Statistical learning problem of artificial neural network to control roofing process

Now software developed on the basis of artificial neural networks (ANN) has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learni...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:MATEC web of conferences Ročník 117; s. 100
Hlavní autoři: Lapidus, Azariy, Makarov, Aleksandr
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Les Ulis EDP Sciences 01.01.2017
Témata:
ISSN:2261-236X, 2274-7214, 2261-236X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Now software developed on the basis of artificial neural networks (ANN) has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy. Also designing of ANN architecture is related to learning problem known as “curse of dimensionality”. This problem is important for the study of construction process management because of the difficulty to get training data from construction sites. In previous studies the authors have designed a 4-layer feedforward ANN with a unit model of 12-5-4-1 to approximate estimation and prediction of roofing process. This paper presented the statistical learning side of created ANN with simple-error-minimization algorithm. The sample size to efficient training and the confidence interval of network outputs defined. In conclusion the authors predicted successful ANN learning in a large construction business company within a short space of time.
AbstractList Now software developed on the basis of artificial neural networks (ANN) has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy. Also designing of ANN architecture is related to learning problem known as “curse of dimensionality”. This problem is important for the study of construction process management because of the difficulty to get training data from construction sites. In previous studies the authors have designed a 4-layer feedforward ANN with a unit model of 12-5-4-1 to approximate estimation and prediction of roofing process. This paper presented the statistical learning side of created ANN with simple-error-minimization algorithm. The sample size to efficient training and the confidence interval of network outputs defined. In conclusion the authors predicted successful ANN learning in a large construction business company within a short space of time.
Author Lapidus, Azariy
Makarov, Aleksandr
Author_xml – sequence: 1
  givenname: Azariy
  surname: Lapidus
  fullname: Lapidus, Azariy
– sequence: 2
  givenname: Aleksandr
  surname: Makarov
  fullname: Makarov, Aleksandr
BookMark eNqFUUlLAzEUDqJgrf0LMuB57EtmyQS8SHEpFDxYwVvIZCmp00lNUsR_b7pQihcveeHl2_LeFTrvXa8RusFwh6HC45WIWkrXmzEBTDGmABjgDA0IqXFOivrj_OR-iUYhLCFhCkaB0QGav0URbYhWii7rtPC97RfZ2ru206vMmUz4aI2VNj33euN3JX47_5lFlyXj6F2XeefMgSd1CNfowogu6NGhDtH70-N88pLPXp-nk4dZLpN9zBUQQphRxrQpdlsZkjJC0zSkYlQ1VLVgpKSFrFktKLQNZYYaTRUuJdVFWwzRdK-rnFjytbcr4X-4E5bvGs4v-Da-7DQvoSlpQwuTjpJQwgjTqiK4rtqmYkolrdu9VvrD10aHyJdu4_sUnxMoGKEVFGVC1XuU9C4Er83RFQPfLoQfF8JPF5KI93-I0m4nvx2gsN1_9F9TZZZU
CitedBy_id crossref_primary_10_1088_1755_1315_272_3_032238
Cites_doi 10.1017/CBO9780511624216
10.1051/matecconf/20168605003
10.1109/72.788640
10.1145/263867.263927
10.1016/j.ssci.2016.06.020
ContentType Journal Article
Conference Proceeding
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
7SR
7TB
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FR3
HCIFZ
JG9
KB.
KR7
L6V
L7M
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1051/matecconf/201711700100
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ProQuest Materials Science Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2261-236X
ExternalDocumentID oai_doaj_org_article_40847873f7874272929ed52165b859dd
10_1051_matecconf_201711700100
Genre Conference Proceeding
GroupedDBID 4.4
5VS
8FE
8FG
AAFWJ
AAOGA
AAYXX
ABJCF
ACACO
ACIWK
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AGQPQ
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
EBS
EJD
GI~
GROUPED_DOAJ
HCIFZ
IPNFZ
KB.
KQ8
L6V
M7S
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RIG
RNS
7SP
7SR
7TB
8BQ
8FD
ABUWG
AZQEC
DWQXO
FR3
JG9
KR7
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c397t-d02229fdffb700b5f223608882597d87db0fcc73c696a70b879f7fe7d14c7e3b3
IEDL.DBID M7S
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426606500100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2261-236X
2274-7214
IngestDate Fri Oct 03 12:35:24 EDT 2025
Sun Jul 13 04:40:39 EDT 2025
Sat Nov 29 04:55:38 EST 2025
Tue Nov 18 22:40:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-d02229fdffb700b5f223608882597d87db0fcc73c696a70b879f7fe7d14c7e3b3
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://www.proquest.com/docview/2039275034?pq-origsite=%requestingapplication%
PQID 2039275034
PQPubID 2040549
ParticipantIDs doaj_primary_oai_doaj_org_article_40847873f7874272929ed52165b859dd
proquest_journals_2039275034
crossref_primary_10_1051_matecconf_201711700100
crossref_citationtrail_10_1051_matecconf_201711700100
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle MATEC web of conferences
PublicationYear 2017
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Haussler (R13) 1992; 100
Hola (R5) 2010; 19
Kearns (R16) 1994; 48
Vapnik (R8) 1999; 10
Lapidus (R6) 2016; 86
Li (R4) 2012; 25
Alon (R17) 1997; 44
Siami-Irdemoosa (R3) 2015; 58
R12
Vapnik (R10) 1981; 26
Koiran (R11) 1997; 54
Bartlett (R18) 1996; 52
R15
Floyd (R14) 1995; 21
Anthony (R7) 2008; 156
R19
Vapnik (R9) 1971; 16
R1
Costantino (R2) 2015; 33
References_xml – volume: 19
  start-page: 570
  year: 2010
  ident: R5
  publication-title: AiC
– ident: R12
– volume: 21
  start-page: 269
  year: 1995
  ident: R14
  publication-title: ML
– volume: 156
  start-page: 883
  year: 2008
  ident: R7
  publication-title: DAM
– volume: 54
  start-page: 190
  year: 1997
  ident: R11
  publication-title: JC&SS
– ident: R19
  doi: 10.1017/CBO9780511624216
– volume: 16
  start-page: 264
  issue: 2
  year: 1971
  ident: R9
  publication-title: TP&A
– volume: 86
  start-page: 05003
  year: 2016
  ident: R6
  publication-title: MATEC WoC
  doi: 10.1051/matecconf/20168605003
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  ident: R8
  publication-title: IEEE Trans. Neu. Net.
  doi: 10.1109/72.788640
– volume: 100
  start-page: 78
  year: 1992
  ident: R13
  publication-title: I&C
– volume: 25
  start-page: 1212
  year: 2012
  ident: R4
  publication-title: PP
– volume: 26
  start-page: 532
  year: 1981
  ident: R10
  publication-title: TP&A
– volume: 58
  start-page: 85
  year: 2015
  ident: R3
  publication-title: AiC
– volume: 44
  start-page: 615
  issue: 4
  year: 1997
  ident: R17
  publication-title: JACM
  doi: 10.1145/263867.263927
– volume: 48
  start-page: 464
  issue: 3
  year: 1994
  ident: R16
  publication-title: JC&SS
– volume: 52
  start-page: 434
  year: 1996
  ident: R18
  publication-title: JC&SS
– ident: R1
  doi: 10.1016/j.ssci.2016.06.020
– ident: R15
– volume: 33
  start-page: 1744
  year: 2015
  ident: R2
  publication-title: IJPM
SSID ssj0001397097
Score 2.0016923
Snippet Now software developed on the basis of artificial neural networks (ANN) has been actively implemented in construction companies to support decision-making in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 100
SubjectTerms Artificial neural networks
Confidence intervals
Construction sites
Decision making
Learning theory
Machine learning
Neural networks
Predictions
Process management
Roofing
Statistical analysis
Training
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOhB_MTplBy8lqVr0iRHFYcHGR4m7FaaL0GklTn9-30vzUbFwy5eWigJSV5e3nu_Jvk9Qm6kEUVgpsyM8izj3IEddLDcTc6MNOCBlIuU-U9yNlOLhX7upfrCM2EdPXAnuDFnCvljigAPPoFQcKK9A59TCqOEdg6tL5O6B6beUlzDtFxfCRb5GOI_6G3bBID7ucR8K4BE2C9vFEn7_9jk6Gimh-QgRYj0tuvZEdnxzTHZ7_EGnpA5hoiRYRkKprwPrzTlhqFtoDisjhqCImFlfMXj3nTV0nQ6nULMHFI9vCtwSl6mD_P7xyylR8gsjG6VOcRqOrgQDAzGiACevgSjAZhPS6ekMyxYKwtb6rKWzCipgwxeupxb6QtTnJFB0zb-nNDauhqRT51zwb1Vula2VBNuBACqiSmGRKzFVNnEHY4pLN6ruIct8moj3qov3iEZb-p9dOwZW2vc4SxsSiP7dfwAOlElnai26cSQjNZzWKUl-QmtQCiIu7b84j_auCR72O_ub8yIDFbLL39Fdu03TP_yOmrjD9u84b4
  priority: 102
  providerName: Directory of Open Access Journals
Title Statistical learning problem of artificial neural network to control roofing process
URI https://www.proquest.com/docview/2039275034
https://doaj.org/article/40847873f7874272929ed52165b859dd
Volume 117
WOSCitedRecordID wos000426606500100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2261-236X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001397097
  issn: 2261-236X
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2261-236X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001397097
  issn: 2261-236X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 2261-236X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001397097
  issn: 2261-236X
  databaseCode: M7S
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2261-236X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001397097
  issn: 2261-236X
  databaseCode: KB.
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2261-236X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001397097
  issn: 2261-236X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2261-236X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001397097
  issn: 2261-236X
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4B5cBeWF6iLFv5wDWQhx07p5WKihYBVcRDglMU2zGXqmFL4fcz47otaCU4cEmkOI4sTzwvj78P4EhqkblY55FWTRxxblEPWlzuOom11GiBlPWQ-ZdyOFT390UZEm7PoaxyrhO9oratoRw5BuloyWnTjf95-hcRaxTtrgYKjVXoEEpC4kv3bpY5FjS2sedXSVMqO0wTPj8kLJIT9Ahx_O3Y4bcTSQwsGJvEH-yTh_H_T0t703O2-d1B_4Td5ak-Vi7s1RasNONt-PEOkHAHbsn39NDN9YgFQolHFkhnWOsY_WgzzAlGSJj-5uvI2bRloeydoTPuQj86hLALd2eD29O_UeBdiAxO2DSyFAQWzjqncU60cOhC5KiNMJgspFXS6tgZIzOTF3ktY61k4aRrpE24kU2msz1YG7fjZh9YbWxNIVWdcMEbo4pamVylXAuM1FKddUHMZ7syAZScuDFGld8cF0m1kFL1XkpdOFn0e5rBcnzZo0_CXLxNsNr-QTt5rMIqrXisCKwoc3jhKcYdadFYdHByoZUorO3C4VzOVVjrz9VSyAefN_-CDRrRLIFzCGvTyUvzG9bNKwp20oNOfzAsr3s-K4DXi_5xz__O2FKeX5UPb1C--vc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwquoCwV8gGNUx3Fi51BV4lF11e1qD4tUTia2416qTdkuIP4Uv5EZr7NbhASnHrgkUhInsT2e8efH9wG8VrYsArdVZnXLMyk9-kGPzd3m3CqLEUj7SJk_VpOJPj-vp1vws98LQ8sqe58YHbXvHI2RI0jHSE6TbvLo6ktGqlE0u9pLaKzM4rT98R0h2_Xh6D3W7xshjj_M3p1kSVUgcxh7l5kniFMHH4JVnNsyYICssK0hVKqV18pbHpxThavqqlHcalUHFVrlc-lUW9gC33sHtiUZ-wC2p6Oz6afNqA5-gkdFFyFooaPIZb8tucwPsA-KJdbNA-YmV6T5gmiI_xYRo3DAH3EhBrvjB_9bMT2E3c2-RTZdR-RHsNXOH8P9G5SLT2BGvetITt1csiSZccGSrA7rAqOmtGLVYMT1GU9xpTxbdiwt7GcIN0JKR9ssduHjrWTuKQzm3bzdA9Y43xBobHJZytbputGu0kLaErGosMUQyr52jUu066T-cWni9H-Zm7VVmJtWMYSDdbqrFfHIP1O8JeNZP03E4fFCt7gwyQ8ZyTXRMRUBD1IgshJ167ELV5VWl7X3Q9jv7cokb3ZtNkb17O-3X8G9k9nZ2IxHk9PnsEN_txqu2ofBcvG1fQF33Tes5MXL1HAYfL5tI_wF_0JUaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=MATEC+web+of+conferences&rft.atitle=Statistical+learning+problem+of+artificial+neural+network+to+control+roofing+process&rft.au=Lapidus%2C+Azariy&rft.au=Makarov%2C+Aleksandr&rft.date=2017-01-01&rft.pub=EDP+Sciences&rft.issn=2274-7214&rft.eissn=2261-236X&rft.volume=117&rft_id=info:doi/10.1051%2Fmatecconf%2F201711700100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2261-236X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2261-236X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2261-236X&client=summon