Properties of the stochastic approximation EM algorithm with mini-batch sampling
To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation–Maximization algorithm for general latent variable models is proposed. For exponential models the algorithm is shown to be convergent under classical conditions as the number of...
Uložené v:
| Vydané v: | Statistics and computing Ročník 30; číslo 6; s. 1725 - 1739 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2020
Springer Nature B.V Springer Verlag (Germany) |
| Predmet: | |
| ISSN: | 0960-3174, 1573-1375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation–Maximization algorithm for general latent variable models is proposed. For exponential models the algorithm is shown to be convergent under classical conditions as the number of iterations increases. Numerical experiments illustrate the performance of the mini-batch algorithm in various models. In particular, we highlight that mini-batch sampling results in an important speed-up of the convergence of the sequence of estimators generated by the algorithm. Moreover, insights on the effect of the mini-batch size on the limit distribution are presented. Finally, we illustrate how to use mini-batch sampling in practice to improve results when a constraint on the computing time is given. |
|---|---|
| AbstractList | To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation–Maximization algorithm for general latent variable models is proposed. For exponential models the algorithm is shown to be convergent under classical conditions as the number of iterations increases. Numerical experiments illustrate the performance of the mini-batch algorithm in various models. In particular, we highlight that mini-batch sampling results in an important speed-up of the convergence of the sequence of estimators generated by the algorithm. Moreover, insights on the effect of the mini-batch size on the limit distribution are presented. Finally, we illustrate how to use mini-batch sampling in practice to improve results when a constraint on the computing time is given. To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation-Maximization algorithm for general latent variable models is proposed. For exponential models the algorithm is shown to be convergent under classicalconditions as the number of iterations increases. Numerical experiments illustrate the performance of the mini-batch algorithm in various models.In particular, we highlight that mini-batch sampling results in an important speed-up of the convergence of the sequence of estimators generated by the algorithm. Moreover, insights on the effect of the mini-batch size on the limit distribution are presented. Finally, we illustrate how to use mini-batch sampling in practice to improve results when a constraint on the computing time is given. |
| Author | Matias, Catherine Rebafka, Tabea Kuhn, Estelle |
| Author_xml | – sequence: 1 givenname: Estelle surname: Kuhn fullname: Kuhn, Estelle organization: MaIAGE, INRAE, Université Paris-Saclay – sequence: 2 givenname: Catherine surname: Matias fullname: Matias, Catherine organization: Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université, Université de Paris, CNRS – sequence: 3 givenname: Tabea orcidid: 0000-0002-8998-7109 surname: Rebafka fullname: Rebafka, Tabea email: tabea.rebafka@upmc.fr organization: Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université, Université de Paris, CNRS |
| BackLink | https://hal.science/hal-02189215$$DView record in HAL |
| BookMark | eNp9kM1OwzAQhC0EEm3hBThZ4sTBsLbjJD4iVChSET3A2XJSt3GVxsE2f2-P2yCQOHDxStZ8s7MzRoed6wxCZxQuKUBxFShljBFgQEDKvCRwgEZUFJxQXohDNAKZA-G0yI7ROIQNAKU5z0ZosfCuNz5aE7Bb4dgYHKKrGx2irbHue-8-7FZH6zo8fcC6XTtvY7PF7-nFW9tZUulYNzjobd_abn2Cjla6Deb0e07Q8-306WZG5o939zfXc1JzWURSlaKSOZUlZyaXbFnlZinTEbpioqScLfNVYTiFQhgjsrzSmS4zrrlmohZGGj5BF4Nvo1vV-5TRfyqnrZpdz9XuDxgtJaPijSft-aBN17y8mhDVxr36LsVTLBPAqRTlTsUGVe1dCN6sfmwpqF3Lamg5OYPat6wgQeUfqLZxX1f02rb_o3xAQ9rTrY3_TfUP9QUkZpI7 |
| CitedBy_id | crossref_primary_10_1016_j_jspi_2024_106231 crossref_primary_10_1016_j_measurement_2025_118287 crossref_primary_10_1093_cz_zoae052 crossref_primary_10_1016_j_apm_2023_08_016 crossref_primary_10_1101_gr_277525_122 crossref_primary_10_1111_anzs_12356 crossref_primary_10_3390_a15030078 |
| Cites_doi | 10.1198/jcgs.2011.09109 10.1016/j.csda.2004.07.002 10.1111/j.1467-9868.2009.00698.x 10.1007/978-1-4757-4145-2 10.1111/j.1467-9868.2007.00574.x 10.1090/S0025-5718-2015-02952-4 10.1007/BF01908075 10.3150/09-BEJ229 10.1109/34.291440 10.1051/proc/201447004 10.1239/jap/1044476831 10.1007/s11222-019-09919-4 10.1137/S0363012902417267 10.1214/aos/1018031103 10.1051/ps:2004007 10.1111/j.2517-6161.1995.tb02037.x 10.1111/j.2517-6161.1984.tb01296.x 10.1111/j.2517-6161.1977.tb01600.x 10.3115/1620754.1620843 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION JQ2 1XC VOOES |
| DOI | 10.1007/s11222-020-09968-0 |
| DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1573-1375 |
| EndPage | 1739 |
| ExternalDocumentID | oai:HAL:hal-02189215v3 10_1007_s11222_020_09968_0 |
| GrantInformation_xml | – fundername: Agence Nationale de la Recherche grantid: ANR-18-CE02-0010 funderid: http://dx.doi.org/10.13039/501100001665 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 1XC VOOES |
| ID | FETCH-LOGICAL-c397t-b85b9619832e692db6ed9112ab258132d6f7e31075ee546ba4a843a3a25c5e9e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566300600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-3174 |
| IngestDate | Sat Nov 22 06:21:39 EST 2025 Sun Nov 09 08:12:26 EST 2025 Tue Nov 18 22:32:52 EST 2025 Sat Nov 29 03:32:43 EST 2025 Fri Feb 21 02:34:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Stochastic approximation Mini-batch sampling 62F12 65C60 EM algorithm Monte Carlo Markov chain stochastic approximation mini-batch sampling Monte Carlo Markov chain Mathematics Subject Classification 65C60 · 62F12 |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-b85b9619832e692db6ed9112ab258132d6f7e31075ee546ba4a843a3a25c5e9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8998-7109 0000-0001-6665-2421 0000-0002-1236-8190 |
| OpenAccessLink | https://hal.science/hal-02189215 |
| PQID | 2450319583 |
| PQPubID | 2043829 |
| PageCount | 15 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02189215v3 proquest_journals_2450319583 crossref_primary_10_1007_s11222_020_09968_0 crossref_citationtrail_10_1007_s11222_020_09968_0 springer_journals_10_1007_s11222_020_09968_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Statistics and computing |
| PublicationTitleAbbrev | Stat Comput |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V Springer Verlag (Germany) |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag (Germany) |
| References | Hubert, Arabie (CR12) 1985; 2 Cappé (CR4) 2011; 20 Lange (CR18) 1995; 2 Davidian, Giltinan (CR6) 1995 Duchateau, Janssen (CR9) 2008 Matias, Robin (CR20) 2014; 47 CR19 Andrieu, Moulines, Priouret (CR3) 2005; 44 CR16 Cappé, Moulines (CR5) 2009; 71 Dempster, Laird, Rubin (CR8) 1977; 39 CR15 Robert, Casella (CR23) 2004 CR14 Neal, Hinton, Jordan (CR21) 1999 Hull (CR13) 1994; 16 Fort, Jourdain, Kuhn, Lelièvre, Stoltz (CR11) 2015; 84 Fort, Moulines, Roberts, Rosenthal (CR10) 2003; 40 Kuhn, Lavielle (CR17) 2005; 49 Titterington (CR24) 1984; 2 Allassonnière, Kuhn, Trouvé (CR2) 2010; 16 Allassonnière, Amit, Trouvé (CR1) 2007; 69 Delyon, Lavielle, Moulines (CR7) 1999; 27 Nguyen, Forbes, McLachlan (CR22) 2020 L Hubert (9968_CR12) 1985; 2 S Allassonnière (9968_CR1) 2007; 69 AP Dempster (9968_CR8) 1977; 39 G Fort (9968_CR11) 2015; 84 C Matias (9968_CR20) 2014; 47 E Kuhn (9968_CR17) 2005; 49 9968_CR16 9968_CR15 RM Neal (9968_CR21) 1999 L Duchateau (9968_CR9) 2008 DM Titterington (9968_CR24) 1984; 2 9968_CR19 O Cappé (9968_CR5) 2009; 71 CP Robert (9968_CR23) 2004 H Nguyen (9968_CR22) 2020 O Cappé (9968_CR4) 2011; 20 9968_CR14 K Lange (9968_CR18) 1995; 2 JJ Hull (9968_CR13) 1994; 16 S Allassonnière (9968_CR2) 2010; 16 M Davidian (9968_CR6) 1995 G Fort (9968_CR10) 2003; 40 C Andrieu (9968_CR3) 2005; 44 B Delyon (9968_CR7) 1999; 27 |
| References_xml | – volume: 20 start-page: 728 issue: 3 year: 2011 end-page: 749 ident: CR4 article-title: Online EM algorithm for hidden Markov models publication-title: J. Comput. Graph. Stat. doi: 10.1198/jcgs.2011.09109 – volume: 49 start-page: 1020 issue: 4 year: 2005 end-page: 1038 ident: CR17 article-title: Maximum likelihood estimation in nonlinear mixed effects models publication-title: Comput. Stat. Data Ann. doi: 10.1016/j.csda.2004.07.002 – volume: 71 start-page: 593 issue: 3 year: 2009 end-page: 613 ident: CR5 article-title: On-line expectation-maximization algorithm for latent data models publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2009.00698.x – ident: CR19 – year: 2004 ident: CR23 publication-title: Monte Carlo statistical methods doi: 10.1007/978-1-4757-4145-2 – volume: 2 start-page: 257 issue: 46 year: 1984 end-page: 267 ident: CR24 article-title: Recursive parameter estimation using incomplete data publication-title: J. R. Stat. Soc. Ser. B – volume: 69 start-page: 3 year: 2007 end-page: 29 ident: CR1 article-title: Toward a coherent statistical framework for dense deformable template estimation publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2007.00574.x – ident: CR14 – ident: CR15 – ident: CR16 – volume: 84 start-page: 2297 issue: 295 year: 2015 end-page: 2327 ident: CR11 article-title: Convergence of the Wang-Landau algorithm publication-title: Math. Comput. doi: 10.1090/S0025-5718-2015-02952-4 – volume: 2 start-page: 193 year: 1985 end-page: 218 ident: CR12 article-title: Comparing partitions publication-title: J. Classif. doi: 10.1007/BF01908075 – volume: 16 start-page: 641 issue: 3 year: 2010 end-page: 678 ident: CR2 article-title: Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study publication-title: Bernoulli doi: 10.3150/09-BEJ229 – volume: 16 start-page: 550 issue: 5 year: 1994 end-page: 554 ident: CR13 article-title: A database for handwritten text recognition research publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.291440 – volume: 47 start-page: 55 year: 2014 end-page: 74 ident: CR20 article-title: Modeling heterogeneity in random graphs through latent space models: a selective review publication-title: ESAIM Proce. Surv. doi: 10.1051/proc/201447004 – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 38 ident: CR8 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B – start-page: 355 year: 1999 end-page: 368 ident: CR21 article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants publication-title: Learning in Graphical Models – year: 2008 ident: CR9 publication-title: The Frailty Model – volume: 40 start-page: 123 year: 2003 end-page: 146 ident: CR10 article-title: On the geometric ergodicity of hybrid samplers publication-title: J. Appl. Probab. doi: 10.1239/jap/1044476831 – year: 2020 ident: CR22 publication-title: Mini-batch learning of exponential family finite mixture models doi: 10.1007/s11222-019-09919-4 – volume: 44 start-page: 283 issue: 1 year: 2005 end-page: 312 ident: CR3 article-title: Stability of stochastic approximation under verifiable conditions publication-title: SIAM J. Control. Optim. doi: 10.1137/S0363012902417267 – volume: 2 start-page: 425 issue: 57 year: 1995 end-page: 437 ident: CR18 article-title: A gradient algorithm locally equivalent to the EM algorithm publication-title: J. R. Stat. Soc. Ser. B – volume: 27 start-page: 94 issue: 1 year: 1999 end-page: 128 ident: CR7 article-title: Convergence of a stochastic approximation version of the EM algorithm publication-title: Ann. Stat. doi: 10.1214/aos/1018031103 – year: 1995 ident: CR6 publication-title: Nonlinear Models for Repeated Measurement Data – volume-title: Mini-batch learning of exponential family finite mixture models year: 2020 ident: 9968_CR22 doi: 10.1007/s11222-019-09919-4 – volume: 2 start-page: 193 year: 1985 ident: 9968_CR12 publication-title: J. Classif. doi: 10.1007/BF01908075 – volume: 27 start-page: 94 issue: 1 year: 1999 ident: 9968_CR7 publication-title: Ann. Stat. doi: 10.1214/aos/1018031103 – volume: 40 start-page: 123 year: 2003 ident: 9968_CR10 publication-title: J. Appl. Probab. doi: 10.1239/jap/1044476831 – ident: 9968_CR16 doi: 10.1051/ps:2004007 – volume: 16 start-page: 550 issue: 5 year: 1994 ident: 9968_CR13 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.291440 – volume: 69 start-page: 3 year: 2007 ident: 9968_CR1 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2007.00574.x – volume: 2 start-page: 425 issue: 57 year: 1995 ident: 9968_CR18 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1995.tb02037.x – start-page: 355 volume-title: Learning in Graphical Models year: 1999 ident: 9968_CR21 – volume: 84 start-page: 2297 issue: 295 year: 2015 ident: 9968_CR11 publication-title: Math. Comput. doi: 10.1090/S0025-5718-2015-02952-4 – volume: 49 start-page: 1020 issue: 4 year: 2005 ident: 9968_CR17 publication-title: Comput. Stat. Data Ann. doi: 10.1016/j.csda.2004.07.002 – volume: 2 start-page: 257 issue: 46 year: 1984 ident: 9968_CR24 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1984.tb01296.x – volume-title: Monte Carlo statistical methods year: 2004 ident: 9968_CR23 doi: 10.1007/978-1-4757-4145-2 – volume: 71 start-page: 593 issue: 3 year: 2009 ident: 9968_CR5 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2009.00698.x – volume: 16 start-page: 641 issue: 3 year: 2010 ident: 9968_CR2 publication-title: Bernoulli doi: 10.3150/09-BEJ229 – volume: 44 start-page: 283 issue: 1 year: 2005 ident: 9968_CR3 publication-title: SIAM J. Control. Optim. doi: 10.1137/S0363012902417267 – volume: 20 start-page: 728 issue: 3 year: 2011 ident: 9968_CR4 publication-title: J. Comput. Graph. Stat. doi: 10.1198/jcgs.2011.09109 – ident: 9968_CR14 – volume: 47 start-page: 55 year: 2014 ident: 9968_CR20 publication-title: ESAIM Proce. Surv. doi: 10.1051/proc/201447004 – ident: 9968_CR15 – volume-title: Nonlinear Models for Repeated Measurement Data year: 1995 ident: 9968_CR6 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 9968_CR8 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: 9968_CR19 doi: 10.3115/1620754.1620843 – volume-title: The Frailty Model year: 2008 ident: 9968_CR9 |
| SSID | ssj0011634 |
| Score | 2.3668633 |
| Snippet | To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation–Maximization algorithm for general... To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation-Maximization algorithm for general... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1725 |
| SubjectTerms | Algorithms Approximation Artificial Intelligence Computing time Convergence Markov chains Mathematical analysis Mathematics and Statistics Methodology Probability and Statistics in Computer Science Sampling Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs Statistics Theory |
| Title | Properties of the stochastic approximation EM algorithm with mini-batch sampling |
| URI | https://link.springer.com/article/10.1007/s11222-020-09968-0 https://www.proquest.com/docview/2450319583 https://hal.science/hal-02189215 |
| Volume | 30 |
| WOSCitedRecordID | wos000566300600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcBgHBgPEeClC3KDSliZtc5wQiANMEy9xq5I0e0jQoW0gfj52HxsgQIJrk6ZVHNtfEvszwJGTVjthE88GlJIjXOAZBM5ey_ZCJblpJonIik2EnU708KC6RVLYpIx2L68kM0s9T3ZroS_zaLuDqCaIPNyoL6G7i0gdr2_uZ3cHiDAy0ijE5mhhQlGkynw_xid3tDigYMgPSPPL5Wjmc85r__vbNVgtMCZr54tiHRZcWodaWb-BFepch5WrGWfrpA5Vwp05bfMGdLt0SD8mtlU26jHsxhAl2oGmdpYRkb8N86xHdnbF9GN_NB5OB0-MznUZ8ZV4Bo38gE00hayn_U24Oz-7Pb3wiuILnkWIMkWJSaNwd4Ua7wLFExO4BA0j14bLCLewSdALHWLDUDonRWC00JHwta-5tNIp529BJR2lbhuYT7E2vKmd3zNC2aZylhuFloNbh3A5akCrlEFsC2ZyKpDxGM85lWk2YxwkzmYzbjbgePbOc87L8WvvQxTtrCNRal-0L2N6RhhHIe559RuwV0o-LhR5EnMhKc9LRth8Ukp63vzzJ3f-1n0XqjRHeZbjHlSm4xe3D8v2FQU_PsgW-DunJfIW |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fjxIxEJ4oXnLcg3icF1HU5uKbtwl0293tIzEQjECIcoa3pu2WgwThAkjuz3dmf4AavURft93upjOd-drOfAPwzktnvHBp4CJKyRE-CiwC56DtZrGS3LbSVGTFJuLRKJlO1bhICtuW0e7llWRmqY_Jbm30ZQFtdxDVREmAG_UnAj0WBfJ9_vL1cHeACCMjjUJsjhYmFkWqzJ_H-MUdPZ5TMORPSPO3y9HM5_Rq__e3z-BpgTFZJ1eKc3jkV3WolfUbWLGc63A2PHC2butQJdyZ0zZfwHhMh_QbYltl6xnDbgxRopsbamcZEfn9Is96ZN0hM8vb9Waxm39jdK7LiK8ksGjk52xrKGR9dfscbnrdyYd-UBRfCBxClB1KTFqFuytc8T5SPLWRT9EwcmO5THALm0az2CM2jKX3UkTWCJOI0ISGSye98uElVFbrlX8BLKRYG94yPpxZoVxLecetQsvBnUe4nDSgXcpAu4KZnApkLPWRU5lmU-MgOptN3WrA-8M7dzkvx4O9r1C0h45Eqd3vDDQ9I4yjUIv2YQOapeR1sZC3mgtJeV4ywebrUtLH5r9_8uW_dX8Lp_3JcKAHH0efXkGV5ivPeGxCZbf57l_DidujEmzeZMr-Awe89Po |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xMaHyAKMD0QGbhfYGEa1jJ_EjGlRMg6rSYOLNsh2HIkFatQXx5-8uHy2bAGniNXacyHc-_86--x3ANy-d8cKlgYsoJUf4KLAInIOOy2IluW2nqSiKTcS9XnJ9rfrPsviLaPf6SrLMaSCWpnx6NEqzo3niWwf3tYBcH0Q4URKg074sqGgQ-eu_fs_uERBtFARSiNPR2sSiSpt5eYy_tqbFAQVGPkOd_1yUFvtPd_39f_4R1irsyY5LZdmABZ83Yb2u68CqZd6E1YsZl-ukCQ3CoyWd8yfo9-nwfkwsrGyYMezGED26gaF2VhCUP92W2ZDs9IKZu5vh-HY6uGd03suIxySwaPwHbGIolD2_2YSr7unl97OgKsoQOIQuU5SktAq9LrQEPlI8tZFP0WByY7lM0LVNoyz2iBlj6b0UkTXCJCI0oeHSSa98uAVL-TD328BCisHhbePDzArl2so7bhVaFO48wuikBZ1aHtpVjOVUOONOz7mWaTY1DqKL2dTtFhzM3hmVfB1v9t5HMc86EtX22fG5pmeEfRTiocewBbu1FuhqgU80F5Lyv2SCzYe11OfNr3_y8_91_wor_ZOuPv_R-7kDDZquMhFyF5am4we_Bx_cI-rA-Euh938A4LT93g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+the+stochastic+approximation+EM+algorithm+with+mini-batch+sampling&rft.jtitle=Statistics+and+computing&rft.au=Kuhn%2C+Estelle&rft.au=Matias%2C+Catherine&rft.au=Rebafka%2C+Tabea&rft.date=2020-11-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=30&rft.issue=6&rft.spage=1725&rft.epage=1739&rft_id=info:doi/10.1007%2Fs11222-020-09968-0&rft.externalDocID=10_1007_s11222_020_09968_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |