Wavelet support vector machine-based prediction model of dam deformation

•SVM and other methods are combined to build prediction model of dam deformation.•Three key problems on SVM are investigated.•The proposed approach can reduce the human impact on modeling process. Considering the strong nonlinear dynamic characteristics of dam deformation, the prediction model of da...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mechanical systems and signal processing Ročník 110; s. 412 - 427
Hlavní autoři: Su, Huaizhi, Li, Xing, Yang, Beibei, Wen, Zhiping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin Elsevier Ltd 15.09.2018
Elsevier BV
Témata:
ISSN:0888-3270, 1096-1216
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •SVM and other methods are combined to build prediction model of dam deformation.•Three key problems on SVM are investigated.•The proposed approach can reduce the human impact on modeling process. Considering the strong nonlinear dynamic characteristics of dam deformation, the prediction model of dam deformation is investigated. Support vector machine (SVM) is combined with other methods, such as phase space reconstruction, wavelet analysis and particle swarm optimization (PSO), to build the prediction model of dam deformation. Firstly, the chaotic characteristics and the predictable time scale of dam deformation are identified by implementing the phase space reconstruction of observation data series on dam deformation. Secondly, a SVM-based prediction model of dam deformation is proposed. The reconstructed phase space of observed deformation and the Morlet wavelet basis function are selected as the input vector and the kernel function of SVM. Thirdly, the PSO algorithm is improved to implement the parameter optimization of SVM-based prediction model of dam deformation. Finally, the displacement of one actual dam is taken as an example. The results demonstrate the modeling efficiency and forecasting accuracy can be improved.
AbstractList •SVM and other methods are combined to build prediction model of dam deformation.•Three key problems on SVM are investigated.•The proposed approach can reduce the human impact on modeling process. Considering the strong nonlinear dynamic characteristics of dam deformation, the prediction model of dam deformation is investigated. Support vector machine (SVM) is combined with other methods, such as phase space reconstruction, wavelet analysis and particle swarm optimization (PSO), to build the prediction model of dam deformation. Firstly, the chaotic characteristics and the predictable time scale of dam deformation are identified by implementing the phase space reconstruction of observation data series on dam deformation. Secondly, a SVM-based prediction model of dam deformation is proposed. The reconstructed phase space of observed deformation and the Morlet wavelet basis function are selected as the input vector and the kernel function of SVM. Thirdly, the PSO algorithm is improved to implement the parameter optimization of SVM-based prediction model of dam deformation. Finally, the displacement of one actual dam is taken as an example. The results demonstrate the modeling efficiency and forecasting accuracy can be improved.
Considering the strong nonlinear dynamic characteristics of dam deformation, the prediction model of dam deformation is investigated. Support vector machine (SVM) is combined with other methods, such as phase space reconstruction, wavelet analysis and particle swarm optimization (PSO), to build the prediction model of dam deformation. Firstly, the chaotic characteristics and the predictable time scale of dam deformation are identified by implementing the phase space reconstruction of observation data series on dam deformation. Secondly, a SVM-based prediction model of dam deformation is proposed. The reconstructed phase space of observed deformation and the Morlet wavelet basis function are selected as the input vector and the kernel function of SVM. Thirdly, the PSO algorithm is improved to implement the parameter optimization of SVM-based prediction model of dam deformation. Finally, the displacement of one actual dam is taken as an example. The results demonstrate the modeling efficiency and forecasting accuracy can be improved.
Author Yang, Beibei
Li, Xing
Wen, Zhiping
Su, Huaizhi
Author_xml – sequence: 1
  givenname: Huaizhi
  surname: Su
  fullname: Su, Huaizhi
  email: su_huaizhi@hhu.edu.cn
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
– sequence: 2
  givenname: Xing
  surname: Li
  fullname: Li, Xing
  organization: College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
– sequence: 3
  givenname: Beibei
  surname: Yang
  fullname: Yang, Beibei
  organization: National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing 210098, China
– sequence: 4
  givenname: Zhiping
  surname: Wen
  fullname: Wen, Zhiping
  organization: Department of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167, China
BookMark eNqFkD1PwzAQhi1UJNrCL2CJxJxwjvNhDwyo4kuqxAJitBz7Ihw1cbDdSv33pC0TA0w33D139z4LMhvcgIRcU8go0Oq2y_Z9CGOWA-UZsAzy_IzMKYgqpTmtZmQOnPOU5TVckEUIHQCIAqo5ef5QO9xgTMJ2HJ2PyQ51dD7plf60A6aNCmiS0aOxOlo3JL0zuElcmxjVJwZb53t1aFyS81ZtAl791CV5f3x4Wz2n69enl9X9OtVM1DE1OeRUGFVCBQ2Fom44pW1TtnXLdIPMaKEFUM1rLrCoStpQ1FMcrsAUAA1bkpvT3tG7ry2GKDu39cN0UuZQiRKg4nyaEqcp7V0IHlupbTz-Gb2yG0lBHsTJTh7FyYM4CUxOlyaW_WJHb3vl9_9QdycKp_A7i14GbXHQkzg_KZXG2T_5b-GSiyM
CitedBy_id crossref_primary_10_1007_s40996_021_00709_5
crossref_primary_10_1038_s41598_023_47565_z
crossref_primary_10_1016_j_istruc_2023_05_136
crossref_primary_10_1177_14759217241282738
crossref_primary_10_1155_2019_7936513
crossref_primary_10_1016_j_conbuildmat_2023_130612
crossref_primary_10_1016_j_ymssp_2021_108013
crossref_primary_10_1088_1361_6501_ad850d
crossref_primary_10_1007_s12517_021_08484_3
crossref_primary_10_1007_s12599_019_00593_4
crossref_primary_10_1007_s00366_021_01362_2
crossref_primary_10_3390_app122312296
crossref_primary_10_1016_j_marpetgeo_2022_105631
crossref_primary_10_1109_ACCESS_2019_2949743
crossref_primary_10_1007_s12145_022_00830_7
crossref_primary_10_1016_j_enggeo_2018_11_007
crossref_primary_10_1016_j_knosys_2021_107537
crossref_primary_10_1016_j_measurement_2024_115664
crossref_primary_10_1016_j_engstruct_2023_116827
crossref_primary_10_1016_j_engappai_2024_109109
crossref_primary_10_1016_j_engappai_2023_106813
crossref_primary_10_1016_j_aei_2023_102345
crossref_primary_10_1016_j_asr_2024_06_018
crossref_primary_10_3390_w16121646
crossref_primary_10_1016_j_asoc_2021_107281
crossref_primary_10_1016_j_compgeo_2024_106518
crossref_primary_10_3390_w14142157
crossref_primary_10_1088_1361_6501_ac750f
crossref_primary_10_1088_1361_6501_ad1cc9
crossref_primary_10_3390_w14162464
crossref_primary_10_1016_j_eswa_2022_117272
crossref_primary_10_1016_j_asoc_2024_112321
crossref_primary_10_1007_s00366_021_01515_3
crossref_primary_10_1016_j_ymssp_2019_02_027
crossref_primary_10_1002_stc_2917
crossref_primary_10_1155_2020_5463893
crossref_primary_10_1177_14759217221122368
crossref_primary_10_1007_s10706_023_02451_3
crossref_primary_10_1007_s41748_024_00558_y
crossref_primary_10_1007_s00477_025_03108_8
crossref_primary_10_1088_1742_6596_2005_1_012084
crossref_primary_10_1109_JSEN_2022_3148742
crossref_primary_10_3390_su12197877
crossref_primary_10_1007_s12613_024_2977_6
crossref_primary_10_3390_en17225599
crossref_primary_10_1007_s10064_021_02403_2
crossref_primary_10_1016_j_ymssp_2022_109397
crossref_primary_10_1038_s41598_022_13073_9
crossref_primary_10_1007_s00500_022_07437_6
crossref_primary_10_1109_ACCESS_2019_2928001
crossref_primary_10_3390_buildings14113675
crossref_primary_10_1007_s10010_025_00863_6
crossref_primary_10_1016_j_watres_2022_118682
crossref_primary_10_3390_w14223739
crossref_primary_10_3390_w14162538
crossref_primary_10_1016_j_aei_2025_103252
crossref_primary_10_3390_electronics13020438
crossref_primary_10_1016_j_measurement_2023_113579
crossref_primary_10_1007_s11270_025_08347_7
crossref_primary_10_1016_j_ress_2022_108513
crossref_primary_10_3390_infrastructures10070170
crossref_primary_10_3390_ma18184274
crossref_primary_10_1016_j_istruc_2023_02_076
crossref_primary_10_1016_j_renene_2025_124080
crossref_primary_10_1155_2024_4791788
crossref_primary_10_1038_s41598_025_92806_y
crossref_primary_10_1016_j_eswa_2023_121752
crossref_primary_10_1177_14759217251360192
crossref_primary_10_1177_1475921719884861
crossref_primary_10_3390_w14213380
crossref_primary_10_1051_matecconf_202439605016
crossref_primary_10_1002_suco_202300450
crossref_primary_10_1002_stc_2685
crossref_primary_10_3390_rs17050755
crossref_primary_10_1155_2021_8487997
crossref_primary_10_3390_rs15164110
crossref_primary_10_1016_j_molliq_2022_119159
crossref_primary_10_1016_j_compag_2020_105921
crossref_primary_10_1177_1748006X241254603
crossref_primary_10_1038_s41598_020_69703_7
crossref_primary_10_3390_w16101388
crossref_primary_10_1007_s13042_023_01939_x
crossref_primary_10_1111_mice_12810
crossref_primary_10_1007_s11356_023_27799_0
crossref_primary_10_1002_stc_3090
crossref_primary_10_3390_buildings15152803
crossref_primary_10_1016_j_measurement_2025_118178
crossref_primary_10_3390_w15193474
crossref_primary_10_1016_j_ecolind_2023_110538
crossref_primary_10_1007_s11069_022_05424_6
crossref_primary_10_1016_j_eswa_2023_122022
crossref_primary_10_1111_mice_13232
crossref_primary_10_1016_j_eti_2021_101768
crossref_primary_10_1155_2022_1511479
crossref_primary_10_1016_j_autcon_2022_104365
crossref_primary_10_3390_app13148538
crossref_primary_10_1007_s00704_022_04294_z
crossref_primary_10_1007_s12517_022_11005_5
crossref_primary_10_1016_j_jconhyd_2023_104195
crossref_primary_10_1007_s00366_022_01675_w
crossref_primary_10_1080_15502287_2023_2294289
crossref_primary_10_3390_app132011212
crossref_primary_10_1111_mice_12911
crossref_primary_10_1016_j_ymssp_2023_110721
crossref_primary_10_3390_su142316025
crossref_primary_10_3390_w16243687
crossref_primary_10_1002_er_8207
crossref_primary_10_1016_j_marpetgeo_2022_105597
crossref_primary_10_1007_s10064_021_02424_x
crossref_primary_10_1016_j_engstruct_2025_121222
crossref_primary_10_3390_math11092010
crossref_primary_10_1016_j_knosys_2021_106964
crossref_primary_10_1155_2023_3879096
crossref_primary_10_1016_j_aei_2024_102921
crossref_primary_10_1016_j_istruc_2022_10_052
crossref_primary_10_1016_j_aei_2020_101154
crossref_primary_10_1061_IJGNAI_GMENG_8265
crossref_primary_10_3390_app10165700
crossref_primary_10_1155_2020_4961963
crossref_primary_10_1016_j_ijdrr_2025_105605
crossref_primary_10_1177_09596518231226359
crossref_primary_10_3390_pr10091842
crossref_primary_10_1016_j_measurement_2022_111811
crossref_primary_10_3390_app142310848
crossref_primary_10_1016_j_engstruct_2024_117949
crossref_primary_10_1007_s00500_022_07422_z
crossref_primary_10_1016_j_aei_2023_101881
crossref_primary_10_1016_j_jhydrol_2021_126929
crossref_primary_10_1016_j_aei_2024_102574
crossref_primary_10_3390_su14105771
crossref_primary_10_1080_19648189_2020_1847689
crossref_primary_10_1016_j_aei_2023_102175
crossref_primary_10_1016_j_apm_2019_10_012
crossref_primary_10_1016_j_ins_2024_120862
crossref_primary_10_3390_w15071271
crossref_primary_10_3390_rs16213978
crossref_primary_10_1016_j_engstruct_2025_120350
crossref_primary_10_1016_j_aei_2022_101855
crossref_primary_10_1016_j_aei_2022_101615
crossref_primary_10_1111_mice_70009
crossref_primary_10_1177_17515831241241947
crossref_primary_10_3389_feart_2023_1122937
crossref_primary_10_1016_j_engappai_2025_110378
crossref_primary_10_1007_s00521_019_04375_7
crossref_primary_10_3390_w13020241
crossref_primary_10_1016_j_advengsoft_2024_103635
crossref_primary_10_1061__ASCE_GM_1943_5622_0002401
crossref_primary_10_2166_hydro_2021_178
crossref_primary_10_1007_s00703_021_00787_0
crossref_primary_10_1007_s13349_024_00776_y
crossref_primary_10_1002_stc_2859
crossref_primary_10_3390_rs15082188
crossref_primary_10_1007_s12665_024_11696_x
crossref_primary_10_1016_j_advengsoft_2019_02_005
crossref_primary_10_1007_s13349_022_00603_2
crossref_primary_10_3390_w15010059
crossref_primary_10_1016_j_engstruct_2023_115950
crossref_primary_10_1155_2023_6929861
crossref_primary_10_3390_app11146625
crossref_primary_10_3390_rs12213620
crossref_primary_10_1016_j_compgeo_2023_105611
crossref_primary_10_1155_2020_8831965
crossref_primary_10_3390_w16131766
crossref_primary_10_3390_w16213043
crossref_primary_10_1016_j_aei_2025_103782
crossref_primary_10_3233_JIFS_234409
crossref_primary_10_1007_s00500_021_06025_4
crossref_primary_10_1007_s10489_021_02270_0
crossref_primary_10_3390_app9142802
crossref_primary_10_3390_su17167401
crossref_primary_10_1016_j_engstruct_2021_113400
crossref_primary_10_1109_ACCESS_2019_2890819
crossref_primary_10_3390_w15020319
crossref_primary_10_3390_app12010481
crossref_primary_10_1016_j_aei_2021_101407
crossref_primary_10_1002_stc_2716
crossref_primary_10_1016_j_engstruct_2020_111488
crossref_primary_10_1016_j_engstruct_2024_118845
crossref_primary_10_1016_j_jhydrol_2020_125033
crossref_primary_10_1016_j_measurement_2021_109377
crossref_primary_10_1111_mice_12654
crossref_primary_10_1016_j_fuel_2021_122184
crossref_primary_10_1080_17452759_2024_2352066
crossref_primary_10_3390_w15193511
crossref_primary_10_1016_j_ejrh_2025_102285
crossref_primary_10_1016_j_engstruct_2022_114686
crossref_primary_10_1109_ACCESS_2020_2995592
crossref_primary_10_1016_j_asoc_2024_112356
crossref_primary_10_1007_s42107_025_01474_w
crossref_primary_10_1016_j_asoc_2023_110411
crossref_primary_10_3390_app131910827
crossref_primary_10_1016_j_aei_2018_11_006
crossref_primary_10_1016_j_istruc_2024_107072
crossref_primary_10_3390_w16131868
crossref_primary_10_1371_journal_pone_0267434
crossref_primary_10_1177_14759217211044116
crossref_primary_10_1177_14759217211069639
crossref_primary_10_1002_stc_2940
crossref_primary_10_1016_j_fuel_2023_128646
crossref_primary_10_26599_TST_2022_9010015
crossref_primary_10_1016_j_engstruct_2021_112652
crossref_primary_10_1016_j_gsf_2020_10_009
crossref_primary_10_1016_j_ecoinf_2023_101980
crossref_primary_10_1016_j_neucom_2020_04_105
crossref_primary_10_3390_app11167334
Cites_doi 10.1109/72.914517
10.1016/j.camwa.2011.09.057
10.1002/stc.1767
10.1016/j.ymssp.2016.02.031
10.1103/PhysRevA.45.3403
10.1016/j.ymssp.2006.12.007
10.1117/12.833745
10.1016/S0165-0114(02)00283-X
10.1016/j.strusafe.2014.02.004
10.1007/s11069-011-9743-6
10.1016/j.engstruct.2010.12.011
10.1016/S0167-2789(97)00118-8
10.1016/0167-2789(85)90011-9
10.1007/s11431-009-0275-1
10.1177/1475921711419993
10.1007/s11721-007-0002-0
10.1016/j.ymssp.2012.08.029
10.1109/TEVC.2004.826071
10.1002/stc.492
10.1109/TNN.2003.809414
10.1016/j.eswa.2011.02.176
10.1111/j.1467-8667.2007.00499.x
10.1061/(ASCE)0733-9399(2007)133:3(267)
10.1016/j.engstruct.2006.04.022
10.1023/A:1018628609742
10.1177/1475921716654963
10.1016/j.ymssp.2017.03.016
10.1016/j.eswa.2013.02.033
10.1016/j.asoc.2016.07.044
10.1007/s11431-008-0103-z
10.1016/j.advwatres.2006.10.001
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Sep 15, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 15, 2018
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2018.03.022
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
EndPage 427
ExternalDocumentID 10_1016_j_ymssp_2018_03_022
S0888327018301419
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c397t-d20219da5060b1047b811fb5f7f3cbe3dc9c901c8789e4651b1ec0228a0d400b3
ISICitedReferencesCount 214
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431162900026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Sun Oct 05 00:20:26 EDT 2025
Sat Nov 29 02:08:15 EST 2025
Tue Nov 18 21:49:55 EST 2025
Fri Feb 23 02:29:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dam deformation
Improved particle swarm optimization algorithm
Characteristics identification
Prediction model
Wavelet support vector machine
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c397t-d20219da5060b1047b811fb5f7f3cbe3dc9c901c8789e4651b1ec0228a0d400b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2069500688
PQPubID 2045429
PageCount 16
ParticipantIDs proquest_journals_2069500688
crossref_citationtrail_10_1016_j_ymssp_2018_03_022
crossref_primary_10_1016_j_ymssp_2018_03_022
elsevier_sciencedirect_doi_10_1016_j_ymssp_2018_03_022
PublicationCentury 2000
PublicationDate 2018-09-15
PublicationDateYYYYMMDD 2018-09-15
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xi, Yue, Zhou, Tang (b0050) 2011; 62
Kennel, Brown, Abarbanel (b0150) 1992; 45
Su, Wen, Wang, Hu (b0135) 2016; 48
Su, Wen, Wang, Wei, Hu (b0145) 2013; 40
Cao (b0155) 1997; 110
Chen, McPhee, Yeh (b0170) 2007; 30
Yang, Nagarajaiah (b0110) 2014; 47
Léger, Leclerc (b0020) 2007; 133
Su, Wen, Chen, Tian (b0030) 2016; 15
J. Yang, J.W Tian, J. Liu, F. Wei, SVM algorithm based on wavelet kernel function for medical image segmentation, in: Proc. SPIE 7497, MIPPR 2009: Medical Imaging, Parallel Processing of Images, and Optimization Techniques, 74971Z, 2009.
An, Jiang, Liu, Zhao (b0140) 2011; 38
Wolf, Swift, Swinney, Vastano (b0160) 1985; 16
Vapnik (b0055) 1995
Cristianini, Shawe-Taylor (b0090) 2000
Gangsar, Tiwari (b0100) 2017; 94
Suykens, Van Gestel, Vandewalle, De Moor (b0105) 2003; 14
Kao, Loh (b0045) 2013; 20
Zhong, Sun, Li (b0015) 2011; 59
M.H. Law, J.T. Kwok, Bayesian support vector regression, in: Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics (AISTATS), Key West, Florida, USA, 2001, pp. 239–244.
Ranković, Grujović, Divac, Milivojević (b0080) 2014; 48
Su, Chen, Wen (b0085) 2016; 23
Suykens, Vandewalle (b0065) 1999; 9
Poli, Kennedy, Blackwell (b0165) 2007; 1
Lu, Chen, Hong, Feng, Li (b0125) 2016; 76–77
Zhang, Li, Xuan, Li (b0005) 2009; 52
De Sortis, Paoliani (b0025) 2007; 29
Widodo, Yang (b0060) 2007; 21
Wang, Lin (b0075) 2003; 134
Mata (b0040) 2011; 33
Muller, Mika, Ratsch, Tsuda, Scholkopf (b0095) 2001; 12
Su, Wu, Wen (b0115) 2007; 22
Wu, Su, Guo (b0010) 2008; 51
Su, Hu, Wu (b0035) 2012; 11
Jin, Liu (b0120) 2008; 19
Ratnaweera, Halgamuge, Watson (b0175) 2004; 8
Zhang (10.1016/j.ymssp.2018.03.022_b0005) 2009; 52
Xi (10.1016/j.ymssp.2018.03.022_b0050) 2011; 62
Jin (10.1016/j.ymssp.2018.03.022_b0120) 2008; 19
Ranković (10.1016/j.ymssp.2018.03.022_b0080) 2014; 48
Wang (10.1016/j.ymssp.2018.03.022_b0075) 2003; 134
Wolf (10.1016/j.ymssp.2018.03.022_b0160) 1985; 16
Wu (10.1016/j.ymssp.2018.03.022_b0010) 2008; 51
Muller (10.1016/j.ymssp.2018.03.022_b0095) 2001; 12
Lu (10.1016/j.ymssp.2018.03.022_b0125) 2016; 76–77
Vapnik (10.1016/j.ymssp.2018.03.022_b0055) 1995
De Sortis (10.1016/j.ymssp.2018.03.022_b0025) 2007; 29
10.1016/j.ymssp.2018.03.022_b0130
10.1016/j.ymssp.2018.03.022_b0070
Chen (10.1016/j.ymssp.2018.03.022_b0170) 2007; 30
Su (10.1016/j.ymssp.2018.03.022_b0030) 2016; 15
Su (10.1016/j.ymssp.2018.03.022_b0115) 2007; 22
Su (10.1016/j.ymssp.2018.03.022_b0035) 2012; 11
Su (10.1016/j.ymssp.2018.03.022_b0145) 2013; 40
Mata (10.1016/j.ymssp.2018.03.022_b0040) 2011; 33
Zhong (10.1016/j.ymssp.2018.03.022_b0015) 2011; 59
Cristianini (10.1016/j.ymssp.2018.03.022_b0090) 2000
An (10.1016/j.ymssp.2018.03.022_b0140) 2011; 38
Gangsar (10.1016/j.ymssp.2018.03.022_b0100) 2017; 94
Léger (10.1016/j.ymssp.2018.03.022_b0020) 2007; 133
Widodo (10.1016/j.ymssp.2018.03.022_b0060) 2007; 21
Su (10.1016/j.ymssp.2018.03.022_b0085) 2016; 23
Ratnaweera (10.1016/j.ymssp.2018.03.022_b0175) 2004; 8
Kennel (10.1016/j.ymssp.2018.03.022_b0150) 1992; 45
Su (10.1016/j.ymssp.2018.03.022_b0135) 2016; 48
Cao (10.1016/j.ymssp.2018.03.022_b0155) 1997; 110
Kao (10.1016/j.ymssp.2018.03.022_b0045) 2013; 20
Suykens (10.1016/j.ymssp.2018.03.022_b0065) 1999; 9
Poli (10.1016/j.ymssp.2018.03.022_b0165) 2007; 1
Suykens (10.1016/j.ymssp.2018.03.022_b0105) 2003; 14
Yang (10.1016/j.ymssp.2018.03.022_b0110) 2014; 47
References_xml – volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: b0165
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
– volume: 59
  start-page: 129
  year: 2011
  end-page: 147
  ident: b0015
  article-title: Dam break threshold value and risk probability assessment for an earth dam
  publication-title: Nat. Hazards
– reference: M.H. Law, J.T. Kwok, Bayesian support vector regression, in: Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics (AISTATS), Key West, Florida, USA, 2001, pp. 239–244.
– volume: 33
  start-page: 903
  year: 2011
  end-page: 910
  ident: b0040
  article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models
  publication-title: Eng. Struct.
– volume: 16
  start-page: 285
  year: 1985
  end-page: 317
  ident: b0160
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Physica D
– volume: 133
  start-page: 267
  year: 2007
  end-page: 277
  ident: b0020
  article-title: Hydrostatic, temperature, time-displacement model for concrete dams
  publication-title: J. Eng. Mech.
– volume: 48
  start-page: 612
  year: 2016
  end-page: 620
  ident: b0135
  article-title: Dam structural behavior identification and prediction by using variable dimension fractal model and iterated function system
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 2560
  year: 2007
  end-page: 2574
  ident: b0060
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 12
  start-page: 181
  year: 2001
  end-page: 201
  ident: b0095
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE Trans. Neural Netw.
– volume: 48
  start-page: 33
  year: 2014
  end-page: 39
  ident: b0080
  article-title: Development of support vector regression identification model for prediction of dam structural behavior
  publication-title: Struct. Saf.
– volume: 52
  start-page: 3024
  year: 2009
  end-page: 3029
  ident: b0005
  article-title: Overtopping breaching of cohesive homogeneous earth dam with different cohesive strength
  publication-title: Sci. China Ser. E-Tech. Sci.
– volume: 11
  start-page: 269
  year: 2012
  end-page: 279
  ident: b0035
  article-title: A study of safety evaluation and early-warning method for dam global behavior
  publication-title: Struct. Health Monit.
– volume: 14
  start-page: 447
  year: 2003
  end-page: 450
  ident: b0105
  article-title: A support vector machine formulation to PCA analysis and its kernel version
  publication-title: IEEE Trans. Neural Netw.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b0065
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– year: 1995
  ident: b0055
  article-title: The Nature of Statistical Learning Theory
– volume: 38
  start-page: 11280
  year: 2011
  end-page: 11285
  ident: b0140
  article-title: Wind farm power prediction based on wavelet decomposition and chaotic time series
  publication-title: Expert Syst. Appl.
– reference: J. Yang, J.W Tian, J. Liu, F. Wei, SVM algorithm based on wavelet kernel function for medical image segmentation, in: Proc. SPIE 7497, MIPPR 2009: Medical Imaging, Parallel Processing of Images, and Optimization Techniques, 74971Z, 2009.
– volume: 134
  start-page: 343
  year: 2003
  end-page: 363
  ident: b0075
  article-title: A fuzzy multicriteria group decision making approach to select configuration items for software development
  publication-title: Fuzzy Set. Syst.
– volume: 20
  start-page: 282
  year: 2013
  end-page: 303
  ident: b0045
  article-title: Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches
  publication-title: Struct. Contr. Health Monit.
– volume: 23
  start-page: 252
  year: 2016
  end-page: 266
  ident: b0085
  article-title: Performance improvement method of support vector machine-based model monitoring dam safety
  publication-title: Struct. Contr. Health Monit.
– volume: 19
  start-page: 500
  year: 2008
  end-page: 505
  ident: b0120
  article-title: Wavelet basis function neural networks for sequential learning
  publication-title: IEEE Trans. Neural Netw.
– volume: 51
  start-page: 1345
  year: 2008
  end-page: 1352
  ident: b0010
  article-title: Risk assessment method of major unsafe hydroelectric project
  publication-title: Sci. China Ser. E-Tech. Sci.
– volume: 15
  start-page: 639
  year: 2016
  end-page: 649
  ident: b0030
  article-title: Dam safety prediction model considering chaotic characteristics in prototype monitoring data series
  publication-title: Struct. Health Monit.
– volume: 62
  start-page: 3980
  year: 2011
  end-page: 3986
  ident: b0050
  article-title: Application of an artificial immune algorithm on a statistical model of dam displacement
  publication-title: Comput. Math. Appl.
– year: 2000
  ident: b0090
  article-title: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
– volume: 110
  start-page: 43
  year: 1997
  end-page: 50
  ident: b0155
  article-title: Practical method for determining the minimum embedding dimensions of a scalar time series
  publication-title: Physica D
– volume: 8
  start-page: 240
  year: 2004
  end-page: 255
  ident: b0175
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 3
  year: 2014
  end-page: 20
  ident: b0110
  article-title: Blind identification of damage in time-varying systems using independent component analysis with wavelet transform
  publication-title: Mech. Syst. Sig. Process.
– volume: 30
  start-page: 1082
  year: 2007
  end-page: 1093
  ident: b0170
  article-title: A diversified multiobjective GA for optimizing reservoir rule curves
  publication-title: Adv. Water Resour.
– volume: 40
  start-page: 4922
  year: 2013
  end-page: 4933
  ident: b0145
  article-title: Multifractal scaling behavior analysis for existing dams
  publication-title: Expert Syst. Appl.
– volume: 94
  start-page: 464
  year: 2017
  end-page: 481
  ident: b0100
  article-title: Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms
  publication-title: Mech. Syst. Sig. Process.
– volume: 45
  start-page: 3403
  year: 1992
  end-page: 3411
  ident: b0150
  article-title: Determining embedding dimension for phase-space reconstruction using a geometrical construction
  publication-title: Phys. Rev. A
– volume: 76–77
  start-page: 353
  year: 2016
  end-page: 366
  ident: b0125
  article-title: Degradation trend estimation of slewing bearing based on LSSVM model
  publication-title: Mech. Syst. Sig. Process.
– volume: 29
  start-page: 110
  year: 2007
  end-page: 120
  ident: b0025
  article-title: Statistical analysis and structural identification in concrete dam monitoring
  publication-title: Eng. Struct.
– volume: 22
  start-page: 438
  year: 2007
  end-page: 448
  ident: b0115
  article-title: Identification model for dam behavior based on wavelet network
  publication-title: Comput-Aided Civ. Inf.
– volume: 12
  start-page: 181
  issue: 2
  year: 2001
  ident: 10.1016/j.ymssp.2018.03.022_b0095
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.914517
– volume: 62
  start-page: 3980
  issue: 10
  year: 2011
  ident: 10.1016/j.ymssp.2018.03.022_b0050
  article-title: Application of an artificial immune algorithm on a statistical model of dam displacement
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.09.057
– volume: 23
  start-page: 252
  issue: 2
  year: 2016
  ident: 10.1016/j.ymssp.2018.03.022_b0085
  article-title: Performance improvement method of support vector machine-based model monitoring dam safety
  publication-title: Struct. Contr. Health Monit.
  doi: 10.1002/stc.1767
– volume: 76–77
  start-page: 353
  year: 2016
  ident: 10.1016/j.ymssp.2018.03.022_b0125
  article-title: Degradation trend estimation of slewing bearing based on LSSVM model
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2016.02.031
– volume: 45
  start-page: 3403
  issue: 6
  year: 1992
  ident: 10.1016/j.ymssp.2018.03.022_b0150
  article-title: Determining embedding dimension for phase-space reconstruction using a geometrical construction
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.3403
– volume: 21
  start-page: 2560
  year: 2007
  ident: 10.1016/j.ymssp.2018.03.022_b0060
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2006.12.007
– ident: 10.1016/j.ymssp.2018.03.022_b0130
  doi: 10.1117/12.833745
– volume: 134
  start-page: 343
  issue: 3
  year: 2003
  ident: 10.1016/j.ymssp.2018.03.022_b0075
  article-title: A fuzzy multicriteria group decision making approach to select configuration items for software development
  publication-title: Fuzzy Set. Syst.
  doi: 10.1016/S0165-0114(02)00283-X
– volume: 48
  start-page: 33
  year: 2014
  ident: 10.1016/j.ymssp.2018.03.022_b0080
  article-title: Development of support vector regression identification model for prediction of dam structural behavior
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.02.004
– volume: 59
  start-page: 129
  issue: 1
  year: 2011
  ident: 10.1016/j.ymssp.2018.03.022_b0015
  article-title: Dam break threshold value and risk probability assessment for an earth dam
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-011-9743-6
– volume: 33
  start-page: 903
  issue: 3
  year: 2011
  ident: 10.1016/j.ymssp.2018.03.022_b0040
  article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.12.011
– volume: 110
  start-page: 43
  issue: 1–2
  year: 1997
  ident: 10.1016/j.ymssp.2018.03.022_b0155
  article-title: Practical method for determining the minimum embedding dimensions of a scalar time series
  publication-title: Physica D
  doi: 10.1016/S0167-2789(97)00118-8
– volume: 16
  start-page: 285
  issue: 3
  year: 1985
  ident: 10.1016/j.ymssp.2018.03.022_b0160
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Physica D
  doi: 10.1016/0167-2789(85)90011-9
– volume: 52
  start-page: 3024
  issue: 10
  year: 2009
  ident: 10.1016/j.ymssp.2018.03.022_b0005
  article-title: Overtopping breaching of cohesive homogeneous earth dam with different cohesive strength
  publication-title: Sci. China Ser. E-Tech. Sci.
  doi: 10.1007/s11431-009-0275-1
– ident: 10.1016/j.ymssp.2018.03.022_b0070
– volume: 11
  start-page: 269
  issue: 3
  year: 2012
  ident: 10.1016/j.ymssp.2018.03.022_b0035
  article-title: A study of safety evaluation and early-warning method for dam global behavior
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921711419993
– year: 1995
  ident: 10.1016/j.ymssp.2018.03.022_b0055
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 10.1016/j.ymssp.2018.03.022_b0165
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– year: 2000
  ident: 10.1016/j.ymssp.2018.03.022_b0090
– volume: 47
  start-page: 3
  year: 2014
  ident: 10.1016/j.ymssp.2018.03.022_b0110
  article-title: Blind identification of damage in time-varying systems using independent component analysis with wavelet transform
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2012.08.029
– volume: 8
  start-page: 240
  issue: 3
  year: 2004
  ident: 10.1016/j.ymssp.2018.03.022_b0175
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826071
– volume: 20
  start-page: 282
  year: 2013
  ident: 10.1016/j.ymssp.2018.03.022_b0045
  article-title: Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches
  publication-title: Struct. Contr. Health Monit.
  doi: 10.1002/stc.492
– volume: 14
  start-page: 447
  issue: 2
  year: 2003
  ident: 10.1016/j.ymssp.2018.03.022_b0105
  article-title: A support vector machine formulation to PCA analysis and its kernel version
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2003.809414
– volume: 38
  start-page: 11280
  issue: 9
  year: 2011
  ident: 10.1016/j.ymssp.2018.03.022_b0140
  article-title: Wind farm power prediction based on wavelet decomposition and chaotic time series
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.176
– volume: 22
  start-page: 438
  issue: 6
  year: 2007
  ident: 10.1016/j.ymssp.2018.03.022_b0115
  article-title: Identification model for dam behavior based on wavelet network
  publication-title: Comput-Aided Civ. Inf.
  doi: 10.1111/j.1467-8667.2007.00499.x
– volume: 133
  start-page: 267
  issue: 3
  year: 2007
  ident: 10.1016/j.ymssp.2018.03.022_b0020
  article-title: Hydrostatic, temperature, time-displacement model for concrete dams
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2007)133:3(267)
– volume: 29
  start-page: 110
  issue: 1
  year: 2007
  ident: 10.1016/j.ymssp.2018.03.022_b0025
  article-title: Statistical analysis and structural identification in concrete dam monitoring
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2006.04.022
– volume: 19
  start-page: 500
  issue: 3
  year: 2008
  ident: 10.1016/j.ymssp.2018.03.022_b0120
  article-title: Wavelet basis function neural networks for sequential learning
  publication-title: IEEE Trans. Neural Netw.
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.ymssp.2018.03.022_b0065
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 15
  start-page: 639
  issue: 6
  year: 2016
  ident: 10.1016/j.ymssp.2018.03.022_b0030
  article-title: Dam safety prediction model considering chaotic characteristics in prototype monitoring data series
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921716654963
– volume: 94
  start-page: 464
  year: 2017
  ident: 10.1016/j.ymssp.2018.03.022_b0100
  article-title: Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.03.016
– volume: 40
  start-page: 4922
  issue: 12
  year: 2013
  ident: 10.1016/j.ymssp.2018.03.022_b0145
  article-title: Multifractal scaling behavior analysis for existing dams
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.02.033
– volume: 48
  start-page: 612
  year: 2016
  ident: 10.1016/j.ymssp.2018.03.022_b0135
  article-title: Dam structural behavior identification and prediction by using variable dimension fractal model and iterated function system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.07.044
– volume: 51
  start-page: 1345
  issue: 9
  year: 2008
  ident: 10.1016/j.ymssp.2018.03.022_b0010
  article-title: Risk assessment method of major unsafe hydroelectric project
  publication-title: Sci. China Ser. E-Tech. Sci.
  doi: 10.1007/s11431-008-0103-z
– volume: 30
  start-page: 1082
  issue: 5
  year: 2007
  ident: 10.1016/j.ymssp.2018.03.022_b0170
  article-title: A diversified multiobjective GA for optimizing reservoir rule curves
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2006.10.001
SSID ssj0009406
Score 2.6339617
Snippet •SVM and other methods are combined to build prediction model of dam deformation.•Three key problems on SVM are investigated.•The proposed approach can reduce...
Considering the strong nonlinear dynamic characteristics of dam deformation, the prediction model of dam deformation is investigated. Support vector machine...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 412
SubjectTerms Basis functions
Characteristics identification
Dam deformation
Dams
Deformation
Design engineering
Dynamic characteristics
Improved particle swarm optimization algorithm
Kernel functions
Mathematical models
Model accuracy
Morlet wavelet
Particle swarm optimization
Prediction model
Reconstruction
Support vector machines
Wavelet analysis
Wavelet support vector machine
Wavelet transforms
Title Wavelet support vector machine-based prediction model of dam deformation
URI https://dx.doi.org/10.1016/j.ymssp.2018.03.022
https://www.proquest.com/docview/2069500688
Volume 110
WOSCitedRecordID wos000431162900026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa20EM5VIW2ghaQD71tXW3ezpEiEK0o6gHKthcrfgSC2LAiu6ttfz3jR7wB1FU59BJFiWMlmfHM2P7mG4Q-yCTNeCkoKYOSk1iKlFCaU6KTLFMJEwpqUJU_jrOTEzoc5t97vXmbCzO7zuqazuf5-L-KGq6BsHXq7BPE7TuFC3AOQocjiB2O_yT480LXkpj0m-lYx9b9mVmX748MalIR7bYMNYCsbJVwUwtHx4yyGPWl8tmM3bD1m9IJwjaD0lKcm00HDf7QmVw22aB1gmaLybi0aVH9uaw85scAB4adZj_dYvVnVXHl251bS_jrUpfVvuguSwQGQ2ETM731oiQKbVUQb2odhNUay9gBqK3fjS1HwCOTblcXrj79HjWNJhgNqGGlDcOFB2t37R84Ng83bJFsV8x0wnQnbBAx6OQZWg2zJAd7uLr35WD4dUHYHJu6rP4zWsYqgw189C5_i2oe-HcTtJy-Qi_dbAPvWS1ZRz1Vb6C1Dgfla3Tk9AU7fcFWX_A9fcELfcFGX_BNiUFfcEdf3qCzw4PT_SPiymsQAUHohMgQ4rtcFppikmvGDk4DGLBJmZWR4CqSIhcQLQqa0VzFaRLwQAlNl1QMYBAPePQWrdQ3tdpEGPwGDaJEpQrm50UU00FRRCKTZQzxpsz4Fgrb38OE457XJVCu2RLRbKGP_qGxpV5Z3jxt_ztz0aONChlo0vIHt1spMTeOG7if5onOn6LvnvYa79GLxXDYRiuT26naQc_FbFI1t7tOy-4Av4mdaA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet+support+vector+machine-based+prediction+model+of+dam+deformation&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Su%2C+Huaizhi&rft.au=Li%2C+Xing&rft.au=Yang%2C+Beibei&rft.au=Wen%2C+Zhiping&rft.date=2018-09-15&rft.issn=0888-3270&rft.volume=110&rft.spage=412&rft.epage=427&rft_id=info:doi/10.1016%2Fj.ymssp.2018.03.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2018_03_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon