Can modern multi-objective evolutionary algorithms discover high-dimensional financial risk portfolio tradeoffs for snow-dominated water-energy systems?

•Benchmarking multi-objective financial risk portfolios for snow-driven hydropower.•Self-adaptive search can more effectively capture complex financial risk tradeoffs.•Decomposition and reference point algorithms deteriorate and misrepresent tradeoffs. Hydropower generation in the Hetch Hetchy Power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources Jg. 145; S. 103718
Hauptverfasser: Gupta, Rohini S., Hamilton, Andrew L., Reed, Patrick M., Characklis, Gregory W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2020
Schlagworte:
ISSN:0309-1708, 1872-9657
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Benchmarking multi-objective financial risk portfolios for snow-driven hydropower.•Self-adaptive search can more effectively capture complex financial risk tradeoffs.•Decomposition and reference point algorithms deteriorate and misrepresent tradeoffs. Hydropower generation in the Hetch Hetchy Power System is strongly tied to snowmelt dynamics in the central Sierra Nevada and consequently is particularly financially vulnerable to changes in snowpack availability and timing. This study explores the Hetchy Hetchy Power System as a representative example from the broader class of financial risk management problems that hold promise in helping utilities such as SFPUC to understand the tradeoffs across portfolios of risk mitigation instruments given uncertainties in snowmelt dynamics. An evolutionary multi-objective direct policy search (EMODPS) framework is implemented to identify time adaptive stochastic rules that map utility state information and exogenous inputs to optimal annual financial decisions. The resulting financial risk mitigation portfolio planning problem is mathematically difficult due to its high dimensionality and mixture of nonlinear, nonconvex, and discrete objectives. These features add to the difficulty of the problem by yielding a Pareto front of solutions that has a highly disjoint and complex geometry. In this study, we contribute a diagnostic assessment of state-of-the-art multi-objective evolutionary algorithms’ (MOEAs') abilities to support a DPS framework for managing financial risk. We perform comprehensive diagnostics on five algorithms: the Borg multi-objective evolutionary algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), Non-dominated Sorting Genetic Algorithm III (NSGA-III), Reference Vector Guided Evolutionary Algorithm (RVEA), and the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). The MOEAs are evaluated to characterize their controllability (ease-of-use), reliability (probability of success), efficiency (minimizing model evaluations), and effectiveness (high quality tradeoff representations). Our results show that newer decomposition, reference point, and reference vector algorithms are highly sensitive to their parameterizations (difficult to use), suffer from search deterioration (losing solutions), and have a strong likelihood of misrepresenting key tradeoffs. The results emphasize the importance of using MOEAs with archiving and adaptive search capabilities in order to solve complex financial risk portfolio problems in snow-dependent water-energy systems.
AbstractList •Benchmarking multi-objective financial risk portfolios for snow-driven hydropower.•Self-adaptive search can more effectively capture complex financial risk tradeoffs.•Decomposition and reference point algorithms deteriorate and misrepresent tradeoffs. Hydropower generation in the Hetch Hetchy Power System is strongly tied to snowmelt dynamics in the central Sierra Nevada and consequently is particularly financially vulnerable to changes in snowpack availability and timing. This study explores the Hetchy Hetchy Power System as a representative example from the broader class of financial risk management problems that hold promise in helping utilities such as SFPUC to understand the tradeoffs across portfolios of risk mitigation instruments given uncertainties in snowmelt dynamics. An evolutionary multi-objective direct policy search (EMODPS) framework is implemented to identify time adaptive stochastic rules that map utility state information and exogenous inputs to optimal annual financial decisions. The resulting financial risk mitigation portfolio planning problem is mathematically difficult due to its high dimensionality and mixture of nonlinear, nonconvex, and discrete objectives. These features add to the difficulty of the problem by yielding a Pareto front of solutions that has a highly disjoint and complex geometry. In this study, we contribute a diagnostic assessment of state-of-the-art multi-objective evolutionary algorithms’ (MOEAs') abilities to support a DPS framework for managing financial risk. We perform comprehensive diagnostics on five algorithms: the Borg multi-objective evolutionary algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), Non-dominated Sorting Genetic Algorithm III (NSGA-III), Reference Vector Guided Evolutionary Algorithm (RVEA), and the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). The MOEAs are evaluated to characterize their controllability (ease-of-use), reliability (probability of success), efficiency (minimizing model evaluations), and effectiveness (high quality tradeoff representations). Our results show that newer decomposition, reference point, and reference vector algorithms are highly sensitive to their parameterizations (difficult to use), suffer from search deterioration (losing solutions), and have a strong likelihood of misrepresenting key tradeoffs. The results emphasize the importance of using MOEAs with archiving and adaptive search capabilities in order to solve complex financial risk portfolio problems in snow-dependent water-energy systems.
Hydropower generation in the Hetch Hetchy Power System is strongly tied to snowmelt dynamics in the central Sierra Nevada and consequently is particularly financially vulnerable to changes in snowpack availability and timing. This study explores the Hetchy Hetchy Power System as a representative example from the broader class of financial risk management problems that hold promise in helping utilities such as SFPUC to understand the tradeoffs across portfolios of risk mitigation instruments given uncertainties in snowmelt dynamics. An evolutionary multi-objective direct policy search (EMODPS) framework is implemented to identify time adaptive stochastic rules that map utility state information and exogenous inputs to optimal annual financial decisions. The resulting financial risk mitigation portfolio planning problem is mathematically difficult due to its high dimensionality and mixture of nonlinear, nonconvex, and discrete objectives. These features add to the difficulty of the problem by yielding a Pareto front of solutions that has a highly disjoint and complex geometry. In this study, we contribute a diagnostic assessment of state-of-the-art multi-objective evolutionary algorithms’ (MOEAs') abilities to support a DPS framework for managing financial risk. We perform comprehensive diagnostics on five algorithms: the Borg multi-objective evolutionary algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), Non-dominated Sorting Genetic Algorithm III (NSGA-III), Reference Vector Guided Evolutionary Algorithm (RVEA), and the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). The MOEAs are evaluated to characterize their controllability (ease-of-use), reliability (probability of success), efficiency (minimizing model evaluations), and effectiveness (high quality tradeoff representations). Our results show that newer decomposition, reference point, and reference vector algorithms are highly sensitive to their parameterizations (difficult to use), suffer from search deterioration (losing solutions), and have a strong likelihood of misrepresenting key tradeoffs. The results emphasize the importance of using MOEAs with archiving and adaptive search capabilities in order to solve complex financial risk portfolio problems in snow-dependent water-energy systems.
ArticleNumber 103718
Author Reed, Patrick M.
Characklis, Gregory W.
Gupta, Rohini S.
Hamilton, Andrew L.
Author_xml – sequence: 1
  givenname: Rohini S.
  surname: Gupta
  fullname: Gupta, Rohini S.
  email: rg727@cornell.edu
  organization: Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
– sequence: 2
  givenname: Andrew L.
  surname: Hamilton
  fullname: Hamilton, Andrew L.
  organization: Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– sequence: 3
  givenname: Patrick M.
  surname: Reed
  fullname: Reed, Patrick M.
  organization: Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
– sequence: 4
  givenname: Gregory W.
  surname: Characklis
  fullname: Characklis, Gregory W.
  organization: Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
BookMark eNqNkc9uEzEQxi3USqSlz4CPXDb4z2Z3fUCoiihFqsQFzpbXHicOXjvYzlZ5Ex4Xr1Jx4AKnGY2-bzTz_W7QVYgBEHpLyZoS2r0_rJWZn1VJkNeMsGXKezq8Qis69KwR3aa_QivCiWhoT4bX6CbnAyFkaHu2Qr-2KuApGki1nHxxTRwPoIubAcMc_am4GFQ6Y-V3MbmynzI2Lus4Q8J7t9s3xk0Q8qLy2Lqggna1Sy7_wMeYio3eRVySMhCtzdjGhHOIz42JU1UXMLgeD6mBAGl3xvmcC0z54xt0bZXPcPdSb9H3h0_fto_N09fPX7b3T43moi-NJswQMSg9bsw4UtoKw8eNtiB6Ztq-40br1hCrQYlNy5iiI9VaddpSw7lg_Ba9u-w9pvjzBLnIqb4H3qsA8ZQlE0NHhk4MvEo_XKQ6xZwTWKldUUtA9T3nJSVyISIP8g8RuRCRFyLV3__lPyY31XD_w3l_cUJNYnaQZNYOggbjUoUlTXT_3PEbI220Jw
CitedBy_id crossref_primary_10_1061_JWRMD5_WRENG_6471
crossref_primary_10_1061_JWRMD5_WRENG_6353
crossref_primary_10_3389_fenvs_2022_857340
crossref_primary_10_1016_j_ejcon_2025_101205
crossref_primary_10_1038_s41598_025_93896_4
crossref_primary_10_1016_j_jhydrol_2022_128185
crossref_primary_10_1029_2023WR034841
crossref_primary_10_1061_JWRMD5_WRENG_5827
crossref_primary_10_1029_2019RG000683
crossref_primary_10_1061_JWRMD5_WRENG_5863
crossref_primary_10_1061_JWRMD5_WRENG_6239
crossref_primary_10_1016_j_futures_2023_103265
crossref_primary_10_1038_s41467_024_51660_8
crossref_primary_10_3390_en16186597
crossref_primary_10_1016_j_jhydrol_2021_126794
crossref_primary_10_1016_j_jhydrol_2022_128953
crossref_primary_10_1016_j_jenvman_2023_117862
crossref_primary_10_1038_s41467_021_23323_5
crossref_primary_10_1029_2021WR029747
crossref_primary_10_2166_wcc_2022_290
crossref_primary_10_1007_s11269_023_03491_3
crossref_primary_10_1016_j_envsoft_2023_105889
crossref_primary_10_3390_a17090416
crossref_primary_10_1029_2022WR033671
crossref_primary_10_1016_j_ifacol_2022_11_006
crossref_primary_10_1016_j_jenvman_2023_118901
crossref_primary_10_1080_0305215X_2024_2381818
Cites_doi 10.1057/jors.2013.71
10.1029/2009WR008121
10.1109/TEVC.2013.2281535
10.1016/j.wre.2015.04.001
10.1002/2014WR016533
10.1016/S0305-0548(02)00141-7
10.1061/(ASCE)WR.1943-5452.0000570
10.1137/S0036144500376650
10.1175/JCLI3969.1
10.1061/(ASCE)WR.1943-5452.0000860
10.1029/2018WR024177
10.1016/j.swevo.2018.08.002
10.1002/essoar.10502068.1
10.1016/j.apenergy.2019.01.156
10.1038/s41893-019-0235-0
10.1175/BAMS-D-16-0253.1
10.1061/(ASCE)WR.1943-5452.0000053
10.1109/TEVC.2009.2014361
10.1109/TEVC.2016.2519378
10.1016/j.ejor.2018.07.014
10.1061/(ASCE)WR.1943-5452.0000984
10.1061/(ASCE)WR.1943-5452.0000945
10.2166/hydro.2003.0002
10.1109/TEVC.2007.892759
10.1016/j.envsoft.2011.04.003
10.1029/2003WR002148
10.1029/2000WR900191
10.1073/pnas.0610471104
10.1162/106365605774666895
10.1016/j.envsoft.2017.02.017
10.1109/TEVC.2003.810758
10.1016/j.cma.2007.03.003
10.1162/EVCO_a_00128
10.1002/2013WR014700
10.1061/(ASCE)0733-9496(2005)131:1(25)
10.1111/j.1540-6261.2011.01681.x
10.1016/j.advwatres.2016.04.006
10.1162/EVCO_a_00053
10.1109/TEVC.2008.924428
10.1029/2002WR001483
10.1016/j.envsoft.2015.07.020
10.1016/j.apenergy.2019.05.084
10.1109/TEVC.2012.2196800
10.1080/02626667.2014.965173
10.1109/ACCESS.2017.2716779
10.1162/EVCO_a_00075
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.advwatres.2020.103718
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9657
ExternalDocumentID 10_1016_j_advwatres_2020_103718
S0309170820301184
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c397t-c02d098acb5dbb1149d3b5cfe972d4763dcc4d0fcea95422a1b1cca6cf1d33923
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579002600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0309-1708
IngestDate Sat Sep 27 23:06:10 EDT 2025
Sat Nov 29 07:21:09 EST 2025
Tue Nov 18 22:13:43 EST 2025
Fri Feb 23 02:48:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Many objective optimization
Hydropower
Financial risk management
Evolutionary algorithms
Direct policy search
Algorithm benchmarking
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c397t-c02d098acb5dbb1149d3b5cfe972d4763dcc4d0fcea95422a1b1cca6cf1d33923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.7298/j30h-t140
PQID 2986086983
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2986086983
crossref_citationtrail_10_1016_j_advwatres_2020_103718
crossref_primary_10_1016_j_advwatres_2020_103718
elsevier_sciencedirect_doi_10_1016_j_advwatres_2020_103718
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Advances in water resources
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References San Francisco Public Utilities Commission (bib0050) 2016
Vrugt, Robinson (bib0056) 2007; 104
Clarke, Nichols, Vallario, Hejazi, Horing, Janetos, Mach, Mastrandrea, Orr, Preston, Reed, Sands, White (bib0010) 2018; vol. II
Goldberg (bib0022) 2002
Giuliani, Herman, Castelletti, Reed (bib0021) 2014; 50
Palakonda, Mallipeddi (bib0041) 2017; 5
Kasprzyk, Reed, Characklis, Kirsch (bib0028) 2012; 34
Markowitz (bib0035) 1952; 7
Mulvey, Shetty (bib0038) 2004; 31
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., Da Fonseca, V. G., 2003. Performance assessment of multiobjective optimizers: an analysis and review. doi
Hadka, Reed (bib0026) 2013; 21
Van Veldhuizen, Lamont (bib0053) 1998
Chan Hilton, Culver (bib0008) 2005; 131
Deb, Mohan, Mishra (bib0014) 2005; 13
Giuliani, Castelletti, Pianosi, Mason, Reed (bib0020) 2016; 142
Mohammadi, Omidvar, Li (bib0037) 2012
Powell (bib0043) 2019; 275
Reed, Minsker, Goldberg (bib0047) 2003; 39
Ward, Singh, Reed, Keller (bib0058) 2015; 73
Giagkiozis, Fleming (bib0018) 2014; 22
Van Veldhuizen, Lamont (bib0054) 1998
Gopalakrishnan, Minsker, Goldberg (bib0024) 2003; 5
Hamilton, A. L., Characklis, G. W., Reed, P. M., 2020. Managing financial risk tradeoffs for hydropower generation using snowpack-based index contracts. Preprint on
Cheng, Jin, Olhofer, Sendhoff (bib0009) 2016; 20
Hadka, Reed (bib0025) 2012; 20
Bolton, Chen, Wang (bib0004) 2011; 66
Voisin, Kintner-Meyer, Wu, Skaggs, Fu, Zhou, Nguyen, Kraucunas (bib0055) 2018; 99
Lund, Medellin-Azuara, Durand, Stone (bib0033) 2018; 144
.
Foster, Kern, Characklis (bib0017) 2015
Kern, Characklis, Foster (bib0030) 2015; 51
Quinn, Reed, Keller (bib0046) 2017; 92
California Energy Commission (bib0007) 2018
Gonzalez, Garfin, Breshears, Brooks, Brown, Elias, Gunasekara, Huntly, Maldonado, Mantua, Margolis, McAfee, Middleton, Udall (bib0023) 2018; vol. II
Quinn, Reed, Giuliani, Castelletti (bib0045) 2019; 55
Beyer, Sendhoff (bib0002) 2007; 196
Deb, Jain (bib0013) 2014; 18
Biglarbeigi, Giuliani, Castelletti (bib0003) 2018; 144
Boudhar, Boulet, Hanich, Sicart, Chehbouni (bib0005) 2016; 61
Reed, Hadka, Herman, Kasprzyk, Kollat (bib0048) 2013
Kasprzyk, Reed, Kirsch, Characklis (bib0029) 2009; 45
Desreumaux, Côté, Leconte (bib0016) 2018; 144
Steinbach (bib0052) 2001; 43
Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R., 2013. Hyper-heuristics: a survey of the state of the art. doi
O’Connell, Voisin, Macknick, Fu (bib0040) 2019
Koutsoyiannis, Economou (bib0031) 2003; 39
Deb, Pratap, Agarwal, Meyarivan (bib0015) 2002
Zhang, Li (bib0060) 2007; 11
Ponsich, Jaimes, Coello (bib0042) 2013; 17
Zatarain Salazar, Reed, Herman, Giuliani, Castelletti (bib0059) 2016
Liu, Hejazi, Iyer, Forman (bib0032) 2019; 2
Smalley, Minsker, Goldberg (bib0051) 2000; 36
Qi, Li, Yu, Miao (bib0044) 2019; 44
Zhang, Suganthan (bib0062) 2009
Deb, Gupta, Daum, Branke, Mall, Padmanabhan (bib0012) 2009; 13
Giudici, Castelletti, Garofalo, Giuliani, Maier (bib0019) 2019
Nicklow, Reed, Savic, Dessalegne, Harrell, Chan-Hilton, Karamouz, Minsker, Ostfeld, Singh, Zechman (bib0039) 2010; 136
Better, Glover, Kochenberger, Wang (bib0001) 2008; vol. 7
Rosenstein, Barto (bib0049) 2001; 17
Coello, Lamont, Veldhuizen, Goldberg, Koza (bib0011) 2007
Zhang, Liu, Li (bib0061) 2009
Vrugt, Robinson, Hyman (bib0057) 2009; 13
(2020). doi
Masiokas, Villalba, Luckman, Le Quesne, Aravena (bib0036) 2006; 19
Maier, Holger R., Jain, A., Dandy, G.C., Sudheer, K.P., 2014. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Elsevier.
Lund (10.1016/j.advwatres.2020.103718_bib0033) 2018; 144
Qi (10.1016/j.advwatres.2020.103718_bib0044) 2019; 44
Reed (10.1016/j.advwatres.2020.103718_bib0048) 2013
Quinn (10.1016/j.advwatres.2020.103718_bib0046) 2017; 92
Van Veldhuizen (10.1016/j.advwatres.2020.103718_bib0054) 1998
Bolton (10.1016/j.advwatres.2020.103718_bib0004) 2011; 66
Coello (10.1016/j.advwatres.2020.103718_bib0011) 2007
Mohammadi (10.1016/j.advwatres.2020.103718_bib0037) 2012
Masiokas (10.1016/j.advwatres.2020.103718_bib0036) 2006; 19
Vrugt (10.1016/j.advwatres.2020.103718_bib0057) 2009; 13
Desreumaux (10.1016/j.advwatres.2020.103718_bib0016) 2018; 144
Palakonda (10.1016/j.advwatres.2020.103718_bib0041) 2017; 5
10.1016/j.advwatres.2020.103718_bib0006
Cheng (10.1016/j.advwatres.2020.103718_bib0009) 2016; 20
Clarke (10.1016/j.advwatres.2020.103718_bib0010) 2018; vol. II
Markowitz (10.1016/j.advwatres.2020.103718_bib0035) 1952; 7
Gonzalez (10.1016/j.advwatres.2020.103718_bib0023) 2018; vol. II
Kasprzyk (10.1016/j.advwatres.2020.103718_bib0028) 2012; 34
Ward (10.1016/j.advwatres.2020.103718_bib0058) 2015; 73
Foster (10.1016/j.advwatres.2020.103718_bib0017) 2015
Zhang (10.1016/j.advwatres.2020.103718_bib0060) 2007; 11
Liu (10.1016/j.advwatres.2020.103718_bib0032) 2019; 2
10.1016/j.advwatres.2020.103718_bib0034
Voisin (10.1016/j.advwatres.2020.103718_bib0055) 2018; 99
Hadka (10.1016/j.advwatres.2020.103718_bib0026) 2013; 21
Zatarain Salazar (10.1016/j.advwatres.2020.103718_bib0059) 2016
Kern (10.1016/j.advwatres.2020.103718_bib0030) 2015; 51
Koutsoyiannis (10.1016/j.advwatres.2020.103718_bib0031) 2003; 39
Biglarbeigi (10.1016/j.advwatres.2020.103718_bib0003) 2018; 144
Zhang (10.1016/j.advwatres.2020.103718_bib0062) 2009
Goldberg (10.1016/j.advwatres.2020.103718_bib0022) 2002
Smalley (10.1016/j.advwatres.2020.103718_bib0051) 2000; 36
Ponsich (10.1016/j.advwatres.2020.103718_bib0042) 2013; 17
Deb (10.1016/j.advwatres.2020.103718_bib0012) 2009; 13
Giudici (10.1016/j.advwatres.2020.103718_bib0019) 2019
Mulvey (10.1016/j.advwatres.2020.103718_bib0038) 2004; 31
Vrugt (10.1016/j.advwatres.2020.103718_bib0056) 2007; 104
Giuliani (10.1016/j.advwatres.2020.103718_bib0021) 2014; 50
10.1016/j.advwatres.2020.103718_bib0063
California Energy Commission (10.1016/j.advwatres.2020.103718_bib0007) 2018
Beyer (10.1016/j.advwatres.2020.103718_bib0002) 2007; 196
Giuliani (10.1016/j.advwatres.2020.103718_bib0020) 2016; 142
Steinbach (10.1016/j.advwatres.2020.103718_bib0052) 2001; 43
Deb (10.1016/j.advwatres.2020.103718_bib0013) 2014; 18
10.1016/j.advwatres.2020.103718_bib0027
Boudhar (10.1016/j.advwatres.2020.103718_bib0005) 2016; 61
Zhang (10.1016/j.advwatres.2020.103718_bib0061) 2009
O’Connell (10.1016/j.advwatres.2020.103718_bib0040) 2019
San Francisco Public Utilities Commission (10.1016/j.advwatres.2020.103718_bib0050) 2016
Deb (10.1016/j.advwatres.2020.103718_bib0014) 2005; 13
Van Veldhuizen (10.1016/j.advwatres.2020.103718_bib0053) 1998
Powell (10.1016/j.advwatres.2020.103718_bib0043) 2019; 275
Reed (10.1016/j.advwatres.2020.103718_bib0047) 2003; 39
Better (10.1016/j.advwatres.2020.103718_bib0001) 2008; vol. 7
Quinn (10.1016/j.advwatres.2020.103718_bib0045) 2019; 55
Giagkiozis (10.1016/j.advwatres.2020.103718_bib0018) 2014; 22
Gopalakrishnan (10.1016/j.advwatres.2020.103718_bib0024) 2003; 5
Hadka (10.1016/j.advwatres.2020.103718_bib0025) 2012; 20
Rosenstein (10.1016/j.advwatres.2020.103718_bib0049) 2001; 17
Deb (10.1016/j.advwatres.2020.103718_bib0015) 2002
Nicklow (10.1016/j.advwatres.2020.103718_bib0039) 2010; 136
Chan Hilton (10.1016/j.advwatres.2020.103718_bib0008) 2005; 131
Kasprzyk (10.1016/j.advwatres.2020.103718_bib0029) 2009; 45
References_xml – volume: 142
  start-page: 04015050
  year: 2016
  ident: bib0020
  article-title: Curses, tradeoffs, and scalable management: advancing evolutionary multiobjective direct policy search to improve water reservoir operations
  publication-title: J. Water Resour. Plann. Manage.
– volume: 7
  start-page: 77
  year: 1952
  end-page: 91
  ident: bib0035
  article-title: PORTFOLIO SELECTION*
  publication-title: J. Finance
– volume: 13
  start-page: 1054
  year: 2009
  end-page: 1074
  ident: bib0012
  article-title: Reliability-based optimization using evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 104
  start-page: 708
  year: 2007
  end-page: 711
  ident: bib0056
  article-title: Improved evolutionary optimization from genetically adaptive multimethod search
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 39
  year: 2003
  ident: bib0031
  article-title: Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems
  publication-title: Water Resour. Res.
– year: 2016
  ident: bib0059
  article-title: A diagnostic assessment of evolutionary algorithms for multi-objective surface water reservoir control
  publication-title: Adv Water Resour.
– year: 2009
  ident: bib0062
  article-title: Final Report on CEC’09 MOEA Competition
  publication-title: Technical Report
– volume: 61
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0005
  article-title: Energy fluxes and melt rate of a seasonal snow cover in the Moroccan High Atlas
  publication-title: Hydrol. Sci. J.
– year: 2002
  ident: bib0022
  article-title: The Design of Innovation: Lessons from and for Competent Genetic Algorithms
– volume: 196
  start-page: 3190
  year: 2007
  end-page: 3218
  ident: bib0002
  article-title: Robust optimization - a comprehensive survey
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2012
  ident: bib0037
  article-title: Reference point based multi-objective optimization through decomposition
  publication-title: 2012 IEEE Congress on Evolutionary Computation, CEC 2012
– volume: 144
  start-page: 05018002
  year: 2018
  ident: bib0016
  article-title: Comparing model-based and model-free streamflow simulation approaches to improve hydropower reservoir operations
  publication-title: J. Water Resour. Plann. Manage.
– volume: 44
  start-page: 597
  year: 2019
  end-page: 611
  ident: bib0044
  article-title: User-preference based decomposition in MOEA/D without using an ideal point
  publication-title: Swarm Evol. Comput.
– reference: Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., Da Fonseca, V. G., 2003. Performance assessment of multiobjective optimizers: an analysis and review. doi:
– volume: 22
  start-page: 651
  year: 2014
  end-page: 678
  ident: bib0018
  article-title: Pareto front estimation for decision making
  publication-title: Evol. Comput.
– volume: vol. II
  start-page: 11011184
  year: 2018
  ident: bib0023
  article-title: Southwest. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment
– volume: 55
  start-page: 5962
  year: 2019
  end-page: 5984
  ident: bib0045
  article-title: What is controlling our control rules? Opening the black box of multireservoir operating policies using time-varying sensitivity analysis
  publication-title: Water Resour. Res.
– volume: 13
  start-page: 501
  year: 2005
  end-page: 525
  ident: bib0014
  article-title: Evaluating the ϵ-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions
  publication-title: Evol. Comput.
– volume: 34
  start-page: 87
  year: 2012
  end-page: 104
  ident: bib0028
  article-title: Many-objective de Novo water supply portfolio planning under deep uncertainty
  publication-title: Environ. Modell. Softw.
– volume: 19
  start-page: 6334
  year: 2006
  end-page: 6352
  ident: bib0036
  article-title: Snowpack variations in the Central Andes of Argentina and Chile, 1951–2005: large-scale atmospheric influences and implications for water resources in the region
  publication-title: J. Clim.
– volume: 144
  year: 2018
  ident: bib0033
  article-title: Lessons from California’s 2012–2016 drought
  publication-title: J. Water Resour. Plann. Manage.
– volume: 13
  start-page: 243
  year: 2009
  ident: bib0057
  article-title: Self-adaptive multimethod search for global optimization in real-parameter spaces
  publication-title: IEEE Trans. Evol. Comput.
– volume: 99
  start-page: 299
  year: 2018
  end-page: 312
  ident: bib0055
  article-title: Opportunities for joint water-energy management: sensitivity of the 2010 western u.s. electricity grid operations to climate oscillations
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 5
  start-page: 11
  year: 2003
  end-page: 25
  ident: bib0024
  article-title: Optimal sampling in a noisy genetic algorithm for risk-based remediation design
  publication-title: J. Hydroinf.
– volume: 275
  start-page: 795
  year: 2019
  end-page: 821
  ident: bib0043
  article-title: A unified framework for stochastic optimization
  publication-title: Eur. J. Oper. Res.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib0013
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 136
  start-page: 412
  year: 2010
  end-page: 432
  ident: bib0039
  article-title: State of the art for genetic algorithms and beyond in water resources planning and management
  publication-title: J. Water Resour. Plann. Manage.
– start-page: 203
  year: 2009
  end-page: 208
  ident: bib0061
  article-title: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances
  publication-title: 2009 IEEE Congress on Evolutionary Computation, CEC 2009
– volume: vol. 7
  start-page: 571
  year: 2008
  end-page: 587
  ident: bib0001
  article-title: Simulation optimization: applications in risk management
  publication-title: International Journal of Information Technology and Decision Making
– volume: 131
  start-page: 25
  year: 2005
  end-page: 34
  ident: bib0008
  article-title: Groundwater remediation design under uncertainty using genetic algorithms
  publication-title: J. Water Resour. Plann. Manage.
– volume: 31
  start-page: 1
  year: 2004
  end-page: 20
  ident: bib0038
  article-title: Financial planning via multi-stage stochastic optimization
  publication-title: Comput. Oper. Res.
– volume: 51
  start-page: 2412
  year: 2015
  end-page: 2427
  ident: bib0030
  article-title: Natural gas price uncertainty and the cost-effectiveness of hedging against low hydropower revenues caused by drought
  publication-title: Water Resour. Res.
– year: 2018
  ident: bib0007
  article-title: Toward A Clean Energy Future, 2018 Integrated Energy Policy Report Update Volume I
  publication-title: Technical Report
– volume: 5
  start-page: 11043
  year: 2017
  end-page: 11053
  ident: bib0041
  article-title: Pareto dominance-based algorithms with ranking methods for many-objective optimization
  publication-title: IEEE Access
– volume: 39
  year: 2003
  ident: bib0047
  article-title: Simplifying multiobjective optimization: an automated design methodology for the nondominated sorted genetic algorithm-II
  publication-title: Water Resour. Res.
– volume: 36
  start-page: 3043
  year: 2000
  end-page: 3052
  ident: bib0051
  article-title: Risk-based in situ bioremediation design using a noisy genetic algorithm
  publication-title: Water Resour. Res.
– volume: 21
  start-page: 231
  year: 2013
  end-page: 259
  ident: bib0026
  article-title: Borg: an auto-adaptive many-objective evolutionary computing framework
  publication-title: Evol. Comput.
– volume: 2
  start-page: 206
  year: 2019
  end-page: 213
  ident: bib0032
  article-title: Implications of water constraints on electricity capacity expansion in the united states
  publication-title: Nat. Sustain.
– year: 2019
  ident: bib0040
  article-title: Sensitivity of Western U.S. Power system dynamics to droughts compounded with fuel price variability
  publication-title: Appl. Energy
– year: 2002
  ident: bib0015
  article-title: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
  publication-title: Technical Report 2
– volume: vol. II
  start-page: 638
  year: 2018
  end-page: 668
  ident: bib0010
  article-title: Sector interactions, multiple stressors, and complex systems
  publication-title: Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment
– year: 2015
  ident: bib0017
  article-title: Mitigating hydrologic financial risk in hydropower generation using index-based financial instruments
  publication-title: Water Resour. Econ.
– volume: 144
  year: 2018
  ident: bib0003
  article-title: Partitioning the impacts of streamflow and evaporation uncertainty on the operations of multipurpose reservoirs in arid regions
  publication-title: J. Water Resour. Plann. Manage.
– volume: 50
  start-page: 3355
  year: 2014
  end-page: 3377
  ident: bib0021
  article-title: Many-objective reservoir policy identification and refinement to reduce policy inertia and myopia in water management
  publication-title: Water Resour. Res.
– reference: (2020). doi:
– year: 2016
  ident: bib0050
  article-title: Comprehensive Annual Financial Report, Fiscal Years Ended June 30, 2016 and 2015
  publication-title: Technical Report
– volume: 73
  start-page: 27
  year: 2015
  end-page: 43
  ident: bib0058
  article-title: Confronting tipping points: can multi-objective evolutionary algorithms discover pollution control tradeoffs given environmental thresholds?
  publication-title: Environ. Modell. Softw.
– volume: 45
  year: 2009
  ident: bib0029
  article-title: Managing population and drought risks using many-objective water portfolio planning under uncertainty
  publication-title: Water Resour. Res.
– year: 2007
  ident: bib0011
  article-title: Evolutionary algorithms for solving multi-objective problems second edition genetic and evolutionary computation series series editors selected titles from this series
– volume: 43
  start-page: 31
  year: 2001
  end-page: 85
  ident: bib0052
  article-title: Markowitz revisited: mean-variance models in financial portfolio analysis
  publication-title: SIAM Rev.
– volume: 20
  start-page: 423
  year: 2012
  end-page: 452
  ident: bib0025
  article-title: Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization
  publication-title: Evol. Comput.
– year: 2013
  ident: bib0048
  article-title: Evolutionary multiobjective optimization in water resources: the past, present, and future
  publication-title: iEMSs 2012 - Managing Resources of a Limited Planet: Proceedings of the 6th Biennial Meeting of the International Environmental Modelling and Software Society
– volume: 66
  start-page: 1545
  year: 2011
  end-page: 1578
  ident: bib0004
  article-title: A unified theory of Tobin’s
  publication-title: J. Finance
– reference: .
– year: 1998
  ident: bib0054
  article-title: Multiobjective Evolutionary Algorithm Research: A History and Analysis
  publication-title: Technical Report
– reference: Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R., 2013. Hyper-heuristics: a survey of the state of the art. doi:
– start-page: 605
  year: 2019
  end-page: 616
  ident: bib0019
  article-title: Dynamic, multi-objective optimal design and operation of water-energy systems for small, off-grid islands
  publication-title: Appl. Energy
– volume: 17
  start-page: 839
  year: 2001
  end-page: 846
  ident: bib0049
  article-title: Robot weightlifting by direct policy search
  publication-title: Int. Joint Conf. Artif.Intell.
– year: 1998
  ident: bib0053
  article-title: Evolutionary Computation and Convergence to a Pareto Front
  publication-title: Technical Report
– reference: Hamilton, A. L., Characklis, G. W., Reed, P. M., 2020. Managing financial risk tradeoffs for hydropower generation using snowpack-based index contracts. Preprint on
– reference: Maier, Holger R., Jain, A., Dandy, G.C., Sudheer, K.P., 2014. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Elsevier.
– volume: 92
  start-page: 125
  year: 2017
  end-page: 141
  ident: bib0046
  article-title: Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points
  publication-title: Environ. Modell. Softw.
– volume: 17
  start-page: 321
  year: 2013
  end-page: 344
  ident: bib0042
  article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: bib0009
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0060
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– ident: 10.1016/j.advwatres.2020.103718_bib0006
  doi: 10.1057/jors.2013.71
– volume: 45
  issue: 12
  year: 2009
  ident: 10.1016/j.advwatres.2020.103718_bib0029
  article-title: Managing population and drought risks using many-objective water portfolio planning under uncertainty
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008121
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.advwatres.2020.103718_bib0013
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– year: 2015
  ident: 10.1016/j.advwatres.2020.103718_bib0017
  article-title: Mitigating hydrologic financial risk in hydropower generation using index-based financial instruments
  publication-title: Water Resour. Econ.
  doi: 10.1016/j.wre.2015.04.001
– year: 2013
  ident: 10.1016/j.advwatres.2020.103718_bib0048
  article-title: Evolutionary multiobjective optimization in water resources: the past, present, and future
– volume: vol. 7
  start-page: 571
  year: 2008
  ident: 10.1016/j.advwatres.2020.103718_bib0001
  article-title: Simulation optimization: applications in risk management
– volume: 51
  start-page: 2412
  year: 2015
  ident: 10.1016/j.advwatres.2020.103718_bib0030
  article-title: Natural gas price uncertainty and the cost-effectiveness of hedging against low hydropower revenues caused by drought
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016533
– volume: 31
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.advwatres.2020.103718_bib0038
  article-title: Financial planning via multi-stage stochastic optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(02)00141-7
– ident: 10.1016/j.advwatres.2020.103718_bib0034
– volume: 142
  start-page: 04015050
  issue: 2
  year: 2016
  ident: 10.1016/j.advwatres.2020.103718_bib0020
  article-title: Curses, tradeoffs, and scalable management: advancing evolutionary multiobjective direct policy search to improve water reservoir operations
  publication-title: J. Water Resour. Plann. Manage.
  doi: 10.1061/(ASCE)WR.1943-5452.0000570
– volume: 43
  start-page: 31
  issue: 1
  year: 2001
  ident: 10.1016/j.advwatres.2020.103718_bib0052
  article-title: Markowitz revisited: mean-variance models in financial portfolio analysis
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144500376650
– volume: 19
  start-page: 6334
  issue: 24
  year: 2006
  ident: 10.1016/j.advwatres.2020.103718_bib0036
  article-title: Snowpack variations in the Central Andes of Argentina and Chile, 1951–2005: large-scale atmospheric influences and implications for water resources in the region
  publication-title: J. Clim.
  doi: 10.1175/JCLI3969.1
– volume: 144
  start-page: 05018002
  issue: 3
  year: 2018
  ident: 10.1016/j.advwatres.2020.103718_bib0016
  article-title: Comparing model-based and model-free streamflow simulation approaches to improve hydropower reservoir operations
  publication-title: J. Water Resour. Plann. Manage.
  doi: 10.1061/(ASCE)WR.1943-5452.0000860
– volume: 55
  start-page: 5962
  issue: 7
  year: 2019
  ident: 10.1016/j.advwatres.2020.103718_bib0045
  article-title: What is controlling our control rules? Opening the black box of multireservoir operating policies using time-varying sensitivity analysis
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR024177
– volume: 44
  start-page: 597
  year: 2019
  ident: 10.1016/j.advwatres.2020.103718_bib0044
  article-title: User-preference based decomposition in MOEA/D without using an ideal point
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.002
– volume: 17
  start-page: 839
  year: 2001
  ident: 10.1016/j.advwatres.2020.103718_bib0049
  article-title: Robot weightlifting by direct policy search
  publication-title: Int. Joint Conf. Artif.Intell.
– ident: 10.1016/j.advwatres.2020.103718_bib0027
  doi: 10.1002/essoar.10502068.1
– year: 2019
  ident: 10.1016/j.advwatres.2020.103718_bib0040
  article-title: Sensitivity of Western U.S. Power system dynamics to droughts compounded with fuel price variability
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.156
– year: 2007
  ident: 10.1016/j.advwatres.2020.103718_bib0011
– year: 1998
  ident: 10.1016/j.advwatres.2020.103718_bib0054
  article-title: Multiobjective Evolutionary Algorithm Research: A History and Analysis
– volume: 2
  start-page: 206
  issue: 3
  year: 2019
  ident: 10.1016/j.advwatres.2020.103718_bib0032
  article-title: Implications of water constraints on electricity capacity expansion in the united states
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0235-0
– year: 2002
  ident: 10.1016/j.advwatres.2020.103718_bib0015
  article-title: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
– year: 1998
  ident: 10.1016/j.advwatres.2020.103718_bib0053
  article-title: Evolutionary Computation and Convergence to a Pareto Front
– volume: vol. II
  start-page: 638
  year: 2018
  ident: 10.1016/j.advwatres.2020.103718_bib0010
  article-title: Sector interactions, multiple stressors, and complex systems
– volume: 99
  start-page: 299
  issue: 2
  year: 2018
  ident: 10.1016/j.advwatres.2020.103718_bib0055
  article-title: Opportunities for joint water-energy management: sensitivity of the 2010 western u.s. electricity grid operations to climate oscillations
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-16-0253.1
– volume: 136
  start-page: 412
  issue: 4
  year: 2010
  ident: 10.1016/j.advwatres.2020.103718_bib0039
  article-title: State of the art for genetic algorithms and beyond in water resources planning and management
  publication-title: J. Water Resour. Plann. Manage.
  doi: 10.1061/(ASCE)WR.1943-5452.0000053
– volume: 13
  start-page: 1054
  issue: 5
  year: 2009
  ident: 10.1016/j.advwatres.2020.103718_bib0012
  article-title: Reliability-based optimization using evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014361
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.advwatres.2020.103718_bib0009
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 275
  start-page: 795
  year: 2019
  ident: 10.1016/j.advwatres.2020.103718_bib0043
  article-title: A unified framework for stochastic optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.07.014
– volume: 144
  issue: 10
  year: 2018
  ident: 10.1016/j.advwatres.2020.103718_bib0033
  article-title: Lessons from California’s 2012–2016 drought
  publication-title: J. Water Resour. Plann. Manage.
  doi: 10.1061/(ASCE)WR.1943-5452.0000984
– year: 2016
  ident: 10.1016/j.advwatres.2020.103718_bib0050
  article-title: Comprehensive Annual Financial Report, Fiscal Years Ended June 30, 2016 and 2015
– volume: 144
  issue: 7
  year: 2018
  ident: 10.1016/j.advwatres.2020.103718_bib0003
  article-title: Partitioning the impacts of streamflow and evaporation uncertainty on the operations of multipurpose reservoirs in arid regions
  publication-title: J. Water Resour. Plann. Manage.
  doi: 10.1061/(ASCE)WR.1943-5452.0000945
– volume: 5
  start-page: 11
  issue: 1
  year: 2003
  ident: 10.1016/j.advwatres.2020.103718_bib0024
  article-title: Optimal sampling in a noisy genetic algorithm for risk-based remediation design
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2003.0002
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.advwatres.2020.103718_bib0060
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 34
  start-page: 87
  year: 2012
  ident: 10.1016/j.advwatres.2020.103718_bib0028
  article-title: Many-objective de Novo water supply portfolio planning under deep uncertainty
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2011.04.003
– volume: 39
  issue: 6
  year: 2003
  ident: 10.1016/j.advwatres.2020.103718_bib0031
  article-title: Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002148
– volume: 36
  start-page: 3043
  issue: 10
  year: 2000
  ident: 10.1016/j.advwatres.2020.103718_bib0051
  article-title: Risk-based in situ bioremediation design using a noisy genetic algorithm
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900191
– year: 2012
  ident: 10.1016/j.advwatres.2020.103718_bib0037
  article-title: Reference point based multi-objective optimization through decomposition
– volume: 104
  start-page: 708
  issue: 3
  year: 2007
  ident: 10.1016/j.advwatres.2020.103718_bib0056
  article-title: Improved evolutionary optimization from genetically adaptive multimethod search
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0610471104
– volume: 13
  start-page: 501
  issue: 4
  year: 2005
  ident: 10.1016/j.advwatres.2020.103718_bib0014
  article-title: Evaluating the ϵ-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions
  publication-title: Evol. Comput.
  doi: 10.1162/106365605774666895
– volume: 92
  start-page: 125
  year: 2017
  ident: 10.1016/j.advwatres.2020.103718_bib0046
  article-title: Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2017.02.017
– year: 2009
  ident: 10.1016/j.advwatres.2020.103718_bib0062
  article-title: Final Report on CEC’09 MOEA Competition
– ident: 10.1016/j.advwatres.2020.103718_bib0063
  doi: 10.1109/TEVC.2003.810758
– volume: 196
  start-page: 3190
  issue: 33–34
  year: 2007
  ident: 10.1016/j.advwatres.2020.103718_bib0002
  article-title: Robust optimization - a comprehensive survey
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.03.003
– volume: 22
  start-page: 651
  issue: 4
  year: 2014
  ident: 10.1016/j.advwatres.2020.103718_bib0018
  article-title: Pareto front estimation for decision making
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00128
– year: 2018
  ident: 10.1016/j.advwatres.2020.103718_bib0007
  article-title: Toward A Clean Energy Future, 2018 Integrated Energy Policy Report Update Volume I
– volume: 50
  start-page: 3355
  issue: 4
  year: 2014
  ident: 10.1016/j.advwatres.2020.103718_bib0021
  article-title: Many-objective reservoir policy identification and refinement to reduce policy inertia and myopia in water management
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014700
– volume: 131
  start-page: 25
  issue: 1
  year: 2005
  ident: 10.1016/j.advwatres.2020.103718_bib0008
  article-title: Groundwater remediation design under uncertainty using genetic algorithms
  publication-title: J. Water Resour. Plann. Manage.
  doi: 10.1061/(ASCE)0733-9496(2005)131:1(25)
– volume: 66
  start-page: 1545
  issue: 5
  year: 2011
  ident: 10.1016/j.advwatres.2020.103718_bib0004
  article-title: A unified theory of Tobin’s q, corporate investment, financing, and risk management
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.2011.01681.x
– year: 2016
  ident: 10.1016/j.advwatres.2020.103718_bib0059
  article-title: A diagnostic assessment of evolutionary algorithms for multi-objective surface water reservoir control
  publication-title: Adv Water Resour.
  doi: 10.1016/j.advwatres.2016.04.006
– volume: 20
  start-page: 423
  issue: 3
  year: 2012
  ident: 10.1016/j.advwatres.2020.103718_bib0025
  article-title: Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00053
– volume: 13
  start-page: 243
  issue: 2
  year: 2009
  ident: 10.1016/j.advwatres.2020.103718_bib0057
  article-title: Self-adaptive multimethod search for global optimization in real-parameter spaces
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.924428
– volume: 39
  issue: 7
  year: 2003
  ident: 10.1016/j.advwatres.2020.103718_bib0047
  article-title: Simplifying multiobjective optimization: an automated design methodology for the nondominated sorted genetic algorithm-II
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001483
– volume: 73
  start-page: 27
  year: 2015
  ident: 10.1016/j.advwatres.2020.103718_bib0058
  article-title: Confronting tipping points: can multi-objective evolutionary algorithms discover pollution control tradeoffs given environmental thresholds?
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2015.07.020
– start-page: 605
  year: 2019
  ident: 10.1016/j.advwatres.2020.103718_bib0019
  article-title: Dynamic, multi-objective optimal design and operation of water-energy systems for small, off-grid islands
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.05.084
– start-page: 203
  year: 2009
  ident: 10.1016/j.advwatres.2020.103718_bib0061
  article-title: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances
– volume: 7
  start-page: 77
  issue: 1
  year: 1952
  ident: 10.1016/j.advwatres.2020.103718_bib0035
  article-title: PORTFOLIO SELECTION*
  publication-title: J. Finance
– year: 2002
  ident: 10.1016/j.advwatres.2020.103718_bib0022
– volume: 17
  start-page: 321
  issue: 3
  year: 2013
  ident: 10.1016/j.advwatres.2020.103718_bib0042
  article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2196800
– volume: 61
  start-page: 1
  issue: 5
  year: 2016
  ident: 10.1016/j.advwatres.2020.103718_bib0005
  article-title: Energy fluxes and melt rate of a seasonal snow cover in the Moroccan High Atlas
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2014.965173
– volume: vol. II
  start-page: 11011184
  year: 2018
  ident: 10.1016/j.advwatres.2020.103718_bib0023
– volume: 5
  start-page: 11043
  year: 2017
  ident: 10.1016/j.advwatres.2020.103718_bib0041
  article-title: Pareto dominance-based algorithms with ranking methods for many-objective optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2716779
– volume: 21
  start-page: 231
  issue: 2
  year: 2013
  ident: 10.1016/j.advwatres.2020.103718_bib0026
  article-title: Borg: an auto-adaptive many-objective evolutionary computing framework
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00075
SSID ssj0008472
Score 2.4638178
Snippet •Benchmarking multi-objective financial risk portfolios for snow-driven hydropower.•Self-adaptive search can more effectively capture complex financial risk...
Hydropower generation in the Hetch Hetchy Power System is strongly tied to snowmelt dynamics in the central Sierra Nevada and consequently is particularly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103718
SubjectTerms Algorithm benchmarking
algorithms
diagnostic techniques
Direct policy search
Evolutionary algorithms
Financial risk management
geometry
Hydropower
issues and policy
Many objective optimization
mountains
risk
risk reduction
snowmelt
snowpack
water
water power
Title Can modern multi-objective evolutionary algorithms discover high-dimensional financial risk portfolio tradeoffs for snow-dominated water-energy systems?
URI https://dx.doi.org/10.1016/j.advwatres.2020.103718
https://www.proquest.com/docview/2986086983
Volume 145
WOSCitedRecordID wos000579002600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9657
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008472
  issn: 0309-1708
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ZbtNAFB2Flgd4QKyiFNAg8WZN5Hh3X1AUlU2lQrSIvFmejTpN7Shb-yn8Ez_FncWTBVBBiBcrsj25su_xzJmZe89F6KUMaQmTE0lCJhOiUiFJGcaC0JjyRCYMWKxOFD5Kj4-z4TD_2Ol8b3NhluO0rrOrq3zyX10N58DZKnX2L9zt_hROwG9wOhzB7XD8I8cP4Iu9MBXOdLQgaejI9GqeWFrLKlSuHH9tptX87GKmdmmYCuX0lHgx4Urw34h1eNIJcugYdEXWZTOuGlVagotGSi3n4M3q5pLwRoXVKAZ7CccpESat0GhFz7YiCPsm9kBH4-rbvandSHAk_81iYqltc1bVlXfSXVtur1w1bB2R6R25i5-EsNxYFR849z64KwMtTn1uK8Db7BzvS3d95QOmub2NlQ-XkrOKf9JpYKq-Q-qbTl2YXj1LA5InRgnbdftGxvKnIcSsZoy6JV_C48Ozd5VtLU5gR4pNfe4TZVEZDPTsMotuoN0gjXMYJXb77w6H7x0xACLgNrVUg41ww1-a-x1Z2qINmgud3kV37CQG9w347qGOqO-j22vSlg_QN4AhNjDEWzDE6zDEKxjiFoZ4G4bYwRArGGIHQ-xgiAGGeBOGeB2G2MLw1UP0-fXh6eAtsVVACAOuPCfMD7ifZyWjMacUpu85D2nMpMjTgEcwPHLGIu5LJso8joKg7NEedEsJkz0eAvsPH6GduqnFY4TLLJVMqUNJQSMu04xGqc94mJWUxwDOPZS0r7tgViJfVWoZF20s5KhwfiqUnwrjpz3ku4YToxJzfZOD1p-FJbuGxBYAxOsbv2gRUMBwoPb4ylo0C7gpzxI_S_IsfPIvBvbRrdUX9xTtzKcL8QzdZMt5NZs-t8D-AXFm7PI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+modern+multi-objective+evolutionary+algorithms+discover+high-dimensional+financial+risk+portfolio+tradeoffs+for+snow-dominated+water-energy+systems%3F&rft.jtitle=Advances+in+water+resources&rft.au=Gupta%2C+Rohini+S.&rft.au=Hamilton%2C+Andrew+L.&rft.au=Reed%2C+Patrick+M.&rft.au=Characklis%2C+Gregory+W.&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0309-1708&rft.eissn=1872-9657&rft.volume=145&rft_id=info:doi/10.1016%2Fj.advwatres.2020.103718&rft.externalDocID=S0309170820301184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-1708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-1708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-1708&client=summon