High-performance pseudo-anonymization of virtual power plant data on a CPU cluster
The considerable move towards the use of renewable energy resources has been provided by the digitization of energy systems with the help of virtual power plants (VPPs). However, due to the coincidence of this move with the introduction of new technologies in information and communications, joining...
Gespeichert in:
| Veröffentlicht in: | Cluster computing Jg. 26; H. 1; S. 495 - 512 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.02.2023
Springer Nature B.V Springer Verlag |
| Schlagworte: | |
| ISSN: | 1386-7857, 1573-7543 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The considerable move towards the use of renewable energy resources has been provided by the digitization of energy systems with the help of virtual power plants (VPPs). However, due to the coincidence of this move with the introduction of new technologies in information and communications, joining these systems raises concerns about the privacy of personal data. The only real-world approach widely used in this case is to anonymize or pseudonymize the information associated with individuals in data received from distributed measurement devices. In this paper, we propose the method of classifying received data packets into different flows and assigning different access levels for each flow. This method makes data pseudonymous. Before this step, the received data, which has a different format, is unionized. To implement this idea, a tuple space flow classification algorithm is parallelized on a CPU cluster using MPI and OpenMP according to different scenarios. The CPU cluster consists of one head node and two computational nodes for packet classification operations. In this research, two scenarios have been used to run the CPU algorithm in parallel. The first scenario uses MPI and the second scenario uses a combination of MPI and OpenMP libraries. Also, the Tuple Space algorithm has been implemented on the computing systems using the mentioned libraries in the form of two scenarios using OpenMP and MPI. According to our results, the increase in the number of processor cores is linearly correlated with the increase in the speed of classification. Furthermore, while MPI uses more memory than OpenMP, it helps to achieve a higher speed of classification. In the combined method, the maximum speed of flow classification can be achieved if the number of processes and threads is equal to the number of processor cores. In other words, when the sum of processes and threads does not outnumber CPU cores, the least classification time and memory usage can be achieved. |
|---|---|
| AbstractList | The considerable move towards the use of renewable energy resources has been provided by the digitization of energy systems with the help of virtual power plants (VPPs). However, due to the coincidence of this move with the introduction of new technologies in information and communications, joining these systems raises concerns about the privacy of personal data. The only real-world approach widely used in this case is to anonymize or pseudonymize the information associated with individuals in data received from distributed measurement devices. In this paper, we propose the method of classifying received data packets into different flows and assigning different access levels for each flow. This method makes data pseudonymous. Before this step, the received data, which has a different format, is unionized. To implement this idea, a tuple space flow classification algorithm is parallelized on a CPU cluster using MPI and OpenMP according to different scenarios. The CPU cluster consists of one head node and two computational nodes for packet classification operations. In this research, two scenarios have been used to run the CPU algorithm in parallel. The first scenario uses MPI and the second scenario uses a combination of MPI and OpenMP libraries. Also, the Tuple Space algorithm has been implemented on the computing systems using the mentioned libraries in the form of two scenarios using OpenMP and MPI. According to our results, the increase in the number of processor cores is linearly correlated with the increase in the speed of classification. Furthermore, while MPI uses more memory than OpenMP, it helps to achieve a higher speed of classification. In the combined method, the maximum speed of flow classification can be achieved if the number of processes and threads is equal to the number of processor cores. In other words, when the sum of processes and threads does not outnumber CPU cores, the least classification time and memory usage can be achieved. |
| Author | Abbasi, Mahdi Nasser, Habib Najafabadi, Azam Fazel Elghali, Seifeddine Ben Khosravi, Mohammad R. Zerrougui, Mohamed |
| Author_xml | – sequence: 1 givenname: Mahdi orcidid: 0000-0002-5373-5778 surname: Abbasi fullname: Abbasi, Mahdi email: abbasi@basu.ac.ir, mahdi-abbasi@lis-lab.fr organization: Department of Computer Engineering, Engineering Faculty, Bu-Ali Sina University, Aix Marseille Univ, Université de Toulon, CNRS, LIS – sequence: 2 givenname: Azam Fazel surname: Najafabadi fullname: Najafabadi, Azam Fazel organization: Department of Computer Engineering, Engineering Faculty, Bu-Ali Sina University – sequence: 3 givenname: Seifeddine Ben surname: Elghali fullname: Elghali, Seifeddine Ben organization: Aix Marseille Univ, Université de Toulon, CNRS, LIS – sequence: 4 givenname: Mohamed surname: Zerrougui fullname: Zerrougui, Mohamed organization: Aix Marseille Univ, Université de Toulon, CNRS, LIS – sequence: 5 givenname: Mohammad R. surname: Khosravi fullname: Khosravi, Mohammad R. organization: Department of Computer Engineering, Engineering Faculty, Bu-Ali Sina University – sequence: 6 givenname: Habib surname: Nasser fullname: Nasser, Habib organization: RDI’UP (Innovative Research) |
| BackLink | https://amu.hal.science/hal-03598718$$DView record in HAL |
| BookMark | eNp9kEtLAzEYRYNU8PkHXAVcuYjmNU1mKUWtUFDErkMmydSR6WRMMor-etOOIrjoKiHfvfkO5whMOt85AM4IviQYi6tIcCGnCFOCMCvoFIk9cEgKwZAoOJvkO8tjIQtxAI5ifMUYl4KWh-Bp3qxeUO9C7cNad8bBPrrBeqTzhs9186VT4zvoa_jehDToFvb-wwXYt7pL0OqkYR5rOHtcQtMOMblwAvZr3UZ3-nMeg-XtzfNsjhYPd_ez6wUyrBQJWS2pMJwLWtuKkqpiU8MNzcyZzHKLbWV5RTivca2ZpaaSDjspmagNIbhix-Bi_PdFt6oPzVqHT-V1o-bXC7V5yyZKKYh8Jzl7Pmb74N8GF5N69UPoMp6iJckgHJMip-SYMsHHGFytTJO2AlLQTasIVhvbarStsm21ta1ErtJ_1V-inSU2lmIOdysX_qh2tL4BRTmTjg |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3510332 |
| Cites_doi | 10.1016/j.compgeo.2018.11.004 10.1016/j.giq.2020.101544 10.1145/1108956.1108958 10.1016/j.parco.2004.12.004 10.1016/j.scs.2019.101426 10.4258/hir.2021.27.1.39 10.1016/B978-0-12-812154-2.00011-0 10.1007/978-3-662-45402-2_34 10.1016/B978-0-12-809633-8.20370-1 10.7717/peerj-cs.185 10.1016/B978-0-12-803899-4.00006-7 10.1007/s11227-019-03090-3 10.2991/ijndc.2014.2.4.1 10.1016/j.future.2021.08.024 10.1049/iet-its.2019.0783 10.1007/s10586-020-03184-1 10.1049/iet-rpg:20060023 10.1016/j.apenergy.2019.01.224 10.1016/j.sysarc.2014.01.007 10.1016/j.comcom.2006.08.032 10.1016/j.jpdc.2018.02.027 10.1016/S1383-7621(97)00036-2 10.1007/s11227-019-02861-2 10.1007/s10586-020-03135-w 10.1007/s10586-020-03081-7 10.1007/s12083-020-01059-1 10.1145/3284358 10.1016/S0167-739X(01)00053-X 10.1109/TPDS.2010.195 10.1016/j.rser.2020.110607 10.1109/TITS.2020.3038250 10.1109/PESGM46819.2021.9638173 10.1109/INFCOM.2005.1498483 10.1109/SC.2000.10001 10.1109/SC.2000.10005 10.1007/s10586-021-03316-1 10.1109/TrustCom.2011.186 10.1109/PDP.2009.43 10.1109/CLUSTR.2002.1137728 10.1145/316194.316216 10.1007/s10586-021-03380-7 10.1109/HPEC.2014.7041005 10.1145/384286.264146 10.1109/DATE.2011.5763294 10.1109/PDP2018.2018.00051 10.1007/978-3-642-39958-9_9 10.1145/1899503.1899529 10.1145/1632149.1632170 10.1109/ANCS.2015.7110123 10.1109/APPEEC.2011.5749026 10.1145/2674005.2674990 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. corrected publication 2022 The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2022. corrected publication 2022 – notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 1XC |
| DOI | 10.1007/s10586-021-03526-7 |
| DatabaseName | Springer Nature Link OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| EndPage | 512 |
| ExternalDocumentID | oai:HAL:hal-03598718v1 10_1007_s10586_021_03526_7 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG ADKFA AFDZB AFFHD AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 1XC |
| ID | FETCH-LOGICAL-c397t-da827c4472fdb21bb36c4c2573972d4d0dbd4b144f0fa3d2cb8e0e8837fc110b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742837200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Tue Oct 14 20:47:07 EDT 2025 Wed Nov 26 14:52:37 EST 2025 Tue Nov 18 20:12:49 EST 2025 Sat Nov 29 05:40:17 EST 2025 Fri Feb 21 02:44:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Anonymization Virtual power plant (VPP) Tuple space algorithm CPU cluster OpenMP Flow classification MPI |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-da827c4472fdb21bb36c4c2573972d4d0dbd4b144f0fa3d2cb8e0e8837fc110b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5373-5778 0000-0002-2270-1719 |
| OpenAccessLink | https://link.springer.com/10.1007/s10586-021-03526-7 |
| PQID | 2918274015 |
| PQPubID | 2043865 |
| PageCount | 18 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03598718v1 proquest_journals_2918274015 crossref_citationtrail_10_1007_s10586_021_03526_7 crossref_primary_10_1007_s10586_021_03526_7 springer_journals_10_1007_s10586_021_03526_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | Rico-Gallego, Díaz-Martín, Manumachu, Lastovetsky (CR27) 2019; 51 Razaque, Jararweh, Alotaibi, Alotaibi, Hariri, Almiani (CR42) 2022; 127 Syed, Syed, Syeda, Garza, Bennett, Bona (CR13) 2021; 27 Talia, Ranganathan, Gribskov, Nakai, Schönbach (CR31) 2019 CR38 Pong, Tzeng (CR36) 2011; 22 CR37 CR35 CR33 Venkatachary, Prasad, Samikannu, Alagappan, Andrews (CR7) 2020; 23 Hung, Guo (CR23) 2014; 2 Abbasi, Tahouri, Rafiee (CR17) 2019; 5 CR4 CR5 Chiang (CR46) 2021; 24 Batista, Solanas (CR8) 2021; 14 CR49 CR48 Alamaniotis, Bourbakis, Tsoukalas (CR11) 2019; 46 Smith, Bull (CR32) 2001; 9 CR44 CR43 CR41 CR40 Abbasi, Fazel, Rafiee (CR16) 2020; 76 Abbasi, Shokrollahi (CR15) 2020; 23 Yu, Fang, Liu, Liu (CR6) 2019; 239 Grant, Olivier, Prasad, Gupta, Rosenberg, Sussman, Weems (CR34) 2015 Abbasi, Yaghoobikia, Rafiee, Jolfaei, Khosravi (CR2) 2020; 14 Pudjianto, Ramsay, Strbac (CR3) 2007; 1 CR19 Pao, Liu (CR20) 2007; 30 Zajc, Kolenc, Suljanović, Yang, Yang, Li (CR12) 2019 CR14 Jafarian, Masdari, Ghaffari, Majidzadeh (CR45) 2021; 24 Abbasi, Rafiee (CR39) 2019; 75 CR54 CR52 CR51 Yazdanie, Orehounig (CR1) 2021; 137 Jiao, Zhao, Wang, Huang, Tan (CR50) 2019; 106 López, Baydal (CR26) 2018; 117 Jiang, Li, Zhao, Zeng, Xiao, Iyengar (CR9) 2021; 54 Hutter, Curioni (CR47) 2005; 31 Buyya, Jin, Cortes (CR30) 2002; 18 Zheng, Zhang, Li, Li, Park, Stojmenovic, Jeong, Yi (CR53) 2015 CR29 Lee, Jun (CR10) 2021; 38 CR25 CR22 CR21 Taylor (CR18) 2005; 37 Wu, Li (CR28) 1998; 44 Hung, Lin, Wang (CR24) 2014; 60 A Razaque (3526_CR42) 2022; 127 M-L Chiang (3526_CR46) 2021; 24 M Abbasi (3526_CR39) 2019; 75 M Abbasi (3526_CR15) 2020; 23 M Abbasi (3526_CR16) 2020; 76 3526_CR44 M Alamaniotis (3526_CR11) 2019; 46 C-L Hung (3526_CR23) 2014; 2 3526_CR48 3526_CR49 3526_CR40 3526_CR41 3526_CR43 F Pong (3526_CR36) 2011; 22 M Abbasi (3526_CR17) 2019; 5 SK Venkatachary (3526_CR7) 2020; 23 DE Taylor (3526_CR18) 2005; 37 J Hutter (3526_CR47) 2005; 31 D Pudjianto (3526_CR3) 2007; 1 3526_CR33 JA Rico-Gallego (3526_CR27) 2019; 51 3526_CR35 S Syed (3526_CR13) 2021; 27 3526_CR37 3526_CR38 D Pao (3526_CR20) 2007; 30 E Batista (3526_CR8) 2021; 14 C-L Hung (3526_CR24) 2014; 60 D Talia (3526_CR31) 2019 3526_CR22 X Wu (3526_CR28) 1998; 44 RE Grant (3526_CR34) 2015 3526_CR25 3526_CR29 R Buyya (3526_CR30) 2002; 18 S Yu (3526_CR6) 2019; 239 3526_CR21 Y-Y Jiao (3526_CR50) 2019; 106 M Zajc (3526_CR12) 2019 P López (3526_CR26) 2018; 117 3526_CR19 J Zheng (3526_CR53) 2015 H Jiang (3526_CR9) 2021; 54 3526_CR5 3526_CR4 3526_CR14 L Smith (3526_CR32) 2001; 9 M Abbasi (3526_CR2) 2020; 14 M Yazdanie (3526_CR1) 2021; 137 3526_CR51 3526_CR52 J-S Lee (3526_CR10) 2021; 38 T Jafarian (3526_CR45) 2021; 24 3526_CR54 |
| References_xml | – ident: CR22 – volume: 106 start-page: 217 year: 2019 end-page: 227 ident: CR50 article-title: A hybrid MPI/OpenMP parallel computing model for spherical discontinuous deformation analysis publication-title: Comput. Geotechn. doi: 10.1016/j.compgeo.2018.11.004 – volume: 38 start-page: 101544 year: 2021 ident: CR10 article-title: Privacy-preserving data mining for open government data from heterogeneous sources publication-title: Gov. Inf. Q. doi: 10.1016/j.giq.2020.101544 – volume: 37 start-page: 238 year: 2005 end-page: 275 ident: CR18 article-title: Survey and taxonomy of packet classification techniques publication-title: ACM Comput. Surv. doi: 10.1145/1108956.1108958 – volume: 31 start-page: 1 year: 2005 end-page: 17 ident: CR47 article-title: Dual-level parallelism for ab initio molecular dynamics: reaching teraflop performance with the CPMD code publication-title: Parallel Comput. doi: 10.1016/j.parco.2004.12.004 – volume: 9 start-page: 83 year: 2001 end-page: 98 ident: CR32 article-title: Development of mixed mode MPI/OpenMP applications publication-title: Sci. Program. – ident: CR49 – volume: 46 start-page: 101426 year: 2019 ident: CR11 article-title: Enhancing privacy of electricity consumption in smart cities through morphing of anticipated demand pattern utilizing self-elasticity and genetic algorithms publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101426 – ident: CR4 – volume: 23 start-page: 263 year: 2020 end-page: 276 ident: CR7 article-title: Cybersecurity infrastructure challenges in IoT based virtual power plants publication-title: J. Stat. Manag. Syst. – ident: CR51 – ident: CR35 – ident: CR29 – ident: CR54 – volume: 27 start-page: 39 year: 2021 end-page: 47 ident: CR13 article-title: API driven on-demand participant ID pseudonymization in heterogeneous multi-study research publication-title: Healthc. Inform. Res. doi: 10.4258/hir.2021.27.1.39 – ident: CR25 – ident: CR21 – start-page: 231 year: 2019 end-page: 250 ident: CR12 article-title: 11—Virtual power plant communication system architecture publication-title: Smart Power Distribution Systems doi: 10.1016/B978-0-12-812154-2.00011-0 – start-page: 231 year: 2015 end-page: 238 ident: CR53 article-title: Accelerate packet classification using GPU: a case study on HiCuts publication-title: Computer Science and its Applications: Ubiquitous Information Technologies doi: 10.1007/978-3-662-45402-2_34 – ident: CR19 – start-page: 215 year: 2019 end-page: 220 ident: CR31 article-title: Models and languages for high-performance computing publication-title: Encyclopedia of bioinformatics and computational biology doi: 10.1016/B978-0-12-809633-8.20370-1 – volume: 5 start-page: e185 year: 2019 ident: CR17 article-title: Enhancing the performance of the aggregated bit vector algorithm in network packet classification using GPU publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.185 – start-page: 117 year: 2015 end-page: 153 ident: CR34 article-title: Chapter 6—Networks and MPI for cluster computing publication-title: Topics in parallel and distributed computing doi: 10.1016/B978-0-12-803899-4.00006-7 – volume: 76 start-page: 3105 year: 2020 end-page: 3128 ident: CR16 article-title: MBitCuts: optimal bit-level cutting in geometric space packet classification publication-title: J. Supercomput. doi: 10.1007/s11227-019-03090-3 – ident: CR5 – volume: 2 start-page: 198 year: 2014 end-page: 210 ident: CR23 article-title: Fast parallel network packet filter system based on CUDA publication-title: Int. J. Netw. Distrib. Comput. doi: 10.2991/ijndc.2014.2.4.1 – volume: 127 start-page: 1 year: 2022 end-page: 13 ident: CR42 article-title: Energy-efficient and secure mobile fog-based cloud for the Internet of Things publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.08.024 – volume: 14 start-page: 1484 year: 2020 end-page: 1490 ident: CR2 article-title: Energy-efficient workload allocation in fog-cloud based services of intelligent transportation systems using a learning classifier system publication-title: IET Intel. Transport Syst. doi: 10.1049/iet-its.2019.0783 – volume: 24 start-page: 1235 year: 2021 end-page: 1253 ident: CR45 article-title: A survey and classification of the security anomaly detection mechanisms in software defined networks publication-title: Clust. Comput. doi: 10.1007/s10586-020-03184-1 – volume: 1 start-page: 10 year: 2007 end-page: 16 ident: CR3 article-title: Virtual power plant and system integration of distributed energy resources publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg:20060023 – ident: CR43 – ident: CR14 – volume: 239 start-page: 454 year: 2019 end-page: 470 ident: CR6 article-title: Uncertainties of virtual power plant: problems and countermeasures publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.224 – ident: CR37 – volume: 60 start-page: 431 year: 2014 end-page: 439 ident: CR24 article-title: An efficient parallel-network packet pattern-matching approach using GPUs publication-title: J. Syst. Architect. doi: 10.1016/j.sysarc.2014.01.007 – ident: CR33 – volume: 30 start-page: 302 year: 2007 end-page: 314 ident: CR20 article-title: Parallel tree search: an algorithmic approach for multi-field packet classification publication-title: Comput. Commun. doi: 10.1016/j.comcom.2006.08.032 – ident: CR40 – volume: 117 start-page: 138 year: 2018 end-page: 147 ident: CR26 article-title: Teaching high-performance service in a cluster computing course publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2018.02.027 – volume: 44 start-page: 189 year: 1998 end-page: 205 ident: CR28 article-title: Performance models for scalable cluster computing publication-title: J. Syst. Architect. doi: 10.1016/S1383-7621(97)00036-2 – volume: 75 start-page: 6574 year: 2019 end-page: 6611 ident: CR39 article-title: A calibrated asymptotic framework for analyzing packet classification algorithms on GPUs publication-title: J. Supercomput. doi: 10.1007/s11227-019-02861-2 – ident: CR44 – volume: 24 start-page: 537 year: 2021 end-page: 558 ident: CR46 article-title: SDN-based server clusters with dynamic load balancing and performance improvement publication-title: Clust. Comput. doi: 10.1007/s10586-020-03135-w – ident: CR48 – volume: 23 start-page: 3203 year: 2020 end-page: 3219 ident: CR15 article-title: Enhancing the performance of decision tree-based packet classification algorithms using CPU cluster publication-title: Clust. Comput. doi: 10.1007/s10586-020-03081-7 – ident: CR38 – volume: 14 start-page: 1 issue: 3 year: 2021 end-page: 20 ident: CR8 article-title: A uniformization-based approach to preserve individuals’ privacy during process mining analyses publication-title: Peer-to-Peer Netw. Appl. doi: 10.1007/s12083-020-01059-1 – ident: CR52 – volume: 54 start-page: 1 year: 2021 end-page: 36 ident: CR9 article-title: Location privacy-preserving mechanisms in location-based services: a comprehensive survey publication-title: ACM Comput. Surv. – volume: 51 start-page: 126 year: 2019 ident: CR27 article-title: A survey of communication performance models for high-performance computing publication-title: ACM Comput. Surv. doi: 10.1145/3284358 – volume: 18 start-page: 5 year: 2002 end-page: 8 ident: CR30 article-title: Cluster computing publication-title: Future Gener. Comput. Syst. doi: 10.1016/S0167-739X(01)00053-X – volume: 22 start-page: 1105 year: 2011 end-page: 1119 ident: CR36 article-title: HaRP: rapid packet classification via hashing round-down prefixes publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2010.195 – ident: CR41 – volume: 137 start-page: 110607 year: 2021 ident: CR1 article-title: Advancing urban energy system planning and modeling approaches: gaps and solutions in perspective publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110607 – volume: 54 start-page: 1 year: 2021 ident: 3526_CR9 publication-title: ACM Comput. Surv. – volume: 5 start-page: e185 year: 2019 ident: 3526_CR17 publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.185 – volume: 117 start-page: 138 year: 2018 ident: 3526_CR26 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2018.02.027 – ident: 3526_CR14 doi: 10.1109/TITS.2020.3038250 – volume: 106 start-page: 217 year: 2019 ident: 3526_CR50 publication-title: Comput. Geotechn. doi: 10.1016/j.compgeo.2018.11.004 – volume: 44 start-page: 189 year: 1998 ident: 3526_CR28 publication-title: J. Syst. Architect. doi: 10.1016/S1383-7621(97)00036-2 – volume: 76 start-page: 3105 year: 2020 ident: 3526_CR16 publication-title: J. Supercomput. doi: 10.1007/s11227-019-03090-3 – ident: 3526_CR5 doi: 10.1109/PESGM46819.2021.9638173 – volume: 127 start-page: 1 year: 2022 ident: 3526_CR42 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.08.024 – volume: 75 start-page: 6574 year: 2019 ident: 3526_CR39 publication-title: J. Supercomput. doi: 10.1007/s11227-019-02861-2 – ident: 3526_CR52 doi: 10.1109/INFCOM.2005.1498483 – volume: 23 start-page: 3203 year: 2020 ident: 3526_CR15 publication-title: Clust. Comput. doi: 10.1007/s10586-020-03081-7 – volume: 18 start-page: 5 year: 2002 ident: 3526_CR30 publication-title: Future Gener. Comput. Syst. doi: 10.1016/S0167-739X(01)00053-X – ident: 3526_CR48 doi: 10.1109/SC.2000.10001 – ident: 3526_CR19 doi: 10.1109/SC.2000.10005 – volume: 14 start-page: 1484 year: 2020 ident: 3526_CR2 publication-title: IET Intel. Transport Syst. doi: 10.1049/iet-its.2019.0783 – volume: 24 start-page: 537 year: 2021 ident: 3526_CR46 publication-title: Clust. Comput. doi: 10.1007/s10586-020-03135-w – ident: 3526_CR44 doi: 10.1007/s10586-021-03316-1 – volume: 51 start-page: 126 year: 2019 ident: 3526_CR27 publication-title: ACM Comput. Surv. doi: 10.1145/3284358 – volume: 1 start-page: 10 year: 2007 ident: 3526_CR3 publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg:20060023 – ident: 3526_CR22 doi: 10.1109/TrustCom.2011.186 – ident: 3526_CR33 doi: 10.1109/PDP.2009.43 – start-page: 117 volume-title: Topics in parallel and distributed computing year: 2015 ident: 3526_CR34 doi: 10.1016/B978-0-12-803899-4.00006-7 – ident: 3526_CR51 doi: 10.1109/CLUSTR.2002.1137728 – volume: 23 start-page: 263 year: 2020 ident: 3526_CR7 publication-title: J. Stat. Manag. Syst. – volume: 46 start-page: 101426 year: 2019 ident: 3526_CR11 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101426 – volume: 14 start-page: 1 issue: 3 year: 2021 ident: 3526_CR8 publication-title: Peer-to-Peer Netw. Appl. doi: 10.1007/s12083-020-01059-1 – ident: 3526_CR25 doi: 10.1145/316194.316216 – volume: 9 start-page: 83 year: 2001 ident: 3526_CR32 publication-title: Sci. Program. – ident: 3526_CR43 doi: 10.1007/s10586-021-03380-7 – ident: 3526_CR54 doi: 10.1109/HPEC.2014.7041005 – volume: 27 start-page: 39 year: 2021 ident: 3526_CR13 publication-title: Healthc. Inform. Res. doi: 10.4258/hir.2021.27.1.39 – volume: 38 start-page: 101544 year: 2021 ident: 3526_CR10 publication-title: Gov. Inf. Q. doi: 10.1016/j.giq.2020.101544 – ident: 3526_CR29 doi: 10.1145/384286.264146 – volume: 137 start-page: 110607 year: 2021 ident: 3526_CR1 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110607 – ident: 3526_CR37 doi: 10.1109/DATE.2011.5763294 – volume: 37 start-page: 238 year: 2005 ident: 3526_CR18 publication-title: ACM Comput. Surv. doi: 10.1145/1108956.1108958 – start-page: 215 volume-title: Encyclopedia of bioinformatics and computational biology year: 2019 ident: 3526_CR31 doi: 10.1016/B978-0-12-809633-8.20370-1 – volume: 30 start-page: 302 year: 2007 ident: 3526_CR20 publication-title: Comput. Commun. doi: 10.1016/j.comcom.2006.08.032 – ident: 3526_CR49 doi: 10.1109/PDP2018.2018.00051 – ident: 3526_CR40 doi: 10.1007/978-3-642-39958-9_9 – volume: 2 start-page: 198 year: 2014 ident: 3526_CR23 publication-title: Int. J. Netw. Distrib. Comput. doi: 10.2991/ijndc.2014.2.4.1 – volume: 31 start-page: 1 year: 2005 ident: 3526_CR47 publication-title: Parallel Comput. doi: 10.1016/j.parco.2004.12.004 – start-page: 231 volume-title: Computer Science and its Applications: Ubiquitous Information Technologies year: 2015 ident: 3526_CR53 doi: 10.1007/978-3-662-45402-2_34 – ident: 3526_CR21 doi: 10.1145/1899503.1899529 – ident: 3526_CR35 doi: 10.1145/1632149.1632170 – start-page: 231 volume-title: Smart Power Distribution Systems year: 2019 ident: 3526_CR12 doi: 10.1016/B978-0-12-812154-2.00011-0 – ident: 3526_CR41 doi: 10.1109/ANCS.2015.7110123 – volume: 24 start-page: 1235 year: 2021 ident: 3526_CR45 publication-title: Clust. Comput. doi: 10.1007/s10586-020-03184-1 – volume: 22 start-page: 1105 year: 2011 ident: 3526_CR36 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2010.195 – ident: 3526_CR4 doi: 10.1109/APPEEC.2011.5749026 – volume: 60 start-page: 431 year: 2014 ident: 3526_CR24 publication-title: J. Syst. Architect. doi: 10.1016/j.sysarc.2014.01.007 – ident: 3526_CR38 doi: 10.1145/2674005.2674990 – volume: 239 start-page: 454 year: 2019 ident: 3526_CR6 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.224 |
| SSID | ssj0009729 |
| Score | 2.2928147 |
| Snippet | The considerable move towards the use of renewable energy resources has been provided by the digitization of energy systems with the help of virtual power... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 495 |
| SubjectTerms | Algorithms Central processing units Classification Clusters Computer Communication Networks Computer memory Computer Science CPUs Decision making Decision trees Decomposition Electricity Energy consumption Energy sources Energy storage Engineering Sciences Libraries Measuring instruments Methods Microprocessors New technology Operating Systems Packets (communication) Parallel processing Personal information Power plants Processor Architectures Renewable resources Software Strategic management Virtual power plants |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7U9eDFt7i6ShBvGkwfabMnUVE8yLKIirfSJA0Ki1v39fud6aZWBb14bfoY-iWZSTLzfQDHVro4UYHk0gnB4zRMOPp5wYUOVGJMrF0l3_Z0l_Z66vm52_cbbmOfVlnPidVEbYeG9sjPwi5GwiQfJ8_Ld06qUXS66iU0FqFFTGXYz1uX173-fUO7m1Y6ZUGkEp4qmfqyGV88JxUl4FJKkUQb02-uafGFEiO_RJ0_Dkor_3Oz9l_L12HVR57sYt5VNmCheNuEtVrVgflBvgX3lPrBy6aggJXjYmqHPK92CnzdJhs6NnsdUfUJK0lpjZUDBIlRxinD5pxd9R-ZGUyJiGEbHm-uH65uuVde4Abjkwm3OVpsYoTOWR0GWkeJiQ2ObmwNbWyF1TbWuBZzwuWRDY1WhSgULnadwXhCRzuwhDYVu8BCqYOuMU6nWsR5lHdzi0ukROROKpsY1Yag_umZ8bTkpI4xyBpCZQIqQ6CyCqgsbcPJ5zPlnJTjz7uPEMvPG4lP-_biLqNrFX8heudZ0IZODV7mR_E4a5Brw2kNf9P8-yf3_n7bPqyQav08-bsDS5PRtDiAZTObvI5Hh74PfwBFnPVa priority: 102 providerName: ProQuest |
| Title | High-performance pseudo-anonymization of virtual power plant data on a CPU cluster |
| URI | https://link.springer.com/article/10.1007/s10586-021-03526-7 https://www.proquest.com/docview/2918274015 https://amu.hal.science/hal-03598718 |
| Volume | 26 |
| WOSCitedRecordID | wos000742837200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7543 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: P5Z dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7543 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: K7- dateStart: 19980101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7543 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: BENPR dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-c-uCL3-J0jiC-aSD9SJM96tgYKGNMJ-JLaZIGB0PLvv5-L127qaigL31ormm4S3q55u73A7gw3IaR9DjlljEaCj-i6OcZZcqTkdahsjl92-Od6Hbl01OjVxSFTcps9_JIMv9Sfyh249IlzLoUII59igpscIc242L0-8cV1K7Iucm8AKWF5KIolfm-j0_uqPLikiE_7DS_HI7mPqe987_R7sJ2scck14tJsQdr6es-7JT8DaRYzgfQd0keNFuVDpBsks7MG03yfwJFhSZ5s2Q-HLs6E5I5TjWSjdAcxOWWEmxOSLM3IHo0c5ALhzBotx6aHVpwLFCNO5EpNYn0hQ7RSNYo31MqiHSocR1jq29Cw4wyocKoyzKbBMbXSqYslRjWWo07BxUcwTqOKT0G4nPlNbS2SigWJkHSSAwGQxFLLJcm0rIKXqnqWBcA5I4HYxSvoJOd0mJUWpwrLRZVuFw-ky3gN36VPkcLLgUdcnbn-i5293KkQvTDc68KtdLAcbFeJ7HfwDjLkRPyKlyVBl01__zKk7-Jn8KW46tfpH3XYH06nqVnsKnn0-FkXIeNm1a3169D5VZQvPb4cz2f2-_Cle2B |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61WyS4UJ5iaQELwQksHMdOvIeqKqXVVl1Wq6pFvbmxHYtKKzbsC_VP8RsZZ50GkOitB66x4zj2Z8-MPTMfwBsnvchUIqn0jFGR84yinGeUmURl1grja_q2L4N8OFTn573RGvxsYmGCW2WzJ9YbtZvYcEb-gfdQEw70cXK3-k4Da1S4XW0oNFawOC6vfqDJNts5-oTz-5bzw4PT_T6NrALUouydU1dgO1Zgt7wzPDEmzaywiFws5U445owTBu0Mz3yROm6NKlmp0JDzFmWlSbHdddgQqchkBzY-HgxHJ22a37zmRUtSldFcyTyG6cRgPamCw29wYZI4JvkfonD9a3DE_E3L_etitpZ3h5v_20g9gPtRsyZ7q6XwENbKb49gs2GtIHETewwnwbWFVm3ABKlm5cJNaFGfhMS4VDLxZHk5DdE1pApMcqQaIwhJ8KglWFyQ_dEZseNFSDTxBM5u5c-eQgf7VD4DwqVJetZ6kxsmirToFQ5NwIwVXiqXWdWFpJlkbWPa9cD-MdZtwugADI3A0DUwdN6Fd9fvVKukIzfWfo3Yua4Y8oX39wY6PKvzM6L2sUy6sN2ARcddaqZbpHThfQO3tvjfn3x-c2uv4G7_9PNAD46Gx1twj6NeuHJ034bOfLooX8Adu5xfzqYv4_ohcHHbQPwFcftTgg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8NhtBeYHyJMhjWtDewcBI7dh8RW9VpVVV1A_FmxXYsKlVt1K-_f-c0oR0CJMRrfHGsO1t3F9_9fgDfnfA8VZGgwjNGuYxTin6eUWYilVrLjS_p2-46sttV9_fN3loXf1ntXl9JLnsaAkrTaHZVOH-11vgmVCieDeVAAueXG_CRYyYTirr6f-5WsLuy5CmLEpSWSsiqbeb5Of5zTRsPoTByLep8clFa-p_W7vtX_hl2qtiTXC83yx58yEf7sFvzOpDqmB9APxR_0GLVUkCKaT53Y5qV_wqqzk0y9mQxmIT-E1IErjVSDNFMJNScEhzOyE3vltjhPEAxHMJt6-ffmzatuBeoxQhlRl2mYmk5Gs87E0fGJKnlFs83jsaOO-aM4wazMc98lrjYGpWzXGG66y1GFCY5gk1cU34MJBYmalrrjTSMZ0nWzBwmSSnLvFAutaoBUa12bStg8sCPMdQrSOWgNI1K06XStGzAxeM7xRKW41Xpb2jNR8GAqN2-7ujwrEQwRP-8iBpwWhtbV-d4quMm5l-BtFA04LI27mr45U-evE38HLZ7P1q686v7-wt8CpT2y8rwU9icTeb5GWzZxWwwnXwtt_c_OOf13w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+pseudo-anonymization+of+virtual+power+plant+data+on+a+CPU+cluster&rft.jtitle=Cluster+computing&rft.au=Abbasi%2C+Mahdi&rft.au=Najafabadi%2C+Azam+Fazel&rft.au=Elghali%2C+Seifeddine+Ben&rft.au=Zerrougui%2C+Mohamed&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=26&rft.issue=1&rft.spage=495&rft.epage=512&rft_id=info:doi/10.1007%2Fs10586-021-03526-7&rft.externalDocID=10_1007_s10586_021_03526_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |