Experimental comparison of the diagnostic capabilities of classification and clustering algorithms for the QoS management in an autonomic IoT platform

The Internet of Things (IoT) platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of the main non-functional requirements is the Quality of Service (QoS). In a previous work has been defined an autonomic IoT platform for the...

Full description

Saved in:
Bibliographic Details
Published in:Service oriented computing and applications Vol. 13; no. 3; pp. 199 - 219
Main Authors: Morales, Luis, Ouedraogo, Clovis Anicet, Aguilar, Jose, Chassot, Christophe, Medjiah, Samir, Drira, Khalil
Format: Journal Article
Language:English
Published: London Springer London 01.09.2019
Springer Nature B.V
Springer
Subjects:
ISSN:1863-2386, 1863-2394
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Internet of Things (IoT) platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of the main non-functional requirements is the Quality of Service (QoS). In a previous work has been defined an autonomic IoT platform for the QoS Management, based on the concept of autonomic cycle of data analysis tasks. In this platform have been defined two autonomic cycles, one based on a classification task that determines the current operational state to define the set of tasks to execute in the communication system to guarantee a given QoS. The other one is based on a clustering task that discovers the current operational state and, based on it, determines the set of tasks to be executed in the communication system. This paper analyzes the diagnostic capabilities of the system based on both approaches, using different metrics. For that, a real scenario has been considered, with simulations that have generated data to test both tasks. Each technique has different aspects to be considered for a correct QoS management in the context of IoT platforms. The classification technique can determine very well the learned operational states, but the clustering approach can carry out a more detailed description of the operational states. Additionally, due to the classification and clustering technique used, called learning algorithm for multivariate data analysis, the paper analyzes the operational state profile determined by them, which is very useful in a diagnostic process.
AbstractList The IoT platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of the main non-functional requirements is the Quality of Service (QoS). In a previous work has been defined an Autonomic Internet of Things (IoT) platform for the QoS Management, based on the concept of autonomic cycle of data analysis tasks. In this platform have been defined two autonomic cycles, one based on a classification task that determines the current operational state to define the set of tasks to execute in the communication system to guarantee a given QoS. The other one is based on a clustering task that discovers the current operational state, and based on it, determines the set of tasks to be executed in the communication system. This paper analyzes the diagnostic capabilities of the system based on both approaches, using different metrics. For that, a real scenario has been considered, with simulations that have generated data to test both tasks. Each technique has different aspects to be considered for a correct QoS management in the context of IoT platforms. The classification technique can determine very well the learned operational states, but the clustering approach can carry out a more detailed description of the operational states. Additionally, due to the classification and clustering technique used, called LAMDA (Learning Algorithm for Multivariate Data Analysis), the paper analyzes the operational state profile determined by them, which is very useful in a diagnostic process.
The Internet of Things (IoT) platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of the main non-functional requirements is the Quality of Service (QoS). In a previous work has been defined an autonomic IoT platform for the QoS Management, based on the concept of autonomic cycle of data analysis tasks. In this platform have been defined two autonomic cycles, one based on a classification task that determines the current operational state to define the set of tasks to execute in the communication system to guarantee a given QoS. The other one is based on a clustering task that discovers the current operational state and, based on it, determines the set of tasks to be executed in the communication system. This paper analyzes the diagnostic capabilities of the system based on both approaches, using different metrics. For that, a real scenario has been considered, with simulations that have generated data to test both tasks. Each technique has different aspects to be considered for a correct QoS management in the context of IoT platforms. The classification technique can determine very well the learned operational states, but the clustering approach can carry out a more detailed description of the operational states. Additionally, due to the classification and clustering technique used, called learning algorithm for multivariate data analysis, the paper analyzes the operational state profile determined by them, which is very useful in a diagnostic process.
Author Medjiah, Samir
Morales, Luis
Aguilar, Jose
Chassot, Christophe
Ouedraogo, Clovis Anicet
Drira, Khalil
Author_xml – sequence: 1
  givenname: Luis
  surname: Morales
  fullname: Morales, Luis
  organization: Departamento de Automatización y Control Industrial, Escuela Politécnica Nacional
– sequence: 2
  givenname: Clovis Anicet
  surname: Ouedraogo
  fullname: Ouedraogo, Clovis Anicet
  organization: CNRS-LAAS
– sequence: 3
  givenname: Jose
  orcidid: 0000-0003-4194-6882
  surname: Aguilar
  fullname: Aguilar, Jose
  email: aguilar@ula.ve
  organization: CEMISID, Universidad de Los Andes
– sequence: 4
  givenname: Christophe
  surname: Chassot
  fullname: Chassot, Christophe
  organization: CNRS-LAAS, INSA
– sequence: 5
  givenname: Samir
  surname: Medjiah
  fullname: Medjiah, Samir
  organization: Université de Toulouse, UPS, CNRS-LAAS
– sequence: 6
  givenname: Khalil
  surname: Drira
  fullname: Drira, Khalil
  organization: CNRS-LAAS
BackLink https://laas.hal.science/hal-02166814$$DView record in HAL
BookMark eNp9UcFu3CAURFUqNU3zAzkh9dSDE57ZBfsYRWkTaaWoanpGzxh2iWxwgW3SH-n3Fq_TRuohXIDHzDCaeU-OfPCGkDNg58CYvEgAUkDFoK0Yq4WoHt-QY2gEr2rero7-nRvxjpym9MDK4rVshDwmv6-fJhPdaHzGgeowThhdCp4GS_PO0N7h1oeUnaYaJ-zc4LIzaX7WA6bkrNOYXSGg78ton3KR81uKwzZEl3djojbEg9bX8I2O6HFr5u-omzkU9zn4MBb923BPpwFzgY8fyFuLQzKnz_sJ-f75-v7qptrcfbm9utxUmrcyV31fW1g3YHq-soi8s61EbNZY7j2YupXAV5obQNEJCwZNh6yVnZYlmLZZ8xPyadHd4aCmkgPGXyqgUzeXGzXPWA1CNLD6CQX7ccFOMfzYm5TVQ9hHX-ypmpdA50jbgmoWlI4hpWis0i4fEsoR3aCAqbk0tZSmSmnqUJp6LNT6P-pfR6-S-EJK05y7iS-uXmH9ATs6r4Y
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3078550
crossref_primary_10_1007_s12553_023_00794_8
crossref_primary_10_1109_ACCESS_2021_3105515
crossref_primary_10_1109_ACCESS_2020_3021675
crossref_primary_10_1007_s13735_020_00202_1
crossref_primary_10_3390_computers13030076
crossref_primary_10_1016_j_eswa_2022_117479
crossref_primary_10_1016_j_jprocont_2022_05_013
crossref_primary_10_3233_AO_230004
crossref_primary_10_1007_s00607_024_01320_y
crossref_primary_10_1016_j_asoc_2024_111940
crossref_primary_10_1007_s13748_024_00328_x
crossref_primary_10_1016_j_engappai_2024_109189
crossref_primary_10_1007_s42979_023_02253_7
crossref_primary_10_3390_en16041649
crossref_primary_10_1016_j_asoc_2020_106102
crossref_primary_10_1109_ACCESS_2024_3456246
crossref_primary_10_1109_ACCESS_2020_2966545
crossref_primary_10_3390_en17030757
crossref_primary_10_3390_en13123103
crossref_primary_10_1016_j_asoc_2024_111283
crossref_primary_10_1016_j_engappai_2024_108264
crossref_primary_10_1007_s00500_022_07665_w
crossref_primary_10_1109_TNSM_2022_3193750
crossref_primary_10_1016_j_heliyon_2022_e10846
crossref_primary_10_1016_j_jii_2025_100788
crossref_primary_10_3390_info15020086
crossref_primary_10_1186_s13731_025_00536_2
crossref_primary_10_3390_a16020081
Cites_doi 10.23919/ConTEL.2017.8000051
10.1049/cp.2013.2246
10.1145/3106426.3106499
10.1109/TLA.2017.7932705
10.1109/JIOT.2017.2767608
10.1007/s10209-017-0525-0
10.1016/j.future.2017.11.045
10.1016/j.eswa.2018.04.022
10.1016/j.jss.2017.05.125
10.1109/WoWMoM.2014.6918985
10.4018/IJRSDA.2017070107
10.1016/j.procs.2016.07.211
10.1177/0735633117727698
10.1145/3055245.3055253
10.3390/s17081727
10.1109/GIIS.2012.6466760
10.1155/2018/8739203
10.1145/3109761.3109791
10.1145/3019612.3019878
10.1145/2962735.2962742
10.4018/978-1-5225-2104-4.ch012
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
VOOES
DOI 10.1007/s11761-019-00266-w
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1863-2394
EndPage 219
ExternalDocumentID oai:HAL:hal-02166814v1
10_1007_s11761_019_00266_w
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40E
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
1XC
VOOES
ID FETCH-LOGICAL-c397t-dd2f1581ed34faa3bf97aa85ad34d1e297134c3e1a6b6f1eaeba097bc73949853
IEDL.DBID RSV
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489948900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-2386
IngestDate Sat Oct 25 11:22:15 EDT 2025
Thu Sep 25 00:36:15 EDT 2025
Sat Nov 29 01:50:26 EST 2025
Tue Nov 18 21:57:23 EST 2025
Fri Feb 21 02:28:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Autonomic cycle of data analysis tasks
IoT platforms
Clustering
Quality of Service
Classification
Diagnostic capabilities
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-dd2f1581ed34faa3bf97aa85ad34d1e297134c3e1a6b6f1eaeba097bc73949853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4194-6882
0000-0002-4770-1563
0000-0002-4152-3399
OpenAccessLink https://laas.hal.science/hal-02166814
PQID 2303232789
PQPubID 2044172
PageCount 21
ParticipantIDs hal_primary_oai_HAL_hal_02166814v1
proquest_journals_2303232789
crossref_citationtrail_10_1007_s11761_019_00266_w
crossref_primary_10_1007_s11761_019_00266_w
springer_journals_10_1007_s11761_019_00266_w
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Service oriented computing and applications
PublicationTitleAbbrev SOCA
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Springer
Publisher_xml – name: Springer London
– name: Springer Nature B.V
– name: Springer
References S. Medjiah and C. Chassot (2017) On the enhancement of non-functional requirements for cloud-assisted middleware-based IoT and other applications (invited paper). In: To be publish in the second workshop on adaptive service-oriented and cloud application, Malaga, Spain
Vizcarrondo J, Aguilar J, Exposito E, Subias A (2012) ARMISCOM: autonomic reflective middleware for management service composition. In: Proceedings of the 4th global information infrastructure and networking symposium, IEEE communication society, Choroni, Venezuela
KumarJZaveriMhierarchical clustering for dynamic and heterogeneous internet of thingsProc Comput Sci20169327628210.1016/j.procs.2016.07.211
AguilarJCorderoJBarbaLSanchezMValdiviezoPChambaLLearning analytics tasks as services in smart classroomUnivers Access Inf Soc J201817469370910.1007/s10209-017-0525-0
Goel D, Chaudhury S, Ghosh H (2017) An IoT approach for context-aware smart traffic management using ontology. In: International conference on web intelligence, pp 42–49. Leipzig, Germany
Siby S, Ranjan R, Tippenhauer N (2017) IoTScanner: detecting privacy threats in IoT neighborhoods. In: 3rd ACM international workshop on IoT privacy, trust, and security, pp 23–30, Abu Dhabi
Medved J et al (2014) Opendaylight: Towards a model-driven sdn controller architecture. In: World of wireless, IEEE 15th international symposium on a mobile and multimedia networks (WoWMoM), Sydney, Australia
ETSI TS 102 690 (2010) Machine-to-machine communications (M2M); Functional architecture, v2.1.1
Ouedraogo C, Medjiah S, Chassot C (2018) Autonomic middleware based on data analysis tasks for the QoS management in the IoT. Technical Report, LAAS
ZhaoSYuLChengBChenJIoT service clustering for dynamic service matchmakingSensors2017178172710.3390/s17081727
KumarJZaveriMClustering approaches for pragmatic two-layer IoT architectureWirel Commun Mobile Comput2018201810.1155/2018/8739203
LAMDA–RD (2018) An extension to the LAMDA classifier in the clustering context. Expert Syst Appl (in revision)
HongKMoonJWonCJuJSamiaBIdentifying service contexts for QoS support in IoT service oriented software defined networksMobile, secure, and programmable networking2017BerlinSpringer99108
oneM2M TS v1.6.1 (2015) oneM2M functional architecture
WhiteGNallurVClarkeSQuality of service approaches in IoT: a systematic mappingJ Syst Softw201713218620310.1016/j.jss.2017.05.125
Otebolaku A, Lee G (2017) Towards context classification and reasoning in IoT. In: 14th international conference on telecommunications (ConTEL), Zagreb, Croatia, pp 147–154
MahallePPrasadNPrasadRObject classification based context management for identity management in internet of thingsInt J Comput Appl2013631216
MichellVOlwenJOchsTRiemannUThe Human-IoT ecosystem: an approach to functional situation context classificationThe internet of things in the modern business environment2017PennsylvaniaIGI Global22324810.4018/978-1-5225-2104-4.ch012
VizcarrondoJAguilarJExpositoESubiasAMAPE-K as a service-oriented architectureIEEE Latin Am Trans20171561163117510.1109/TLA.2017.7932705
IsazaCAguilar-MartinJLe LannMVAguilarJRios-BolivarAAn optimization method for the data space partition obtained by classification techniques for the monitoring of dynamic processesFront Artif Intell Appl20061468087
El MouaatamidOLahmerMBelkasmiMInternet of things security: layered classification of attacks and possible countermeasuresElectron J Inf Technol201692537
Mahalle P, Prasad N, Prasad R (2013) Novel context-aware clustering with hierarchical addressing (CCHA) for the Internet of Things (IoT). In: Fifth international conference on advances in recent technologies in communication and computing, pp 267–274, Bangalore, India
Floodlight. Available: http://floodlight.openflowhub.org
ZhangQFitzekFMission Critical IoT Communication in5GSoc Inform Telecommun Eng20151593541
BotíaJFBotíaDOn LAMDA clustering method based on typicality degree and intuitionistic fuzzy setsExpert Syst Appl201810719622110.1016/j.eswa.2018.04.022
Open Networking Foundation (2015) OpenFlow Switch Specification Version 1.5.1
Kumar J, Zaveri M (2016) Clustering for collaborative processing in IoT network. In: Second international conference on IoT in urban space, pp 95–97, Tokyo Japan
JianliPJamesMFuture edge cloud and edge computing for internet of things applicationsIEEE Internet Things J20185143944910.1109/JIOT.2017.2767608
SandeshMRailkarPPMahallePMathematical representation of quality of service (QoS) parameters for internet of things (IoT)Int J Rough Sets Data Anal2017439610710.4018/IJRSDA.2017070107
AguilarJBuendiaOCorderoJSpecification of the autonomic cycles of learning analytic tasks for a smart classroomJ Edu Comput Res201856686689110.1177/0735633117727698
Ferrando R, Stacey P (2017) Classification of device behaviour in internet of things infrastructures: towards distinguishing the abnormal from security threats. In: International conference on internet of things and machine learning, Liverpool, United Kingdom
IBM (2005) An architectural blueprint for autonomic computing. In: IBM white paper, 3th ed
AntunesMGomesDAguiaRTowards IoT data classification through semantic featuresFuture Gener Comput Syst20188679279810.1016/j.future.2017.11.045
Meidan Y, Bohadana M, Shabtai A, Guarnizo J, Ochoa M, Tippenhauer N, Elovici Y (2017) ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis. In: Symposium on applied computing, pp 506–509, Marrakesh, Morocco
Morales L, Aguilar J, Chavez D, Izasa C (2018) LAMDA–HAD, an extension to the LAMDA classifier in the context of supervised learning. Int J Inf Technol Decis Making (in revision)
Azevedo R, Ribeiro R (2017) Distributed data clustering in the context of the internet of things: a data traffic reduction approach. In: 23rd Brazilian symposium on multimedia and the web, pp 313–316, Gramado, Brazil
J Kumar (266_CR20) 2016; 93
M Sandesh (266_CR36) 2017; 4
266_CR17
266_CR16
J Vizcarrondo (266_CR33) 2017; 15
Q Zhang (266_CR3) 2015; 159
V Michell (266_CR15) 2017
266_CR2
266_CR24
266_CR23
266_CR1
266_CR22
J Aguilar (266_CR6) 2018; 56
266_CR4
K Hong (266_CR12) 2017
266_CR8
266_CR9
JF Botía (266_CR25) 2018; 107
266_CR29
P Jianli (266_CR28) 2018; 5
G White (266_CR7) 2017; 132
266_CR27
266_CR26
266_CR32
J Aguilar (266_CR5) 2018; 17
266_CR31
266_CR30
S Zhao (266_CR21) 2017; 17
266_CR14
266_CR34
266_CR11
P Mahalle (266_CR10) 2013; 63
M Antunes (266_CR13) 2018; 86
C Isaza (266_CR35) 2006; 146
O El Mouaatamid (266_CR18) 2016; 9
J Kumar (266_CR19) 2018; 2018
References_xml – reference: AguilarJBuendiaOCorderoJSpecification of the autonomic cycles of learning analytic tasks for a smart classroomJ Edu Comput Res201856686689110.1177/0735633117727698
– reference: Azevedo R, Ribeiro R (2017) Distributed data clustering in the context of the internet of things: a data traffic reduction approach. In: 23rd Brazilian symposium on multimedia and the web, pp 313–316, Gramado, Brazil
– reference: AntunesMGomesDAguiaRTowards IoT data classification through semantic featuresFuture Gener Comput Syst20188679279810.1016/j.future.2017.11.045
– reference: S. Medjiah and C. Chassot (2017) On the enhancement of non-functional requirements for cloud-assisted middleware-based IoT and other applications (invited paper). In: To be publish in the second workshop on adaptive service-oriented and cloud application, Malaga, Spain
– reference: Kumar J, Zaveri M (2016) Clustering for collaborative processing in IoT network. In: Second international conference on IoT in urban space, pp 95–97, Tokyo Japan
– reference: Open Networking Foundation (2015) OpenFlow Switch Specification Version 1.5.1
– reference: Ferrando R, Stacey P (2017) Classification of device behaviour in internet of things infrastructures: towards distinguishing the abnormal from security threats. In: International conference on internet of things and machine learning, Liverpool, United Kingdom
– reference: MichellVOlwenJOchsTRiemannUThe Human-IoT ecosystem: an approach to functional situation context classificationThe internet of things in the modern business environment2017PennsylvaniaIGI Global22324810.4018/978-1-5225-2104-4.ch012
– reference: IBM (2005) An architectural blueprint for autonomic computing. In: IBM white paper, 3th ed
– reference: IsazaCAguilar-MartinJLe LannMVAguilarJRios-BolivarAAn optimization method for the data space partition obtained by classification techniques for the monitoring of dynamic processesFront Artif Intell Appl20061468087
– reference: AguilarJCorderoJBarbaLSanchezMValdiviezoPChambaLLearning analytics tasks as services in smart classroomUnivers Access Inf Soc J201817469370910.1007/s10209-017-0525-0
– reference: WhiteGNallurVClarkeSQuality of service approaches in IoT: a systematic mappingJ Syst Softw201713218620310.1016/j.jss.2017.05.125
– reference: JianliPJamesMFuture edge cloud and edge computing for internet of things applicationsIEEE Internet Things J20185143944910.1109/JIOT.2017.2767608
– reference: ETSI TS 102 690 (2010) Machine-to-machine communications (M2M); Functional architecture, v2.1.1
– reference: Morales L, Aguilar J, Chavez D, Izasa C (2018) LAMDA–HAD, an extension to the LAMDA classifier in the context of supervised learning. Int J Inf Technol Decis Making (in revision)
– reference: El MouaatamidOLahmerMBelkasmiMInternet of things security: layered classification of attacks and possible countermeasuresElectron J Inf Technol201692537
– reference: oneM2M TS v1.6.1 (2015) oneM2M functional architecture
– reference: Siby S, Ranjan R, Tippenhauer N (2017) IoTScanner: detecting privacy threats in IoT neighborhoods. In: 3rd ACM international workshop on IoT privacy, trust, and security, pp 23–30, Abu Dhabi
– reference: KumarJZaveriMhierarchical clustering for dynamic and heterogeneous internet of thingsProc Comput Sci20169327628210.1016/j.procs.2016.07.211
– reference: Goel D, Chaudhury S, Ghosh H (2017) An IoT approach for context-aware smart traffic management using ontology. In: International conference on web intelligence, pp 42–49. Leipzig, Germany
– reference: SandeshMRailkarPPMahallePMathematical representation of quality of service (QoS) parameters for internet of things (IoT)Int J Rough Sets Data Anal2017439610710.4018/IJRSDA.2017070107
– reference: Otebolaku A, Lee G (2017) Towards context classification and reasoning in IoT. In: 14th international conference on telecommunications (ConTEL), Zagreb, Croatia, pp 147–154
– reference: Meidan Y, Bohadana M, Shabtai A, Guarnizo J, Ochoa M, Tippenhauer N, Elovici Y (2017) ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis. In: Symposium on applied computing, pp 506–509, Marrakesh, Morocco
– reference: Medved J et al (2014) Opendaylight: Towards a model-driven sdn controller architecture. In: World of wireless, IEEE 15th international symposium on a mobile and multimedia networks (WoWMoM), Sydney, Australia
– reference: VizcarrondoJAguilarJExpositoESubiasAMAPE-K as a service-oriented architectureIEEE Latin Am Trans20171561163117510.1109/TLA.2017.7932705
– reference: ZhaoSYuLChengBChenJIoT service clustering for dynamic service matchmakingSensors2017178172710.3390/s17081727
– reference: HongKMoonJWonCJuJSamiaBIdentifying service contexts for QoS support in IoT service oriented software defined networksMobile, secure, and programmable networking2017BerlinSpringer99108
– reference: ZhangQFitzekFMission Critical IoT Communication in5GSoc Inform Telecommun Eng20151593541
– reference: Ouedraogo C, Medjiah S, Chassot C (2018) Autonomic middleware based on data analysis tasks for the QoS management in the IoT. Technical Report, LAAS
– reference: Mahalle P, Prasad N, Prasad R (2013) Novel context-aware clustering with hierarchical addressing (CCHA) for the Internet of Things (IoT). In: Fifth international conference on advances in recent technologies in communication and computing, pp 267–274, Bangalore, India
– reference: KumarJZaveriMClustering approaches for pragmatic two-layer IoT architectureWirel Commun Mobile Comput2018201810.1155/2018/8739203
– reference: MahallePPrasadNPrasadRObject classification based context management for identity management in internet of thingsInt J Comput Appl2013631216
– reference: BotíaJFBotíaDOn LAMDA clustering method based on typicality degree and intuitionistic fuzzy setsExpert Syst Appl201810719622110.1016/j.eswa.2018.04.022
– reference: Vizcarrondo J, Aguilar J, Exposito E, Subias A (2012) ARMISCOM: autonomic reflective middleware for management service composition. In: Proceedings of the 4th global information infrastructure and networking symposium, IEEE communication society, Choroni, Venezuela
– reference: LAMDA–RD (2018) An extension to the LAMDA classifier in the clustering context. Expert Syst Appl (in revision)
– reference: Floodlight. Available: http://floodlight.openflowhub.org
– ident: 266_CR9
  doi: 10.23919/ConTEL.2017.8000051
– ident: 266_CR24
  doi: 10.1049/cp.2013.2246
– ident: 266_CR16
  doi: 10.1145/3106426.3106499
– volume: 15
  start-page: 1163
  issue: 6
  year: 2017
  ident: 266_CR33
  publication-title: IEEE Latin Am Trans
  doi: 10.1109/TLA.2017.7932705
– volume: 159
  start-page: 35
  year: 2015
  ident: 266_CR3
  publication-title: Soc Inform Telecommun Eng
– ident: 266_CR23
– ident: 266_CR1
– volume: 5
  start-page: 439
  issue: 1
  year: 2018
  ident: 266_CR28
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2017.2767608
– ident: 266_CR4
– ident: 266_CR2
– volume: 17
  start-page: 693
  issue: 4
  year: 2018
  ident: 266_CR5
  publication-title: Univers Access Inf Soc J
  doi: 10.1007/s10209-017-0525-0
– volume: 86
  start-page: 792
  year: 2018
  ident: 266_CR13
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2017.11.045
– volume: 107
  start-page: 196
  year: 2018
  ident: 266_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.04.022
– ident: 266_CR32
– ident: 266_CR29
– volume: 132
  start-page: 186
  year: 2017
  ident: 266_CR7
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2017.05.125
– ident: 266_CR8
– ident: 266_CR27
– ident: 266_CR30
  doi: 10.1109/WoWMoM.2014.6918985
– volume: 4
  start-page: 96
  issue: 3
  year: 2017
  ident: 266_CR36
  publication-title: Int J Rough Sets Data Anal
  doi: 10.4018/IJRSDA.2017070107
– volume: 93
  start-page: 276
  year: 2016
  ident: 266_CR20
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2016.07.211
– volume: 56
  start-page: 866
  issue: 6
  year: 2018
  ident: 266_CR6
  publication-title: J Edu Comput Res
  doi: 10.1177/0735633117727698
– ident: 266_CR14
  doi: 10.1145/3055245.3055253
– volume: 17
  start-page: 1727
  issue: 8
  year: 2017
  ident: 266_CR21
  publication-title: Sensors
  doi: 10.3390/s17081727
– ident: 266_CR34
  doi: 10.1109/GIIS.2012.6466760
– volume: 63
  start-page: 1
  issue: 12
  year: 2013
  ident: 266_CR10
  publication-title: Int J Comput Appl
– volume: 9
  start-page: 25
  year: 2016
  ident: 266_CR18
  publication-title: Electron J Inf Technol
– volume: 2018
  year: 2018
  ident: 266_CR19
  publication-title: Wirel Commun Mobile Comput
  doi: 10.1155/2018/8739203
– start-page: 99
  volume-title: Mobile, secure, and programmable networking
  year: 2017
  ident: 266_CR12
– ident: 266_CR11
  doi: 10.1145/3109761.3109791
– ident: 266_CR17
  doi: 10.1145/3019612.3019878
– ident: 266_CR22
  doi: 10.1145/2962735.2962742
– ident: 266_CR31
– volume: 146
  start-page: 80
  year: 2006
  ident: 266_CR35
  publication-title: Front Artif Intell Appl
– ident: 266_CR26
– start-page: 223
  volume-title: The internet of things in the modern business environment
  year: 2017
  ident: 266_CR15
  doi: 10.4018/978-1-5225-2104-4.ch012
SSID ssj0000327867
Score 2.369331
Snippet The Internet of Things (IoT) platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of...
The IoT platforms must allow the communication between the Applications and Devices according to their non-functional requirements. One of the main...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 199
SubjectTerms Algorithms
Artificial Intelligence
Classification
Clustering
Communications systems
Computer Appl. in Administrative Data Processing
Computer Science
Computer simulation
Computer Systems Organization and Communication Networks
Data analysis
Diagnostic systems
e-Commerce/e-business
Internet of Things
IT in Business
Machine Learning
Management
Management of Computing and Information Systems
Multivariate analysis
Networking and Internet Architecture
Original Research Paper
Quality of service
Software Engineering/Programming and Operating Systems
Title Experimental comparison of the diagnostic capabilities of classification and clustering algorithms for the QoS management in an autonomic IoT platform
URI https://link.springer.com/article/10.1007/s11761-019-00266-w
https://www.proquest.com/docview/2303232789
https://laas.hal.science/hal-02166814
Volume 13
WOSCitedRecordID wos000489948900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB714IEXSjnEQqksxBtYinM49mOFWhWpqnpR9S1yfNCVtptqN9v-E34vM94kWxAg0cf4imXPeL6x5wD46LLa59aUPA9C8VyblOvCek75KZ2UZUjjne7lUXl8rK6u9EnnFDbvrd37J8l4Uq-c3QSq3Kj6ak6Kg-T367CJ4k4RO56dXw43K0mWliqmjhVKZhxlkuy8Zf48zC8Saf2a7CEfgM3f3kej2DnYetyEn8OzDmayvSVdbMOan76ArT6FA-s4-iX82H8Q4Z_ZISkhawJDaMjc0hIPR2EWxWq0pEXdmqot4W4yNIp7y8zUYdGC4i7gJJmZfG9m4_b6Zs4QFsexTptzdjNY27Ax9WFm0S49o9nX5oLdTkxLKPoVfDvYv_hyyLtUDdwioGm5c2kQhRLeZXkwJquDLo1RhcFvJ3yqyWXVZl4YWcsgvPG1SXRZ2zLTuUbI8Bo2ps3UvwHmZWGLYEOdeJ-rxCiUsk6T5oZElNR-BKLfrsp2ccwpncakWkVgpoWvsEMVF766H8Gnoc_tMorHP1t_QCoYGlIA7sO9o4rKEBFJqUR-J0aw0xNJ1bH9vEJ9LkuJ_PQIPvdEsar--y_f_l_zd_A0jXRFtm47sNHOFv49PLF37Xg-243s8BMKrAc_
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xgQQvG5-iMMBCvIGlOB-O_TihTZ0oFbAy7c1y_LFV6pqpTbf_ZH8vZzdJBwIkeIxjO5Z9zv3O_t0dwDubVS43uqS5Z4LmUqdUFsbRkJ_Scl76NJ7pnozK8VicnsovrVPYsmO7d1eS8U-9cXZjaHKj6StpMBw4vd6CuzlqrEDk-3Z80p-sJFlaipg6lgmeUdRJvPWW-X03P2mkrfPAh7wFNn-5H41q53D3_wb8EHZamEn213LxCO64-WPY7VI4kHZHP4Gbg1sR_onpkxKS2hOEhsSumXjYCzGoViOTFm3r8NoE3B2IRnFtiZ5bLFqFuAs4SKJnZ_Vi2pxfLAnC4tjX1_qYXPRsGzINbYheNWvPaHJUT8jlTDcBRT-F74cHk49D2qZqoAYBTUOtTT0rBHM2y73WWeVlqbUoND5b5lIZXFZN5pjmFffMaVfpRJaVKTOZS4QMz2B7Xs_dcyCOF6bwxleJc7lItEAta2Ww3FCIksoNgHXLpUwbxzyk05ipTQTmMPEKG6g48ep6AO_7NpfrKB5_rf0WpaCvGAJwD_dHKpQhIuJcsPyKDWCvExLVbvulQnsuS4P4yQF86IRi8_rPn3zxb9XfwP3h5PNIjY7Gn17CgzTKWOC97cF2s1i5V3DPXDXT5eJ13Bo_AGazCiM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYGm6a9wK5aN9isaW-bRZyLEz8ioAKtqphgiLfI8QUqlaRqU_gn_N6d41xapm3StMc4tmPZxznfZ58LIZ9NVNhYq5TFjmcslipkMtGWYX5KI0TqQn-mezFKx-Ps8lKernnxe2v37kqy8WnAKE1lvTczbm_l-MaBfgMNlgxJhGB3G-RxjEmDkK-fXfSnLEEUpplPI8szETHQT6L1nPl9Nw-008Y12kauAc9f7kq9Chpu___gn5OtFn7S_UZeXpBHtnxJtrvUDrTd6a_I_dFa5H-q-2SFtHIUICM1jYUe9EI1qFtvYQucG19rxONogOTXnKrSQNES4zHAgKmaXlXzSX19s6AAl31f36szetNb4dAJtqFqWTce0_SkOqezqaoRXb8mP4ZH5wfHrE3hwDQAnZoZEzqeZNyaKHZKRYWTqVJZouDZcBtKdGXVkeVKFMJxq2yhApkWOo1kLAFKvCGbZVXat4RakejEaVcE1sZZoDLQvkYiowPhCgo7ILxbuly38c0xzcY0X0VmxonPoUHuJz6_G5AvfZtZE93jr7U_gUT0FTEw9_H-KMcyQEpCZDy-5QOy0wlM3v4OFjnwvChEUZQD8rUTkNXrP3_y3b9V_0ienh4O89HJ-Nt78iz0IobmcDtks54v7S55om_ryWL-we-Sn8fJEwc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+comparison+of+the+diagnostic+capabilities+of+classification+and+clustering+algorithms+for+the+QoS+management+in+an+autonomic+IoT+platform&rft.jtitle=Service+oriented+computing+and+applications&rft.au=Morales%2C+Luis&rft.au=Ouedraogo%2C+Clovis+Anicet&rft.au=Aguilar%2C+Jose&rft.au=Chassot%2C+Christophe&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-2386&rft.eissn=1863-2394&rft.volume=13&rft.issue=3&rft.spage=199&rft.epage=219&rft_id=info:doi/10.1007%2Fs11761-019-00266-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2386&client=summon