bib0030 article-title: Elektromobilität. Grundlagen einer Zukunftstechnologie. 2. Auflage 2018 – volume: 40 year: 2021 ident: bib0033 article-title: Circular economy of Li batteries: technologies and trends publication-title: J. Energy Storage – reference: Dellink, Rob; Chateau, Jean; Lanzi, Elisa; Magné, Bertrand (2017): Long-term economic growth projections in the shared socioeconomic pathways. In: – year: 2017 ident: bib0013 article-title: European battery alliance. European commission publication-title: Online verfügbar unter – reference: , zuletzt aktualisiert am 19.04.2022. – volume: 42 start-page: 193 year: 2017 end-page: 199 ident: bib0029 article-title: Global urbanization projections for the Shared Socioeconomic Pathways publication-title: Glob. Environ. Change: Human and Policy Dimensions – reference: Agarwal, S. (2021): Status of the rechargeable li-ion battery industry 2021. Market and technology report 2021. Yole developement. – reference: Zhao, Tom (2018): Sustainable developement strategy for EV battery. BYD. – volume: 54 start-page: 2985 year: 2020 end-page: 2993 ident: bib0022 article-title: Perspectives on cobalt supply through 2030 in the face of changing demand publication-title: Environ. Sci. Technol. – year: 2021 ident: bib0040 article-title: Raw Materials For Emerging Technologies 2021. A commissioned study. Datenstand: Mai 2021 – year: 2020 ident: bib0017 article-title: Proposal for a regulation concerning batteries and waste batteries, repealing Directive 2006/66/EC and amending Regulation (EU) No 2019/1020. Proposal for the new battery directive. European commission publication-title: Brussels, Belgium. Online verfügbar unter – reference: IEA (2019): Global EV outlook 2019: oECD. – reference: European Commission (2019): The European green deal. European commission. Brussels, Belgium. Online verfügbar unter – volume: 89 start-page: 292 year: 2018 end-page: 308 ident: bib0067 article-title: The lithium-ion battery: state of the art and future perspectives publication-title: Renew. Sustain. Energy Rev. – year: 2020 ident: bib0009 article-title: The recycling of lithium-ion batteries: a stratetic pillar for the European battery alliance publication-title: Institute francais des relations internationales (Ifri) – year: 2020 ident: bib0016 article-title: Critical Raw Materials Resilience: charting a Path towards greater Security and Sustainability publication-title: Eur. Commission. Brussels, Belgium – reference: Pillot, C. (2017): The Rechargeable Battery Market and Main Trends 2011-2020. Avicenne Energy. Novi, Michigan, USA. – volume: 42 start-page: 226 year: 2017 end-page: 236 ident: bib0008 article-title: Income projections for climate change research: a framework based on human capital dynamics publication-title: Glob. Environ. Change: Human And Policy Dimensions – volume: 163 year: 2022 ident: bib0063 article-title: Recycling of lithium iron phosphate batteries: status, technologies, challenges, and prospects publication-title: Renew. Sustain. Energy Rev. – reference: 42, S. 200–214. DOI: 10.1016/j.gloenvcha.2015.06.004. – volume: 12 start-page: 955 year: 2019 ident: bib0012 article-title: A techno-economic analysis of vehicle-to-building: battery degradation and efficiency analysis in the context of coordinated electric vehicle charging publication-title: Energies – reference: Fischhaber, S.; Regett, A.; Schuster, S.F.; Hesse, H. (2016): Second-Life-Konzepte für Lithium-Ionen-Batterien aus Elektrofahrzeugen. Ergebniskonferenz Schaufenster Elektromobilität. – volume: 42 start-page: 215 year: 2017 end-page: 225 ident: bib0036 article-title: Future growth patterns of world regions – A GDP scenario approach publication-title: Glob. Environ. Change: Human and Policy Dimensions – volume: 4 start-page: 71 year: 2021 end-page: 79 ident: bib0024 article-title: Circular economy strategies for electric vehicle batteries reduce reliance on raw materials publication-title: Nat. Sustain. – year: 2022 ident: bib0025 publication-title: Battery Atlas 2022. RWTH Aachen University – volume: 24 start-page: 80 year: 2020 end-page: 89 ident: bib0003 article-title: Understanding the future of lithium: part 1, resource model publication-title: J. Ind. Ecol. – reference: Sojka, R. (2020): Safe treatment of lithium-based batteries through thermal conditioning. Hg. v. Thomé-Kozmiensky Verlag GmbH. ACCUREC recycling. – reference: 33, S. 272–279. DOI: 10.1016/j.promfg.2019.04.033. – reference: Steward, Darlene; Mayyas, Ahmad; Mann, Margaret (2019): Economics and challenges of li-ion battery recycling from end-of-life vehicles. In: – volume: 42 start-page: 153 year: 2017 end-page: 168 ident: bib0052 article-title: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview publication-title: Glob. Environ. Change: Human and Policy Dimensions – reference: IEA (2022): Global EV outlook 2022: oECD. – volume: 164 year: 2021 ident: bib0038 article-title: Dynamic material flow analysis of critical metals for lithium-ion battery system in China from 2000 to 2018 publication-title: Resour. Conserv. Recycl. – volume: 1 year: 2020 ident: bib0065 article-title: Future material demand for automotive lithium-based batteries publication-title: Commun. Mater. – year: 2015 ident: bib0046 article-title: Climate Change 2014. Synthesis report. Intergovernmental Panel On Climate Change – reference: Thielmann, A.; Neef, C.; Hettesheimer, T.; Döscher, H.; Wietschel, M.; Tübke, J. (2017): Energiespeicher-roadmap (Update 2017). Hochenergie-Batterien 2030+ Und Perspektiven zukünftiger Batterietechnologie. Hg. v. Fraunhofer-Institut für System- und Innovationsforschung (ISI). Karlsruhe, Germany. – volume: 19 start-page: e00087 year: 2019 ident: bib0042 article-title: The case for recycling: overview and challenges in the material supply chain for automotive li-ion batteries publication-title: Sustain. Mater. Technol. – reference: Thielmann, A.; Sauer, A.; Wietschel, M. (2015): Gesamt-roadmap Energiespeicher für die Elektromobilität 2030. Fraunhofer-Institut für System- und Innovationsforschung (ISI). – reference: , zuletzt geprüft am 10.05.2022. – volume: 2 start-page: 1 year: 2019 end-page: 28 ident: bib0011 article-title: Automotive Li-Ion Batteries: current Status and Future Perspectives publication-title: Electrochem. Energ. Rev. – volume: 9 year: 2022 ident: bib0045 article-title: Anode materials for lithium-ion batteries: a review publication-title: Appl. Surface Sci. Adv. – year: 2018 ident: bib0035 article-title: Elektrochemische Speicher. Superkondensatoren, Batterien, Elektrolyse-Wasserstoff, Rechtliche Rahmenbedingungen. 2 – volume: 12 year: 2022 ident: bib0044 article-title: Recycling of lithium-ion batteries—current state of the art, circular economy, and next generation recycling publication-title: Adv. Energy Mater. – reference: Research Interfaces (2018): What do we know about next-generation NMC 811 cathode? Research interfaces. Online verfügbar unter – volume: 7 start-page: 712 year: 2022 end-page: 719 ident: bib0004 article-title: Lithium-ion battery recycling-overview of techniques and trends publication-title: ACS Energy Lett. – year: 2013 ident: bib0034 article-title: Handbuch Lithium-Ionen-Batterien. Aufl. 2013 – year: 2017 ident: bib0005 article-title: EU competitiveness in advanced li-ion batteries for e-mobility and stationary storage applications. Opportunities and actions. Luxembourg: publications office of the European union (EUR, scientific and technical research series, 28837) – year: 2022 ident: bib0041 article-title: Material system analysis: a novel multilayer system approach to correlate EU flows and stocks of Li-ion batteries and their raw materials publication-title: J. Ind. Ecol. – reference: Keil, P.; Schuster, S.F.; Lüders, C. von; Hesse, H. (2015): Lifetime Analyses of Lithium-Ion EV Batteries. 3rd Electromobility Challenging Issues conference (ECI), Singapore, 1st - 4th December 2015. Institute for Electrical Energy Storage Technology Munich. – reference: , zuletzt geprüft am 09.05.2022. – year: 2022 ident: bib0019 article-title: EU ban on the sale of new petrol and diesel cars from 2035 explained publication-title: Online verfügbar unter – volume: 10 start-page: 1107 year: 2020 ident: bib0006 article-title: Industrial recycling of lithium-ion batteries—a critical review of metallurgical process routes publication-title: Metals (Basel) – year: 2020 ident: bib0026 article-title: Critical raw materials for strategic technologies and sectors in the EU. A foresight study. Luxemburg: publications Office of the European Union publication-title: Online verfügbar unter – volume: 162 start-page: A2490 year: 2015 end-page: A2499 ident: bib0053 article-title: Review—Li-rich layered oxide cathodes for next-generation li-ion batteries: chances and challenges publication-title: J. Electrochem. Soc. – year: 2020 ident: bib0015 article-title: Battery 2030+: sustainable batteries of the future publication-title: European Commission – reference: Wood Mackenzie (2020): Can LFP technology retain its battery market share? Wood mackenzie. Online verfügbar unter – reference: USGS (2022a): Mineral commodity summaries 2022 - Cobalt. U.S. geological survey. Online verfügbar unter – year: 2019 ident: bib0039 article-title: Sozioökonomische Szenarien als Grundlage der Vulnerabilitätsanalysen für Deutschland. Teilbericht des Vorhabens, Politikinstrumente zur Klimaanpassung“ – volume: 29 start-page: 111 year: 2021 end-page: 122 ident: bib0037 article-title: Treatment of electric vehicle battery waste in China: a review of existing policies publication-title: J. Environ. Eng. Landscape Manag. – volume: 300 year: 2021 ident: bib0002 article-title: Challenges for sustainable lithium supply: a critical review publication-title: J. Clean. Prod. – volume: 11 year: 2021 ident: bib0043 article-title: A perspective on the sustainability of cathode materials used in lithium-ion batteries publication-title: Adv. Energy Mater. – reference: USGS (2022c): Mineral commodity summaries 2022 - Manganese. U.S. geological survey. Online verfügbar unter – volume: 42 start-page: 181 year: 2017 end-page: 192 ident: bib0031 article-title: The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100 publication-title: Global Environ. Change: Human and Policy Dimensions – reference: USGS (2022d): Mineral commodity summaries 2022 - Nickel. U.S. geological survey. Online verfügbar unter – reference: , zuletzt geprüft am 19.04.2022. – reference: USGS (2022b): Mineral commodity summaries 2022 - Lithium. U.S. geological survey. Online verfügbar unter – reference: Sharova, V.; Wolff, P.; Konersmann, B.; Ferstl, F.; Stanek, R.; Hackmann, M. (2020): Evaluation of Lithium-Ion Battery Cell Value Chain. Hans Böckler Stiftung. – volume: 10 start-page: 246 year: 2018 end-page: 267 ident: bib0020 article-title: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review publication-title: Energy Storage Mater. – volume: 103 start-page: 1008 year: 2016 end-page: 1016 ident: bib0047 article-title: Thermal safety of lithium-ion batteries with various cathode materials: a numerical study publication-title: Int. J. Heat Mass Transf. – volume: 138 start-page: 125 year: 2022 end-page: 139 ident: bib0023 article-title: Recycling chains for lithium-ion batteries: a critical examination of current challenges, opportunities and process dependencies publication-title: Waste Manag. – volume: 8 start-page: 4058 year: 2022 end-page: 4084 ident: bib0007 article-title: Overview of batteries and battery management for electric vehicles publication-title: Energy Reports – reference: European Commission (2020d): Strategic research agenda for batteries 2020. Hg. v. European commission. Batteries Europe. – volume: 103 start-page: 1008 year: 2016 ident: 10.1016/j.resconrec.2023.106920_bib0047 article-title: Thermal safety of lithium-ion batteries with various cathode materials: a numerical study publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.07.088 – volume: 162 start-page: A2490 issue: 14 year: 2015 ident: 10.1016/j.resconrec.2023.106920_bib0053 article-title: Review—Li-rich layered oxide cathodes for next-generation li-ion batteries: chances and challenges publication-title: J. Electrochem. Soc. doi: 10.1149/2.0111514jes – volume: 300 year: 2021 ident: 10.1016/j.resconrec.2023.106920_bib0002 article-title: Challenges for sustainable lithium supply: a critical review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126954 – volume: 42 start-page: 215 year: 2017 ident: 10.1016/j.resconrec.2023.106920_bib0036 article-title: Future growth patterns of world regions – A GDP scenario approach publication-title: Glob. Environ. Change: Human and Policy Dimensions doi: 10.1016/j.gloenvcha.2015.02.005 – volume: 164 year: 2021 ident: 10.1016/j.resconrec.2023.106920_bib0038 article-title: Dynamic material flow analysis of critical metals for lithium-ion battery system in China from 2000 to 2018 publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2020.105122 – volume: 138 start-page: 125 year: 2022 ident: 10.1016/j.resconrec.2023.106920_bib0023 article-title: Recycling chains for lithium-ion batteries: a critical examination of current challenges, opportunities and process dependencies publication-title: Waste Manag. doi: 10.1016/j.wasman.2021.11.038 – year: 2022 ident: 10.1016/j.resconrec.2023.106920_bib0041 article-title: Material system analysis: a novel multilayer system approach to correlate EU flows and stocks of Li-ion batteries and their raw materials publication-title: J. Ind. Ecol. doi: 10.1111/jiec.13244 – ident: 10.1016/j.resconrec.2023.106920_bib0050 – ident: 10.1016/j.resconrec.2023.106920_bib0054 – volume: 4 start-page: 71 issue: 1 year: 2021 ident: 10.1016/j.resconrec.2023.106920_bib0024 article-title: Circular economy strategies for electric vehicle batteries reduce reliance on raw materials publication-title: Nat. Sustain. – ident: 10.1016/j.resconrec.2023.106920_bib0048 – ident: 10.1016/j.resconrec.2023.106920_bib0058 – ident: 10.1016/j.resconrec.2023.106920_bib0021 – volume: 163 year: 2022 ident: 10.1016/j.resconrec.2023.106920_bib0063 article-title: Recycling of lithium iron phosphate batteries: status, technologies, challenges, and prospects publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112515 – volume: 19 start-page: e00087 year: 2019 ident: 10.1016/j.resconrec.2023.106920_bib0042 article-title: The case for recycling: overview and challenges in the material supply chain for automotive li-ion batteries publication-title: Sustain. Mater. Technol. – ident: 10.1016/j.resconrec.2023.106920_bib0056 doi: 10.1016/j.promfg.2019.04.033 – volume: 42 start-page: 181 year: 2017 ident: 10.1016/j.resconrec.2023.106920_bib0031 article-title: The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100 publication-title: Global Environ. Change: Human and Policy Dimensions doi: 10.1016/j.gloenvcha.2014.06.004 – ident: 10.1016/j.resconrec.2023.106920_bib0064 – volume: 8 start-page: 4058 year: 2022 ident: 10.1016/j.resconrec.2023.106920_bib0007 article-title: Overview of batteries and battery management for electric vehicles publication-title: Energy Reports doi: 10.1016/j.egyr.2022.03.016 – year: 2015 ident: 10.1016/j.resconrec.2023.106920_bib0046 – year: 2022 ident: 10.1016/j.resconrec.2023.106920_bib0025 – volume: 24 start-page: 80 issue: 1 year: 2020 ident: 10.1016/j.resconrec.2023.106920_bib0003 article-title: Understanding the future of lithium: part 1, resource model publication-title: J. Ind. Ecol. doi: 10.1111/jiec.12949 – ident: 10.1016/j.resconrec.2023.106920_bib0010 doi: 10.1016/j.gloenvcha.2015.06.004 – volume: 89 start-page: 292 year: 2018 ident: 10.1016/j.resconrec.2023.106920_bib0067 article-title: The lithium-ion battery: state of the art and future perspectives publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.002 – volume: 54 start-page: 2985 issue: 5 year: 2020 ident: 10.1016/j.resconrec.2023.106920_bib0022 article-title: Perspectives on cobalt supply through 2030 in the face of changing demand publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b04975 – volume: 11 issue: 39 year: 2021 ident: 10.1016/j.resconrec.2023.106920_bib0043 article-title: A perspective on the sustainability of cathode materials used in lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102028 – ident: 10.1016/j.resconrec.2023.106920_bib0057 – year: 2020 ident: 10.1016/j.resconrec.2023.106920_bib0016 article-title: Critical Raw Materials Resilience: charting a Path towards greater Security and Sustainability publication-title: Eur. Commission. Brussels, Belgium – year: 2020 ident: 10.1016/j.resconrec.2023.106920_bib0017 article-title: Proposal for a regulation concerning batteries and waste batteries, repealing Directive 2006/66/EC and amending Regulation (EU) No 2019/1020. Proposal for the new battery directive. European commission – year: 2018 ident: 10.1016/j.resconrec.2023.106920_bib0035 – ident: 10.1016/j.resconrec.2023.106920_bib0060 – ident: 10.1016/j.resconrec.2023.106920_bib0001 – volume: 42 start-page: 226 year: 2017 ident: 10.1016/j.resconrec.2023.106920_bib0008 article-title: Income projections for climate change research: a framework based on human capital dynamics publication-title: Glob. Environ. Change: Human And Policy Dimensions doi: 10.1016/j.gloenvcha.2015.02.012 – year: 2020 ident: 10.1016/j.resconrec.2023.106920_bib0026 article-title: Critical raw materials for strategic technologies and sectors in the EU. A foresight study. Luxemburg: publications Office of the European Union publication-title: Online verfügbar unter – volume: 29 start-page: 111 issue: 2 year: 2021 ident: 10.1016/j.resconrec.2023.106920_bib0037 article-title: Treatment of electric vehicle battery waste in China: a review of existing policies publication-title: J. Environ. Eng. Landscape Manag. doi: 10.3846/jeelm.2021.14220 – year: 2019 ident: 10.1016/j.resconrec.2023.106920_bib0039 – volume: 12 start-page: 955 issue: 5 year: 2019 ident: 10.1016/j.resconrec.2023.106920_bib0012 article-title: A techno-economic analysis of vehicle-to-building: battery degradation and efficiency analysis in the context of coordinated electric vehicle charging publication-title: Energies doi: 10.3390/en12050955 – ident: 10.1016/j.resconrec.2023.106920_bib0061 – year: 2022 ident: 10.1016/j.resconrec.2023.106920_bib0019 article-title: EU ban on the sale of new petrol and diesel cars from 2035 explained publication-title: Online verfügbar unter – year: 2017 ident: 10.1016/j.resconrec.2023.106920_bib0013 article-title: European battery alliance. European commission – ident: 10.1016/j.resconrec.2023.106920_bib0032 – ident: 10.1016/j.resconrec.2023.106920_bib0027 – volume: 42 start-page: 153 year: 2017 ident: 10.1016/j.resconrec.2023.106920_bib0052 article-title: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview publication-title: Glob. Environ. Change: Human and Policy Dimensions doi: 10.1016/j.gloenvcha.2016.05.009 – volume: 12 issue: 17 year: 2022 ident: 10.1016/j.resconrec.2023.106920_bib0044 article-title: Recycling of lithium-ion batteries—current state of the art, circular economy, and next generation recycling publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102917 – volume: 7 start-page: 712 issue: 2 year: 2022 ident: 10.1016/j.resconrec.2023.106920_bib0004 article-title: Lithium-ion battery recycling-overview of techniques and trends publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c02602 – volume: 42 start-page: 193 year: 2017 ident: 10.1016/j.resconrec.2023.106920_bib0029 article-title: Global urbanization projections for the Shared Socioeconomic Pathways publication-title: Glob. Environ. Change: Human and Policy Dimensions doi: 10.1016/j.gloenvcha.2015.03.008 – volume: 1 issue: 1 year: 2020 ident: 10.1016/j.resconrec.2023.106920_bib0065 article-title: Future material demand for automotive lithium-based batteries publication-title: Commun. Mater. doi: 10.1038/s43246-020-00095-x – volume: 40 year: 2021 ident: 10.1016/j.resconrec.2023.106920_bib0033 article-title: Circular economy of Li batteries: technologies and trends publication-title: J. Energy Storage – volume: 9 year: 2022 ident: 10.1016/j.resconrec.2023.106920_bib0045 article-title: Anode materials for lithium-ion batteries: a review publication-title: Appl. Surface Sci. Adv. – ident: 10.1016/j.resconrec.2023.106920_bib0014 – volume: 10 start-page: 246 year: 2018 ident: 10.1016/j.resconrec.2023.106920_bib0020 article-title: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.05.013 – ident: 10.1016/j.resconrec.2023.106920_bib0062 – year: 2020 ident: 10.1016/j.resconrec.2023.106920_bib0015 article-title: Battery 2030+: sustainable batteries of the future – ident: 10.1016/j.resconrec.2023.106920_bib0018 – ident: 10.1016/j.resconrec.2023.106920_bib0066 – volume: 10 start-page: 1107 issue: 8 year: 2020 ident: 10.1016/j.resconrec.2023.106920_bib0006 article-title: Industrial recycling of lithium-ion batteries—a critical review of metallurgical process routes publication-title: Metals (Basel) doi: 10.3390/met10081107 – volume: 2 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.resconrec.2023.106920_bib0011 article-title: Automotive Li-Ion Batteries: current Status and Future Perspectives publication-title: Electrochem. Energ. Rev. doi: 10.1007/s41918-018-0022-z – year: 2013 ident: 10.1016/j.resconrec.2023.106920_bib0034 – ident: 10.1016/j.resconrec.2023.106920_bib0028 – ident: 10.1016/j.resconrec.2023.106920_bib0051 – ident: 10.1016/j.resconrec.2023.106920_bib0049 – year: 2017 ident: 10.1016/j.resconrec.2023.106920_bib0005 article-title: EU competitiveness in advanced li-ion batteries for e-mobility and stationary storage applications. Opportunities and actions. Luxembourg: publications office of the European union (EUR, scientific and technical research series, 28837) – ident: 10.1016/j.resconrec.2023.106920_bib0055 – year: 2021 ident: 10.1016/j.resconrec.2023.106920_bib0040 – ident: 10.1016/j.resconrec.2023.106920_bib0059 – year: 2020 ident: 10.1016/j.resconrec.2023.106920_bib0009 article-title: The recycling of lithium-ion batteries: a stratetic pillar for the European battery alliance – year: 2018 ident: 10.1016/j.resconrec.2023.106920_bib0030 |
| SSID | ssj0003893 |
| Score | 2.7090921 |
| Snippet | •Three mobility scenarios based on the shared socioeconomic pathways including new registration figures and thus vehicle sales and production are formed.•Two... The market for electromobility has grown constantly in the last years. To ensure a future supply of raw materials for the production of new batteries for... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106920 |
| SubjectTerms | batteries cathodes cobalt Electric vehicles Future metal supply industry LIB lithium Lithium-ion batteries manganese markets nickel Raw materials Recycling |
| Title | A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles |
| URI | https://dx.doi.org/10.1016/j.resconrec.2023.106920 https://www.proquest.com/docview/2834210985 |
| Volume | 192 |
| WOSCitedRecordID | wos001003081200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003893 issn: 0921-3449 databaseCode: AIEXJ dateStart: 19950401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKBhIcEBQmxpeMhLhUmRInTWNuFUrFUCkT6qC3yHYcLaNNS5OOjRv_Oc-xnXR8aOPAoWlk9dlN369-P9vvA6GXBExQGgrPiUjmO0HqZQ4LOXO8gIO1454kkS42MZhMotmMHnU6P2wszNl8UBTR-Tld_VdVQxsoW4XO_oO6m06hAe5B6XAFtcP1Woof9lS5TcHKSh0EjOqcIb2P7FvvPavq8WGOWZgUrYo1Xog6Iv1oWSnHIc1Nx3l1km8WziH0oDNw5rXjVi-uq-bkovdJntQOddvk1h4F1NAQyk3bbPhqJ3Y7VLsJrko9Wfb8PS-_NCZiImV2KfVBK7OG5bjKzbV2Pqu3BWsJeBN0NFFOBjqQLJ-XxnnZbG2QLUdCu0dJPMcPdE7T3-Z6ve1werCWJTwSPMSB6gPaQ0rc1rzZI_3Jh2R0PB4n03g2fbX66qjCY-qA3lRhuYF2yaBPYWLcHR7Gs3eNOVeMrk7YaL7LJSfBP479N4rzi7GvGcz0Hrprlh54qCFzH3Vk0UW34jpt-UUX3dlKTdlFe3EbAQlCxgSUD1AxxBZfeFlgjS8M-MIWX1jjC6tXgy_c4AsvM7yFL9zgC-cFtvjCFl8P0fEonr5565iiHY4Aals5GSwJGA-lZFGWAvsVA595JOVh3xNAvb0-D9xBmoaUZxFhkmSCkywL3ZS5wqOC-ntop1gW8hHCnMPUQblgEc2A57vcl1EKAikNwsBN6T4K7e-cCJPRXhVWmSfWdfE0aRSUKAUlWkH7yG0EVzqpy9Uir60iE8NNNedMAI5XC7-wqk9g9lZHcqyQy02ZALkPiOfSqP_4Gp95gm63f5OnaKdab-QzdFOcVXm5fm6A-xOOe8L4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Forecast+on+Future+Raw+Material+Demand+and+Recycling+Potential+of+Lithium-Ion+Batteries+in+Electric+Vehicles&rft.jtitle=Resources%2C+conservation+and+recycling&rft.au=Maisel%2C+Franziska&rft.au=Neef%2C+Christoph&rft.au=Marscheider-Weidemann%2C+Frank&rft.au=Nissen%2C+Nils+F&rft.date=2023-05-01&rft.issn=0921-3449&rft_id=info:doi/10.1016%2Fj.resconrec.2023.106920&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-3449&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-3449&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-3449&client=summon |