Statistical learning problem of artificial neural network to control roofing process
Now software developed on the basis of artificial neural networks (ANN) has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learni...
Uloženo v:
| Vydáno v: | MATEC web of conferences Ročník 117; s. 100 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Les Ulis
EDP Sciences
01.01.2017
|
| Témata: | |
| ISSN: | 2261-236X, 2274-7214, 2261-236X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Now software developed on the basis of artificial neural networks (ANN) has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy. Also designing of ANN architecture is related to learning problem known as “curse of dimensionality”. This problem is important for the study of construction process management because of the difficulty to get training data from construction sites. In previous studies the authors have designed a 4-layer feedforward ANN with a unit model of 12-5-4-1 to approximate estimation and prediction of roofing process. This paper presented the statistical learning side of created ANN with simple-error-minimization algorithm. The sample size to efficient training and the confidence interval of network outputs defined. In conclusion the authors predicted successful ANN learning in a large construction business company within a short space of time. |
|---|---|
| AbstractList | Now software developed on the basis of artificial neural networks (ANN) has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy. Also designing of ANN architecture is related to learning problem known as “curse of dimensionality”. This problem is important for the study of construction process management because of the difficulty to get training data from construction sites. In previous studies the authors have designed a 4-layer feedforward ANN with a unit model of 12-5-4-1 to approximate estimation and prediction of roofing process. This paper presented the statistical learning side of created ANN with simple-error-minimization algorithm. The sample size to efficient training and the confidence interval of network outputs defined. In conclusion the authors predicted successful ANN learning in a large construction business company within a short space of time. |
| Author | Lapidus, Azariy Makarov, Aleksandr |
| Author_xml | – sequence: 1 givenname: Azariy surname: Lapidus fullname: Lapidus, Azariy – sequence: 2 givenname: Aleksandr surname: Makarov fullname: Makarov, Aleksandr |
| BookMark | eNqFUUlLAzEUDqJgrf0LMuB57EtmyQS8SHEpFDxYwVvIZCmp00lNUsR_b7pQihcveeHl2_LeFTrvXa8RusFwh6HC45WIWkrXmzEBTDGmABjgDA0IqXFOivrj_OR-iUYhLCFhCkaB0QGav0URbYhWii7rtPC97RfZ2ru206vMmUz4aI2VNj33euN3JX47_5lFlyXj6F2XeefMgSd1CNfowogu6NGhDtH70-N88pLPXp-nk4dZLpN9zBUQQphRxrQpdlsZkjJC0zSkYlQ1VLVgpKSFrFktKLQNZYYaTRUuJdVFWwzRdK-rnFjytbcr4X-4E5bvGs4v-Da-7DQvoSlpQwuTjpJQwgjTqiK4rtqmYkolrdu9VvrD10aHyJdu4_sUnxMoGKEVFGVC1XuU9C4Er83RFQPfLoQfF8JPF5KI93-I0m4nvx2gsN1_9F9TZZZU |
| CitedBy_id | crossref_primary_10_1088_1755_1315_272_3_032238 |
| Cites_doi | 10.1017/CBO9780511624216 10.1051/matecconf/20168605003 10.1109/72.788640 10.1145/263867.263927 10.1016/j.ssci.2016.06.020 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 7SR 7TB 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FR3 HCIFZ JG9 KB. KR7 L6V L7M M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1051/matecconf/201711700100 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ProQuest Materials Science Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2261-236X |
| ExternalDocumentID | oai_doaj_org_article_40847873f7874272929ed52165b859dd 10_1051_matecconf_201711700100 |
| Genre | Conference Proceeding |
| GroupedDBID | 4.4 5VS 8FE 8FG AAFWJ AAOGA AAYXX ABJCF ACACO ACIWK ADBBV ADMLS AFFHD AFKRA AFPKN AGQPQ ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I EBS EJD GI~ GROUPED_DOAJ HCIFZ IPNFZ KB. KQ8 L6V M7S M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RIG RNS 7SP 7SR 7TB 8BQ 8FD ABUWG AZQEC DWQXO FR3 JG9 KR7 L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c397t-d02229fdffb700b5f223608882597d87db0fcc73c696a70b879f7fe7d14c7e3b3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426606500100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2261-236X 2274-7214 |
| IngestDate | Fri Oct 03 12:35:24 EDT 2025 Sun Jul 13 04:40:39 EDT 2025 Sat Nov 29 04:55:38 EST 2025 Tue Nov 18 22:40:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-d02229fdffb700b5f223608882597d87db0fcc73c696a70b879f7fe7d14c7e3b3 |
| Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
| OpenAccessLink | https://www.proquest.com/docview/2039275034?pq-origsite=%requestingapplication% |
| PQID | 2039275034 |
| PQPubID | 2040549 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_40847873f7874272929ed52165b859dd proquest_journals_2039275034 crossref_primary_10_1051_matecconf_201711700100 crossref_citationtrail_10_1051_matecconf_201711700100 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Les Ulis |
| PublicationPlace_xml | – name: Les Ulis |
| PublicationTitle | MATEC web of conferences |
| PublicationYear | 2017 |
| Publisher | EDP Sciences |
| Publisher_xml | – name: EDP Sciences |
| References | Haussler (R13) 1992; 100 Hola (R5) 2010; 19 Kearns (R16) 1994; 48 Vapnik (R8) 1999; 10 Lapidus (R6) 2016; 86 Li (R4) 2012; 25 Alon (R17) 1997; 44 Siami-Irdemoosa (R3) 2015; 58 R12 Vapnik (R10) 1981; 26 Koiran (R11) 1997; 54 Bartlett (R18) 1996; 52 R15 Floyd (R14) 1995; 21 Anthony (R7) 2008; 156 R19 Vapnik (R9) 1971; 16 R1 Costantino (R2) 2015; 33 |
| References_xml | – volume: 19 start-page: 570 year: 2010 ident: R5 publication-title: AiC – ident: R12 – volume: 21 start-page: 269 year: 1995 ident: R14 publication-title: ML – volume: 156 start-page: 883 year: 2008 ident: R7 publication-title: DAM – volume: 54 start-page: 190 year: 1997 ident: R11 publication-title: JC&SS – ident: R19 doi: 10.1017/CBO9780511624216 – volume: 16 start-page: 264 issue: 2 year: 1971 ident: R9 publication-title: TP&A – volume: 86 start-page: 05003 year: 2016 ident: R6 publication-title: MATEC WoC doi: 10.1051/matecconf/20168605003 – volume: 10 start-page: 988 issue: 5 year: 1999 ident: R8 publication-title: IEEE Trans. Neu. Net. doi: 10.1109/72.788640 – volume: 100 start-page: 78 year: 1992 ident: R13 publication-title: I&C – volume: 25 start-page: 1212 year: 2012 ident: R4 publication-title: PP – volume: 26 start-page: 532 year: 1981 ident: R10 publication-title: TP&A – volume: 58 start-page: 85 year: 2015 ident: R3 publication-title: AiC – volume: 44 start-page: 615 issue: 4 year: 1997 ident: R17 publication-title: JACM doi: 10.1145/263867.263927 – volume: 48 start-page: 464 issue: 3 year: 1994 ident: R16 publication-title: JC&SS – volume: 52 start-page: 434 year: 1996 ident: R18 publication-title: JC&SS – ident: R1 doi: 10.1016/j.ssci.2016.06.020 – ident: R15 – volume: 33 start-page: 1744 year: 2015 ident: R2 publication-title: IJPM |
| SSID | ssj0001397097 |
| Score | 2.0016923 |
| Snippet | Now software developed on the basis of artificial neural networks (ANN) has been actively implemented in construction companies to support decision-making in... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 100 |
| SubjectTerms | Artificial neural networks Confidence intervals Construction sites Decision making Learning theory Machine learning Neural networks Predictions Process management Roofing Statistical analysis Training |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOhB_MTplBy8lqVr0iRHFYcHGR4m7FaaL0GklTn9-30vzUbFwy5eWigJSV5e3nu_Jvk9Qm6kEUVgpsyM8izj3IEddLDcTc6MNOCBlIuU-U9yNlOLhX7upfrCM2EdPXAnuDFnCvljigAPPoFQcKK9A59TCqOEdg6tL5O6B6beUlzDtFxfCRb5GOI_6G3bBID7ucR8K4BE2C9vFEn7_9jk6Gimh-QgRYj0tuvZEdnxzTHZ7_EGnpA5hoiRYRkKprwPrzTlhqFtoDisjhqCImFlfMXj3nTV0nQ6nULMHFI9vCtwSl6mD_P7xyylR8gsjG6VOcRqOrgQDAzGiACevgSjAZhPS6ekMyxYKwtb6rKWzCipgwxeupxb6QtTnJFB0zb-nNDauhqRT51zwb1Vula2VBNuBACqiSmGRKzFVNnEHY4pLN6ruIct8moj3qov3iEZb-p9dOwZW2vc4SxsSiP7dfwAOlElnai26cSQjNZzWKUl-QmtQCiIu7b84j_auCR72O_ub8yIDFbLL39Fdu03TP_yOmrjD9u84b4 priority: 102 providerName: Directory of Open Access Journals |
| Title | Statistical learning problem of artificial neural network to control roofing process |
| URI | https://www.proquest.com/docview/2039275034 https://doaj.org/article/40847873f7874272929ed52165b859dd |
| Volume | 117 |
| WOSCitedRecordID | wos000426606500100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001397097 issn: 2261-236X databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001397097 issn: 2261-236X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001397097 issn: 2261-236X databaseCode: M7S dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001397097 issn: 2261-236X databaseCode: KB. dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001397097 issn: 2261-236X databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001397097 issn: 2261-236X databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4B5cBeWF6iLFv5wDWQhx07p5WKihYBVcRDglMU2zGXqmFL4fcz47otaCU4cEmkOI4sTzwvj78P4EhqkblY55FWTRxxblEPWlzuOom11GiBlPWQ-ZdyOFT390UZEm7PoaxyrhO9oratoRw5BuloyWnTjf95-hcRaxTtrgYKjVXoEEpC4kv3bpY5FjS2sedXSVMqO0wTPj8kLJIT9Ahx_O3Y4bcTSQwsGJvEH-yTh_H_T0t703O2-d1B_4Td5ak-Vi7s1RasNONt-PEOkHAHbsn39NDN9YgFQolHFkhnWOsY_WgzzAlGSJj-5uvI2bRloeydoTPuQj86hLALd2eD29O_UeBdiAxO2DSyFAQWzjqncU60cOhC5KiNMJgspFXS6tgZIzOTF3ktY61k4aRrpE24kU2msz1YG7fjZh9YbWxNIVWdcMEbo4pamVylXAuM1FKddUHMZ7syAZScuDFGld8cF0m1kFL1XkpdOFn0e5rBcnzZo0_CXLxNsNr-QTt5rMIqrXisCKwoc3jhKcYdadFYdHByoZUorO3C4VzOVVjrz9VSyAefN_-CDRrRLIFzCGvTyUvzG9bNKwp20oNOfzAsr3s-K4DXi_5xz__O2FKeX5UPb1C--vc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwquoCwV8gGNUx3Fi51BV4lF11e1qD4tUTia2416qTdkuIP4Uv5EZr7NbhASnHrgkUhInsT2e8efH9wG8VrYsArdVZnXLMyk9-kGPzd3m3CqLEUj7SJk_VpOJPj-vp1vws98LQ8sqe58YHbXvHI2RI0jHSE6TbvLo6ktGqlE0u9pLaKzM4rT98R0h2_Xh6D3W7xshjj_M3p1kSVUgcxh7l5kniFMHH4JVnNsyYICssK0hVKqV18pbHpxThavqqlHcalUHFVrlc-lUW9gC33sHtiUZ-wC2p6Oz6afNqA5-gkdFFyFooaPIZb8tucwPsA-KJdbNA-YmV6T5gmiI_xYRo3DAH3EhBrvjB_9bMT2E3c2-RTZdR-RHsNXOH8P9G5SLT2BGvetITt1csiSZccGSrA7rAqOmtGLVYMT1GU9xpTxbdiwt7GcIN0JKR9ssduHjrWTuKQzm3bzdA9Y43xBobHJZytbputGu0kLaErGosMUQyr52jUu066T-cWni9H-Zm7VVmJtWMYSDdbqrFfHIP1O8JeNZP03E4fFCt7gwyQ8ZyTXRMRUBD1IgshJ167ELV5VWl7X3Q9jv7cokb3ZtNkb17O-3X8G9k9nZ2IxHk9PnsEN_txqu2ofBcvG1fQF33Tes5MXL1HAYfL5tI_wF_0JUaA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=MATEC+web+of+conferences&rft.atitle=Statistical+learning+problem+of+artificial+neural+network+to+control+roofing+process&rft.au=Lapidus%2C+Azariy&rft.au=Makarov%2C+Aleksandr&rft.date=2017-01-01&rft.pub=EDP+Sciences&rft.issn=2274-7214&rft.eissn=2261-236X&rft.volume=117&rft_id=info:doi/10.1051%2Fmatecconf%2F201711700100 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2261-236X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2261-236X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2261-236X&client=summon |