Toward Explainable AutoEncoder-Based Diagnosis of Dynamical Systems
Autoencoders have been used widely for diagnosing devices, for example, faults in rotating machinery. However, autoencoder-based approaches lack explainability for their results and can be hard to tune. In this article, we propose an explainable method for applying autoencoders for diagnosis, where...
Saved in:
| Published in: | Algorithms Vol. 16; no. 4; p. 178 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.04.2023
|
| Subjects: | |
| ISSN: | 1999-4893, 1999-4893 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Autoencoders have been used widely for diagnosing devices, for example, faults in rotating machinery. However, autoencoder-based approaches lack explainability for their results and can be hard to tune. In this article, we propose an explainable method for applying autoencoders for diagnosis, where we use a metric that maximizes the diagnostics accuracy. Since an autoencoder projects the input into a reduced subspace (the code), we define a theoretically well-understood approach, the subspace principal angle, to define a metric over the possible fault labels. We show how this approach can be used for both single-device diagnostics (e.g., faults in rotating machinery) and complex (multi-device) dynamical systems. We empirically validate the theoretical claims using multiple autoencoder architectures. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1999-4893 1999-4893 |
| DOI: | 10.3390/a16040178 |