Experimental comparison of the diagnostic capabilities of classification and clustering algorithms for the QoS management in an autonomic IoT platform
The Internet of Things (IoT) platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of the main non-functional requirements is the Quality of Service (QoS). In a previous work has been defined an autonomic IoT platform for the...
Saved in:
| Published in: | Service oriented computing and applications Vol. 13; no. 3; pp. 199 - 219 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.09.2019
Springer Nature B.V Springer |
| Subjects: | |
| ISSN: | 1863-2386, 1863-2394 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Internet of Things (IoT) platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of the main non-functional requirements is the Quality of Service (QoS). In a previous work has been defined an autonomic IoT platform for the QoS Management, based on the concept of autonomic cycle of data analysis tasks. In this platform have been defined two autonomic cycles, one based on a classification task that determines the current operational state to define the set of tasks to execute in the communication system to guarantee a given QoS. The other one is based on a clustering task that discovers the current operational state and, based on it, determines the set of tasks to be executed in the communication system. This paper analyzes the diagnostic capabilities of the system based on both approaches, using different metrics. For that, a real scenario has been considered, with simulations that have generated data to test both tasks. Each technique has different aspects to be considered for a correct QoS management in the context of IoT platforms. The classification technique can determine very well the learned operational states, but the clustering approach can carry out a more detailed description of the operational states. Additionally, due to the classification and clustering technique used, called learning algorithm for multivariate data analysis, the paper analyzes the operational state profile determined by them, which is very useful in a diagnostic process. |
|---|---|
| AbstractList | The IoT platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of the main non-functional requirements is the Quality of Service (QoS). In a previous work has been defined an Autonomic Internet of Things (IoT) platform for the QoS Management, based on the concept of autonomic cycle of data analysis tasks. In this platform have been defined two autonomic cycles, one based on a classification task that determines the current operational state to define the set of tasks to execute in the communication system to guarantee a given QoS. The other one is based on a clustering task that discovers the current operational state, and based on it, determines the set of tasks to be executed in the communication system. This paper analyzes the diagnostic capabilities of the system based on both approaches, using different metrics. For that, a real scenario has been considered, with simulations that have generated data to test both tasks. Each technique has different aspects to be considered for a correct QoS management in the context of IoT platforms. The classification technique can determine very well the learned operational states, but the clustering approach can carry out a more detailed description of the operational states. Additionally, due to the classification and clustering technique used, called LAMDA (Learning Algorithm for Multivariate Data Analysis), the paper analyzes the operational state profile determined by them, which is very useful in a diagnostic process. The Internet of Things (IoT) platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of the main non-functional requirements is the Quality of Service (QoS). In a previous work has been defined an autonomic IoT platform for the QoS Management, based on the concept of autonomic cycle of data analysis tasks. In this platform have been defined two autonomic cycles, one based on a classification task that determines the current operational state to define the set of tasks to execute in the communication system to guarantee a given QoS. The other one is based on a clustering task that discovers the current operational state and, based on it, determines the set of tasks to be executed in the communication system. This paper analyzes the diagnostic capabilities of the system based on both approaches, using different metrics. For that, a real scenario has been considered, with simulations that have generated data to test both tasks. Each technique has different aspects to be considered for a correct QoS management in the context of IoT platforms. The classification technique can determine very well the learned operational states, but the clustering approach can carry out a more detailed description of the operational states. Additionally, due to the classification and clustering technique used, called learning algorithm for multivariate data analysis, the paper analyzes the operational state profile determined by them, which is very useful in a diagnostic process. |
| Author | Medjiah, Samir Morales, Luis Aguilar, Jose Chassot, Christophe Ouedraogo, Clovis Anicet Drira, Khalil |
| Author_xml | – sequence: 1 givenname: Luis surname: Morales fullname: Morales, Luis organization: Departamento de Automatización y Control Industrial, Escuela Politécnica Nacional – sequence: 2 givenname: Clovis Anicet surname: Ouedraogo fullname: Ouedraogo, Clovis Anicet organization: CNRS-LAAS – sequence: 3 givenname: Jose orcidid: 0000-0003-4194-6882 surname: Aguilar fullname: Aguilar, Jose email: aguilar@ula.ve organization: CEMISID, Universidad de Los Andes – sequence: 4 givenname: Christophe surname: Chassot fullname: Chassot, Christophe organization: CNRS-LAAS, INSA – sequence: 5 givenname: Samir surname: Medjiah fullname: Medjiah, Samir organization: Université de Toulouse, UPS, CNRS-LAAS – sequence: 6 givenname: Khalil surname: Drira fullname: Drira, Khalil organization: CNRS-LAAS |
| BackLink | https://laas.hal.science/hal-02166814$$DView record in HAL |
| BookMark | eNp9UcFu3CAURFUqNU3zAzkh9dSDE57ZBfsYRWkTaaWoanpGzxh2iWxwgW3SH-n3Fq_TRuohXIDHzDCaeU-OfPCGkDNg58CYvEgAUkDFoK0Yq4WoHt-QY2gEr2rero7-nRvxjpym9MDK4rVshDwmv6-fJhPdaHzGgeowThhdCp4GS_PO0N7h1oeUnaYaJ-zc4LIzaX7WA6bkrNOYXSGg78ton3KR81uKwzZEl3djojbEg9bX8I2O6HFr5u-omzkU9zn4MBb923BPpwFzgY8fyFuLQzKnz_sJ-f75-v7qptrcfbm9utxUmrcyV31fW1g3YHq-soi8s61EbNZY7j2YupXAV5obQNEJCwZNh6yVnZYlmLZZ8xPyadHd4aCmkgPGXyqgUzeXGzXPWA1CNLD6CQX7ccFOMfzYm5TVQ9hHX-ypmpdA50jbgmoWlI4hpWis0i4fEsoR3aCAqbk0tZSmSmnqUJp6LNT6P-pfR6-S-EJK05y7iS-uXmH9ATs6r4Y |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3078550 crossref_primary_10_1007_s12553_023_00794_8 crossref_primary_10_1109_ACCESS_2021_3105515 crossref_primary_10_1109_ACCESS_2020_3021675 crossref_primary_10_1007_s13735_020_00202_1 crossref_primary_10_3390_computers13030076 crossref_primary_10_1016_j_eswa_2022_117479 crossref_primary_10_1016_j_jprocont_2022_05_013 crossref_primary_10_3233_AO_230004 crossref_primary_10_1007_s00607_024_01320_y crossref_primary_10_1016_j_asoc_2024_111940 crossref_primary_10_1007_s13748_024_00328_x crossref_primary_10_1016_j_engappai_2024_109189 crossref_primary_10_1007_s42979_023_02253_7 crossref_primary_10_3390_en16041649 crossref_primary_10_1016_j_asoc_2020_106102 crossref_primary_10_1109_ACCESS_2024_3456246 crossref_primary_10_1109_ACCESS_2020_2966545 crossref_primary_10_3390_en17030757 crossref_primary_10_3390_en13123103 crossref_primary_10_1016_j_asoc_2024_111283 crossref_primary_10_1016_j_engappai_2024_108264 crossref_primary_10_1007_s00500_022_07665_w crossref_primary_10_1109_TNSM_2022_3193750 crossref_primary_10_1016_j_heliyon_2022_e10846 crossref_primary_10_1016_j_jii_2025_100788 crossref_primary_10_3390_info15020086 crossref_primary_10_1186_s13731_025_00536_2 crossref_primary_10_3390_a16020081 |
| Cites_doi | 10.23919/ConTEL.2017.8000051 10.1049/cp.2013.2246 10.1145/3106426.3106499 10.1109/TLA.2017.7932705 10.1109/JIOT.2017.2767608 10.1007/s10209-017-0525-0 10.1016/j.future.2017.11.045 10.1016/j.eswa.2018.04.022 10.1016/j.jss.2017.05.125 10.1109/WoWMoM.2014.6918985 10.4018/IJRSDA.2017070107 10.1016/j.procs.2016.07.211 10.1177/0735633117727698 10.1145/3055245.3055253 10.3390/s17081727 10.1109/GIIS.2012.6466760 10.1155/2018/8739203 10.1145/3109761.3109791 10.1145/3019612.3019878 10.1145/2962735.2962742 10.4018/978-1-5225-2104-4.ch012 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION JQ2 1XC VOOES |
| DOI | 10.1007/s11761-019-00266-w |
| DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1863-2394 |
| EndPage | 219 |
| ExternalDocumentID | oai:HAL:hal-02166814v1 10_1007_s11761_019_00266_w |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40E 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 1XC VOOES |
| ID | FETCH-LOGICAL-c397t-dd2f1581ed34faa3bf97aa85ad34d1e297134c3e1a6b6f1eaeba097bc73949853 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489948900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-2386 |
| IngestDate | Sat Oct 25 11:22:15 EDT 2025 Thu Sep 25 00:36:15 EDT 2025 Sat Nov 29 01:50:26 EST 2025 Tue Nov 18 21:57:23 EST 2025 Fri Feb 21 02:28:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Autonomic cycle of data analysis tasks IoT platforms Clustering Quality of Service Classification Diagnostic capabilities |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-dd2f1581ed34faa3bf97aa85ad34d1e297134c3e1a6b6f1eaeba097bc73949853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4194-6882 0000-0002-4770-1563 0000-0002-4152-3399 |
| OpenAccessLink | https://laas.hal.science/hal-02166814 |
| PQID | 2303232789 |
| PQPubID | 2044172 |
| PageCount | 21 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02166814v1 proquest_journals_2303232789 crossref_citationtrail_10_1007_s11761_019_00266_w crossref_primary_10_1007_s11761_019_00266_w springer_journals_10_1007_s11761_019_00266_w |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Service oriented computing and applications |
| PublicationTitleAbbrev | SOCA |
| PublicationYear | 2019 |
| Publisher | Springer London Springer Nature B.V Springer |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V – name: Springer |
| References | S. Medjiah and C. Chassot (2017) On the enhancement of non-functional requirements for cloud-assisted middleware-based IoT and other applications (invited paper). In: To be publish in the second workshop on adaptive service-oriented and cloud application, Malaga, Spain Vizcarrondo J, Aguilar J, Exposito E, Subias A (2012) ARMISCOM: autonomic reflective middleware for management service composition. In: Proceedings of the 4th global information infrastructure and networking symposium, IEEE communication society, Choroni, Venezuela KumarJZaveriMhierarchical clustering for dynamic and heterogeneous internet of thingsProc Comput Sci20169327628210.1016/j.procs.2016.07.211 AguilarJCorderoJBarbaLSanchezMValdiviezoPChambaLLearning analytics tasks as services in smart classroomUnivers Access Inf Soc J201817469370910.1007/s10209-017-0525-0 Goel D, Chaudhury S, Ghosh H (2017) An IoT approach for context-aware smart traffic management using ontology. In: International conference on web intelligence, pp 42–49. Leipzig, Germany Siby S, Ranjan R, Tippenhauer N (2017) IoTScanner: detecting privacy threats in IoT neighborhoods. In: 3rd ACM international workshop on IoT privacy, trust, and security, pp 23–30, Abu Dhabi Medved J et al (2014) Opendaylight: Towards a model-driven sdn controller architecture. In: World of wireless, IEEE 15th international symposium on a mobile and multimedia networks (WoWMoM), Sydney, Australia ETSI TS 102 690 (2010) Machine-to-machine communications (M2M); Functional architecture, v2.1.1 Ouedraogo C, Medjiah S, Chassot C (2018) Autonomic middleware based on data analysis tasks for the QoS management in the IoT. Technical Report, LAAS ZhaoSYuLChengBChenJIoT service clustering for dynamic service matchmakingSensors2017178172710.3390/s17081727 KumarJZaveriMClustering approaches for pragmatic two-layer IoT architectureWirel Commun Mobile Comput2018201810.1155/2018/8739203 LAMDA–RD (2018) An extension to the LAMDA classifier in the clustering context. Expert Syst Appl (in revision) HongKMoonJWonCJuJSamiaBIdentifying service contexts for QoS support in IoT service oriented software defined networksMobile, secure, and programmable networking2017BerlinSpringer99108 oneM2M TS v1.6.1 (2015) oneM2M functional architecture WhiteGNallurVClarkeSQuality of service approaches in IoT: a systematic mappingJ Syst Softw201713218620310.1016/j.jss.2017.05.125 Otebolaku A, Lee G (2017) Towards context classification and reasoning in IoT. In: 14th international conference on telecommunications (ConTEL), Zagreb, Croatia, pp 147–154 MahallePPrasadNPrasadRObject classification based context management for identity management in internet of thingsInt J Comput Appl2013631216 MichellVOlwenJOchsTRiemannUThe Human-IoT ecosystem: an approach to functional situation context classificationThe internet of things in the modern business environment2017PennsylvaniaIGI Global22324810.4018/978-1-5225-2104-4.ch012 VizcarrondoJAguilarJExpositoESubiasAMAPE-K as a service-oriented architectureIEEE Latin Am Trans20171561163117510.1109/TLA.2017.7932705 IsazaCAguilar-MartinJLe LannMVAguilarJRios-BolivarAAn optimization method for the data space partition obtained by classification techniques for the monitoring of dynamic processesFront Artif Intell Appl20061468087 El MouaatamidOLahmerMBelkasmiMInternet of things security: layered classification of attacks and possible countermeasuresElectron J Inf Technol201692537 Mahalle P, Prasad N, Prasad R (2013) Novel context-aware clustering with hierarchical addressing (CCHA) for the Internet of Things (IoT). In: Fifth international conference on advances in recent technologies in communication and computing, pp 267–274, Bangalore, India Floodlight. Available: http://floodlight.openflowhub.org ZhangQFitzekFMission Critical IoT Communication in5GSoc Inform Telecommun Eng20151593541 BotíaJFBotíaDOn LAMDA clustering method based on typicality degree and intuitionistic fuzzy setsExpert Syst Appl201810719622110.1016/j.eswa.2018.04.022 Open Networking Foundation (2015) OpenFlow Switch Specification Version 1.5.1 Kumar J, Zaveri M (2016) Clustering for collaborative processing in IoT network. In: Second international conference on IoT in urban space, pp 95–97, Tokyo Japan JianliPJamesMFuture edge cloud and edge computing for internet of things applicationsIEEE Internet Things J20185143944910.1109/JIOT.2017.2767608 SandeshMRailkarPPMahallePMathematical representation of quality of service (QoS) parameters for internet of things (IoT)Int J Rough Sets Data Anal2017439610710.4018/IJRSDA.2017070107 AguilarJBuendiaOCorderoJSpecification of the autonomic cycles of learning analytic tasks for a smart classroomJ Edu Comput Res201856686689110.1177/0735633117727698 Ferrando R, Stacey P (2017) Classification of device behaviour in internet of things infrastructures: towards distinguishing the abnormal from security threats. In: International conference on internet of things and machine learning, Liverpool, United Kingdom IBM (2005) An architectural blueprint for autonomic computing. In: IBM white paper, 3th ed AntunesMGomesDAguiaRTowards IoT data classification through semantic featuresFuture Gener Comput Syst20188679279810.1016/j.future.2017.11.045 Meidan Y, Bohadana M, Shabtai A, Guarnizo J, Ochoa M, Tippenhauer N, Elovici Y (2017) ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis. In: Symposium on applied computing, pp 506–509, Marrakesh, Morocco Morales L, Aguilar J, Chavez D, Izasa C (2018) LAMDA–HAD, an extension to the LAMDA classifier in the context of supervised learning. Int J Inf Technol Decis Making (in revision) Azevedo R, Ribeiro R (2017) Distributed data clustering in the context of the internet of things: a data traffic reduction approach. In: 23rd Brazilian symposium on multimedia and the web, pp 313–316, Gramado, Brazil J Kumar (266_CR20) 2016; 93 M Sandesh (266_CR36) 2017; 4 266_CR17 266_CR16 J Vizcarrondo (266_CR33) 2017; 15 Q Zhang (266_CR3) 2015; 159 V Michell (266_CR15) 2017 266_CR2 266_CR24 266_CR23 266_CR1 266_CR22 J Aguilar (266_CR6) 2018; 56 266_CR4 K Hong (266_CR12) 2017 266_CR8 266_CR9 JF Botía (266_CR25) 2018; 107 266_CR29 P Jianli (266_CR28) 2018; 5 G White (266_CR7) 2017; 132 266_CR27 266_CR26 266_CR32 J Aguilar (266_CR5) 2018; 17 266_CR31 266_CR30 S Zhao (266_CR21) 2017; 17 266_CR14 266_CR34 266_CR11 P Mahalle (266_CR10) 2013; 63 M Antunes (266_CR13) 2018; 86 C Isaza (266_CR35) 2006; 146 O El Mouaatamid (266_CR18) 2016; 9 J Kumar (266_CR19) 2018; 2018 |
| References_xml | – reference: AguilarJBuendiaOCorderoJSpecification of the autonomic cycles of learning analytic tasks for a smart classroomJ Edu Comput Res201856686689110.1177/0735633117727698 – reference: Azevedo R, Ribeiro R (2017) Distributed data clustering in the context of the internet of things: a data traffic reduction approach. In: 23rd Brazilian symposium on multimedia and the web, pp 313–316, Gramado, Brazil – reference: AntunesMGomesDAguiaRTowards IoT data classification through semantic featuresFuture Gener Comput Syst20188679279810.1016/j.future.2017.11.045 – reference: S. Medjiah and C. Chassot (2017) On the enhancement of non-functional requirements for cloud-assisted middleware-based IoT and other applications (invited paper). In: To be publish in the second workshop on adaptive service-oriented and cloud application, Malaga, Spain – reference: Kumar J, Zaveri M (2016) Clustering for collaborative processing in IoT network. In: Second international conference on IoT in urban space, pp 95–97, Tokyo Japan – reference: Open Networking Foundation (2015) OpenFlow Switch Specification Version 1.5.1 – reference: Ferrando R, Stacey P (2017) Classification of device behaviour in internet of things infrastructures: towards distinguishing the abnormal from security threats. In: International conference on internet of things and machine learning, Liverpool, United Kingdom – reference: MichellVOlwenJOchsTRiemannUThe Human-IoT ecosystem: an approach to functional situation context classificationThe internet of things in the modern business environment2017PennsylvaniaIGI Global22324810.4018/978-1-5225-2104-4.ch012 – reference: IBM (2005) An architectural blueprint for autonomic computing. In: IBM white paper, 3th ed – reference: IsazaCAguilar-MartinJLe LannMVAguilarJRios-BolivarAAn optimization method for the data space partition obtained by classification techniques for the monitoring of dynamic processesFront Artif Intell Appl20061468087 – reference: AguilarJCorderoJBarbaLSanchezMValdiviezoPChambaLLearning analytics tasks as services in smart classroomUnivers Access Inf Soc J201817469370910.1007/s10209-017-0525-0 – reference: WhiteGNallurVClarkeSQuality of service approaches in IoT: a systematic mappingJ Syst Softw201713218620310.1016/j.jss.2017.05.125 – reference: JianliPJamesMFuture edge cloud and edge computing for internet of things applicationsIEEE Internet Things J20185143944910.1109/JIOT.2017.2767608 – reference: ETSI TS 102 690 (2010) Machine-to-machine communications (M2M); Functional architecture, v2.1.1 – reference: Morales L, Aguilar J, Chavez D, Izasa C (2018) LAMDA–HAD, an extension to the LAMDA classifier in the context of supervised learning. Int J Inf Technol Decis Making (in revision) – reference: El MouaatamidOLahmerMBelkasmiMInternet of things security: layered classification of attacks and possible countermeasuresElectron J Inf Technol201692537 – reference: oneM2M TS v1.6.1 (2015) oneM2M functional architecture – reference: Siby S, Ranjan R, Tippenhauer N (2017) IoTScanner: detecting privacy threats in IoT neighborhoods. In: 3rd ACM international workshop on IoT privacy, trust, and security, pp 23–30, Abu Dhabi – reference: KumarJZaveriMhierarchical clustering for dynamic and heterogeneous internet of thingsProc Comput Sci20169327628210.1016/j.procs.2016.07.211 – reference: Goel D, Chaudhury S, Ghosh H (2017) An IoT approach for context-aware smart traffic management using ontology. In: International conference on web intelligence, pp 42–49. Leipzig, Germany – reference: SandeshMRailkarPPMahallePMathematical representation of quality of service (QoS) parameters for internet of things (IoT)Int J Rough Sets Data Anal2017439610710.4018/IJRSDA.2017070107 – reference: Otebolaku A, Lee G (2017) Towards context classification and reasoning in IoT. In: 14th international conference on telecommunications (ConTEL), Zagreb, Croatia, pp 147–154 – reference: Meidan Y, Bohadana M, Shabtai A, Guarnizo J, Ochoa M, Tippenhauer N, Elovici Y (2017) ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis. In: Symposium on applied computing, pp 506–509, Marrakesh, Morocco – reference: Medved J et al (2014) Opendaylight: Towards a model-driven sdn controller architecture. In: World of wireless, IEEE 15th international symposium on a mobile and multimedia networks (WoWMoM), Sydney, Australia – reference: VizcarrondoJAguilarJExpositoESubiasAMAPE-K as a service-oriented architectureIEEE Latin Am Trans20171561163117510.1109/TLA.2017.7932705 – reference: ZhaoSYuLChengBChenJIoT service clustering for dynamic service matchmakingSensors2017178172710.3390/s17081727 – reference: HongKMoonJWonCJuJSamiaBIdentifying service contexts for QoS support in IoT service oriented software defined networksMobile, secure, and programmable networking2017BerlinSpringer99108 – reference: ZhangQFitzekFMission Critical IoT Communication in5GSoc Inform Telecommun Eng20151593541 – reference: Ouedraogo C, Medjiah S, Chassot C (2018) Autonomic middleware based on data analysis tasks for the QoS management in the IoT. Technical Report, LAAS – reference: Mahalle P, Prasad N, Prasad R (2013) Novel context-aware clustering with hierarchical addressing (CCHA) for the Internet of Things (IoT). In: Fifth international conference on advances in recent technologies in communication and computing, pp 267–274, Bangalore, India – reference: KumarJZaveriMClustering approaches for pragmatic two-layer IoT architectureWirel Commun Mobile Comput2018201810.1155/2018/8739203 – reference: MahallePPrasadNPrasadRObject classification based context management for identity management in internet of thingsInt J Comput Appl2013631216 – reference: BotíaJFBotíaDOn LAMDA clustering method based on typicality degree and intuitionistic fuzzy setsExpert Syst Appl201810719622110.1016/j.eswa.2018.04.022 – reference: Vizcarrondo J, Aguilar J, Exposito E, Subias A (2012) ARMISCOM: autonomic reflective middleware for management service composition. In: Proceedings of the 4th global information infrastructure and networking symposium, IEEE communication society, Choroni, Venezuela – reference: LAMDA–RD (2018) An extension to the LAMDA classifier in the clustering context. Expert Syst Appl (in revision) – reference: Floodlight. Available: http://floodlight.openflowhub.org – ident: 266_CR9 doi: 10.23919/ConTEL.2017.8000051 – ident: 266_CR24 doi: 10.1049/cp.2013.2246 – ident: 266_CR16 doi: 10.1145/3106426.3106499 – volume: 15 start-page: 1163 issue: 6 year: 2017 ident: 266_CR33 publication-title: IEEE Latin Am Trans doi: 10.1109/TLA.2017.7932705 – volume: 159 start-page: 35 year: 2015 ident: 266_CR3 publication-title: Soc Inform Telecommun Eng – ident: 266_CR23 – ident: 266_CR1 – volume: 5 start-page: 439 issue: 1 year: 2018 ident: 266_CR28 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2017.2767608 – ident: 266_CR4 – ident: 266_CR2 – volume: 17 start-page: 693 issue: 4 year: 2018 ident: 266_CR5 publication-title: Univers Access Inf Soc J doi: 10.1007/s10209-017-0525-0 – volume: 86 start-page: 792 year: 2018 ident: 266_CR13 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.11.045 – volume: 107 start-page: 196 year: 2018 ident: 266_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.04.022 – ident: 266_CR32 – ident: 266_CR29 – volume: 132 start-page: 186 year: 2017 ident: 266_CR7 publication-title: J Syst Softw doi: 10.1016/j.jss.2017.05.125 – ident: 266_CR8 – ident: 266_CR27 – ident: 266_CR30 doi: 10.1109/WoWMoM.2014.6918985 – volume: 4 start-page: 96 issue: 3 year: 2017 ident: 266_CR36 publication-title: Int J Rough Sets Data Anal doi: 10.4018/IJRSDA.2017070107 – volume: 93 start-page: 276 year: 2016 ident: 266_CR20 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2016.07.211 – volume: 56 start-page: 866 issue: 6 year: 2018 ident: 266_CR6 publication-title: J Edu Comput Res doi: 10.1177/0735633117727698 – ident: 266_CR14 doi: 10.1145/3055245.3055253 – volume: 17 start-page: 1727 issue: 8 year: 2017 ident: 266_CR21 publication-title: Sensors doi: 10.3390/s17081727 – ident: 266_CR34 doi: 10.1109/GIIS.2012.6466760 – volume: 63 start-page: 1 issue: 12 year: 2013 ident: 266_CR10 publication-title: Int J Comput Appl – volume: 9 start-page: 25 year: 2016 ident: 266_CR18 publication-title: Electron J Inf Technol – volume: 2018 year: 2018 ident: 266_CR19 publication-title: Wirel Commun Mobile Comput doi: 10.1155/2018/8739203 – start-page: 99 volume-title: Mobile, secure, and programmable networking year: 2017 ident: 266_CR12 – ident: 266_CR11 doi: 10.1145/3109761.3109791 – ident: 266_CR17 doi: 10.1145/3019612.3019878 – ident: 266_CR22 doi: 10.1145/2962735.2962742 – ident: 266_CR31 – volume: 146 start-page: 80 year: 2006 ident: 266_CR35 publication-title: Front Artif Intell Appl – ident: 266_CR26 – start-page: 223 volume-title: The internet of things in the modern business environment year: 2017 ident: 266_CR15 doi: 10.4018/978-1-5225-2104-4.ch012 |
| SSID | ssj0000327867 |
| Score | 2.369331 |
| Snippet | The Internet of Things (IoT) platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of... The IoT platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of the main... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 199 |
| SubjectTerms | Algorithms Artificial Intelligence Classification Clustering Communications systems Computer Appl. in Administrative Data Processing Computer Science Computer simulation Computer Systems Organization and Communication Networks Data analysis Diagnostic systems e-Commerce/e-business Internet of Things IT in Business Machine Learning Management Management of Computing and Information Systems Multivariate analysis Networking and Internet Architecture Original Research Paper Quality of service Software Engineering/Programming and Operating Systems |
| Title | Experimental comparison of the diagnostic capabilities of classification and clustering algorithms for the QoS management in an autonomic IoT platform |
| URI | https://link.springer.com/article/10.1007/s11761-019-00266-w https://www.proquest.com/docview/2303232789 https://laas.hal.science/hal-02166814 |
| Volume | 13 |
| WOSCitedRecordID | wos000489948900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Consortium list (Orbis Cascade Alliance) customDbUrl: eissn: 1863-2394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB714IEXSjnEQqksxBtYinM49mOFWhWpqnpR9S1yfNCVtptqN9v-E34vM94kWxAg0cf4imXPeL6x5wD46LLa59aUPA9C8VyblOvCek75KZ2UZUjjne7lUXl8rK6u9EnnFDbvrd37J8l4Uq-c3QSq3Kj6ak6Kg-T367CJ4k4RO56dXw43K0mWliqmjhVKZhxlkuy8Zf48zC8Saf2a7CEfgM3f3kej2DnYetyEn8OzDmayvSVdbMOan76ArT6FA-s4-iX82H8Q4Z_ZISkhawJDaMjc0hIPR2EWxWq0pEXdmqot4W4yNIp7y8zUYdGC4i7gJJmZfG9m4_b6Zs4QFsexTptzdjNY27Ax9WFm0S49o9nX5oLdTkxLKPoVfDvYv_hyyLtUDdwioGm5c2kQhRLeZXkwJquDLo1RhcFvJ3yqyWXVZl4YWcsgvPG1SXRZ2zLTuUbI8Bo2ps3UvwHmZWGLYEOdeJ-rxCiUsk6T5oZElNR-BKLfrsp2ccwpncakWkVgpoWvsEMVF766H8Gnoc_tMorHP1t_QCoYGlIA7sO9o4rKEBFJqUR-J0aw0xNJ1bH9vEJ9LkuJ_PQIPvdEsar--y_f_l_zd_A0jXRFtm47sNHOFv49PLF37Xg-243s8BMKrAc_ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xgQQvG5-iMMBCvIGlOB-O_TihTZ0oFbAy7c1y_LFV6pqpTbf_ZH8vZzdJBwIkeIxjO5Z9zv3O_t0dwDubVS43uqS5Z4LmUqdUFsbRkJ_Scl76NJ7pnozK8VicnsovrVPYsmO7d1eS8U-9cXZjaHKj6StpMBw4vd6CuzlqrEDk-3Z80p-sJFlaipg6lgmeUdRJvPWW-X03P2mkrfPAh7wFNn-5H41q53D3_wb8EHZamEn213LxCO64-WPY7VI4kHZHP4Gbg1sR_onpkxKS2hOEhsSumXjYCzGoViOTFm3r8NoE3B2IRnFtiZ5bLFqFuAs4SKJnZ_Vi2pxfLAnC4tjX1_qYXPRsGzINbYheNWvPaHJUT8jlTDcBRT-F74cHk49D2qZqoAYBTUOtTT0rBHM2y73WWeVlqbUoND5b5lIZXFZN5pjmFffMaVfpRJaVKTOZS4QMz2B7Xs_dcyCOF6bwxleJc7lItEAta2Ww3FCIksoNgHXLpUwbxzyk05ipTQTmMPEKG6g48ep6AO_7NpfrKB5_rf0WpaCvGAJwD_dHKpQhIuJcsPyKDWCvExLVbvulQnsuS4P4yQF86IRi8_rPn3zxb9XfwP3h5PNIjY7Gn17CgzTKWOC97cF2s1i5V3DPXDXT5eJ13Bo_AGazCiM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYGm6a9wK5aN9isaW-bRZyLEz8ioAKtqphgiLfI8QUqlaRqU_gn_N6d41xapm3StMc4tmPZxznfZ58LIZ9NVNhYq5TFjmcslipkMtGWYX5KI0TqQn-mezFKx-Ps8lKernnxe2v37kqy8WnAKE1lvTczbm_l-MaBfgMNlgxJhGB3G-RxjEmDkK-fXfSnLEEUpplPI8szETHQT6L1nPl9Nw-008Y12kauAc9f7kq9Chpu___gn5OtFn7S_UZeXpBHtnxJtrvUDrTd6a_I_dFa5H-q-2SFtHIUICM1jYUe9EI1qFtvYQucG19rxONogOTXnKrSQNES4zHAgKmaXlXzSX19s6AAl31f36szetNb4dAJtqFqWTce0_SkOqezqaoRXb8mP4ZH5wfHrE3hwDQAnZoZEzqeZNyaKHZKRYWTqVJZouDZcBtKdGXVkeVKFMJxq2yhApkWOo1kLAFKvCGbZVXat4RakejEaVcE1sZZoDLQvkYiowPhCgo7ILxbuly38c0xzcY0X0VmxonPoUHuJz6_G5AvfZtZE93jr7U_gUT0FTEw9_H-KMcyQEpCZDy-5QOy0wlM3v4OFjnwvChEUZQD8rUTkNXrP3_y3b9V_0ienh4O89HJ-Nt78iz0IobmcDtks54v7S55om_ryWL-we-Sn8fJEwc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+comparison+of+the+diagnostic+capabilities+of+classification+and+clustering+algorithms+for+the+QoS+management+in+an+autonomic+IoT+platform&rft.jtitle=Service+oriented+computing+and+applications&rft.au=Morales%2C+Luis&rft.au=Ouedraogo%2C+Clovis+Anicet&rft.au=Aguilar%2C+Jose&rft.au=Chassot%2C+Christophe&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-2386&rft.eissn=1863-2394&rft.volume=13&rft.issue=3&rft.spage=199&rft.epage=219&rft_id=info:doi/10.1007%2Fs11761-019-00266-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2386&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2386&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2386&client=summon |