Predicting future patterns, processes, and their interactions: Benchmark calibration and validation procedures for forest landscape models

•Establishes consistent, generalizable standards for calibrating and validating LANDIS-II.•Initialization methods based on publicly available, full coverage datasets.•LANDIS-II can be calibrated to reliably simulate wildfire and biomass dynamics.•This study lowers the barrier to adapting forest land...

Full description

Saved in:
Bibliographic Details
Published in:Ecological modelling Vol. 473; p. 110099
Main Authors: Furniss, Tucker J., Hessburg, Paul F., Povak, Nicholas A., Salter, R. Brion, Wigmosta, Mark S.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2022
Subjects:
ISSN:0304-3800, 1872-7026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Establishes consistent, generalizable standards for calibrating and validating LANDIS-II.•Initialization methods based on publicly available, full coverage datasets.•LANDIS-II can be calibrated to reliably simulate wildfire and biomass dynamics.•This study lowers the barrier to adapting forest landscape models to new landscapes.•Aids independent assessment of the credibility of existing forest landscape models. Process-based Forest Landscape Models (FLMs) rely on first principles to simulate ecological patterns and processes, making them uniquely powerful for forecasting ecological dynamics under unprecedented climatic and disturbance regimes. Persistent challenges with any ecological forecasting model are calibration (“tuning” the model) and validation (“proofing” the model). As no actual future data exist from which to conduct a formal model validation, model credibility is established through numerous tests against empirical datasets and comparisons with other types of models. The purpose of this study was to establish more consistent and generalizable standards for calibrating and validating LANDIS-II, a widely used, open-source FLM. We reviewed methods gleaned from a wide variety of previous FLM studies and advance some new techniques for evaluating the credibility of the model outputs. We used publicly available data with full coverage for the United States (US) so that our methods will be generalizable to other landscapes in the US, and we developed an ecologically meaningful set of validation metrics for evaluating the credibility of new applications. We found that LANDIS-II could be calibrated to reliably simulate empirical vegetation-disturbance-climate dynamics in diverse, mountainous terrain and fire-prone landscapes of the eastern Cascade Mountains. We performed an inter-model validation between LANDIS-II and the Forest Vegetation Simulator (FVS), demonstrating consistent projections of biomass dynamics for all tree-dominated ecoregions in the study domain. Similarly, simulated fires reliably approximated the empirical fire event size and severity patch size distributions based on observed fire activity from 1984 to 2019. By establishing rigorous, transparent, and repeatable standards for calibrating and validating FLM dynamics, we sought to remove some of the barriers to adapting LANDIS-II to new landscapes and climates, facilitate further validation of existing models, and aid independent assessment of the credibility of forest landscape models.
AbstractList Process-based Forest Landscape Models (FLMs) rely on first principles to simulate ecological patterns and processes, making them uniquely powerful for forecasting ecological dynamics under unprecedented climatic and disturbance regimes. Persistent challenges with any ecological forecasting model are calibration (“tuning” the model) and validation (“proofing” the model). As no actual future data exist from which to conduct a formal model validation, model credibility is established through numerous tests against empirical datasets and comparisons with other types of models. The purpose of this study was to establish more consistent and generalizable standards for calibrating and validating LANDIS-II, a widely used, open-source FLM. We reviewed methods gleaned from a wide variety of previous FLM studies and advance some new techniques for evaluating the credibility of the model outputs. We used publicly available data with full coverage for the United States (US) so that our methods will be generalizable to other landscapes in the US, and we developed an ecologically meaningful set of validation metrics for evaluating the credibility of new applications. We found that LANDIS-II could be calibrated to reliably simulate empirical vegetation-disturbance-climate dynamics in diverse, mountainous terrain and fire-prone landscapes of the eastern Cascade Mountains. We performed an inter-model validation between LANDIS-II and the Forest Vegetation Simulator (FVS), demonstrating consistent projections of biomass dynamics for all tree-dominated ecoregions in the study domain. Similarly, simulated fires reliably approximated the empirical fire event size and severity patch size distributions based on observed fire activity from 1984 to 2019. By establishing rigorous, transparent, and repeatable standards for calibrating and validating FLM dynamics, we sought to remove some of the barriers to adapting LANDIS-II to new landscapes and climates, facilitate further validation of existing models, and aid independent assessment of the credibility of forest landscape models.
•Establishes consistent, generalizable standards for calibrating and validating LANDIS-II.•Initialization methods based on publicly available, full coverage datasets.•LANDIS-II can be calibrated to reliably simulate wildfire and biomass dynamics.•This study lowers the barrier to adapting forest landscape models to new landscapes.•Aids independent assessment of the credibility of existing forest landscape models. Process-based Forest Landscape Models (FLMs) rely on first principles to simulate ecological patterns and processes, making them uniquely powerful for forecasting ecological dynamics under unprecedented climatic and disturbance regimes. Persistent challenges with any ecological forecasting model are calibration (“tuning” the model) and validation (“proofing” the model). As no actual future data exist from which to conduct a formal model validation, model credibility is established through numerous tests against empirical datasets and comparisons with other types of models. The purpose of this study was to establish more consistent and generalizable standards for calibrating and validating LANDIS-II, a widely used, open-source FLM. We reviewed methods gleaned from a wide variety of previous FLM studies and advance some new techniques for evaluating the credibility of the model outputs. We used publicly available data with full coverage for the United States (US) so that our methods will be generalizable to other landscapes in the US, and we developed an ecologically meaningful set of validation metrics for evaluating the credibility of new applications. We found that LANDIS-II could be calibrated to reliably simulate empirical vegetation-disturbance-climate dynamics in diverse, mountainous terrain and fire-prone landscapes of the eastern Cascade Mountains. We performed an inter-model validation between LANDIS-II and the Forest Vegetation Simulator (FVS), demonstrating consistent projections of biomass dynamics for all tree-dominated ecoregions in the study domain. Similarly, simulated fires reliably approximated the empirical fire event size and severity patch size distributions based on observed fire activity from 1984 to 2019. By establishing rigorous, transparent, and repeatable standards for calibrating and validating FLM dynamics, we sought to remove some of the barriers to adapting LANDIS-II to new landscapes and climates, facilitate further validation of existing models, and aid independent assessment of the credibility of forest landscape models.
ArticleNumber 110099
Author Hessburg, Paul F.
Salter, R. Brion
Wigmosta, Mark S.
Furniss, Tucker J.
Povak, Nicholas A.
Author_xml – sequence: 1
  givenname: Tucker J.
  orcidid: 0000-0002-4376-1737
  surname: Furniss
  fullname: Furniss, Tucker J.
  email: tucker.furniss@usda.gov
  organization: USDA-FS, Pacific Northwest Research Station, 1133 N. Western Ave., Wenatchee, WA 98801, United States
– sequence: 2
  givenname: Paul F.
  surname: Hessburg
  fullname: Hessburg, Paul F.
  organization: USDA-FS, Pacific Northwest Research Station, 1133 N. Western Ave., Wenatchee, WA 98801, United States
– sequence: 3
  givenname: Nicholas A.
  surname: Povak
  fullname: Povak, Nicholas A.
  organization: USDA-FS, Pacific Northwest Research Station, 1133 N. Western Ave., Wenatchee, WA 98801, United States
– sequence: 4
  givenname: R. Brion
  surname: Salter
  fullname: Salter, R. Brion
  organization: USDA-FS, Pacific Northwest Research Station, 1133 N. Western Ave., Wenatchee, WA 98801, United States
– sequence: 5
  givenname: Mark S.
  surname: Wigmosta
  fullname: Wigmosta, Mark S.
  organization: University of Washington, College of Environment, SEFS, Seattle, WA, 98195, United States
BookMark eNqNUcFO3DAQtRCVWCjfgI8cmu3YZhMHiQNFUJCQyqE9W854At5m463tReov8NV4NxUHLuVg2TN-7-nNvEO2P4aRGDsRMBcg6q_LOWEYVsHRMJcg5VwIgLbdYzOhG1k1IOt9NgMFZ5XSAAfsMKUlAAip5Yy9PERyHrMfH3m_yZtIfG1zpjimL3wdA1JKVJ52dDw_kY_cj-XXFkYY0zn_RiM-rWz8zdEOvot229-hn0vtpnKn44p24n2I20Mp86GgEto18Z359Jl96u2Q6PjffcR-3Vz_vLqt7n98v7u6vK9QtU2uukWH_ULoulYabau1RUJSJBoFXUul0yst9UIgkJKNXXSu7p3uegLZ1dKpI3Y66RZbfzbFiVn5hDQUPxQ2ychGKgGN0m2BXkxQjCGlSL1Bn3cz5Wj9YASYbQZmad4yMNsMzJRB4Tfv-Ovoy7b-foB5OTHLYujZUzQJfdl1CSsSZuOC_6_GK72PrQs
CitedBy_id crossref_primary_10_1111_nph_18770
crossref_primary_10_1186_s42408_023_00190_7
crossref_primary_10_3389_fevo_2024_1112712
crossref_primary_10_1186_s42408_024_00339_y
crossref_primary_10_1007_s10342_025_01775_4
crossref_primary_10_3389_ffgc_2023_1269081
crossref_primary_10_3390_f14101995
crossref_primary_10_1139_cjfr_2024_0085
crossref_primary_10_1016_j_envsoft_2025_106327
crossref_primary_10_1016_j_jenvman_2024_120083
crossref_primary_10_1016_j_scitotenv_2023_165869
crossref_primary_10_3389_ffgc_2023_1286980
Cites_doi 10.1890/13-1077.1
10.1890/08-2324.1
10.1890/ES15-00294.1
10.1186/s13717-017-0070-z
10.1002/ecs2.2772
10.1016/S0304-3800(01)00470-7
10.1038/s41597-020-00782-x
10.1002/ecs2.2600
10.1002/joc.2312
10.1016/j.rse.2019.111497
10.1111/gcb.12310
10.1002/ecs2.2443
10.1111/geb.13079
10.1016/j.ecolmodel.2010.09.009
10.1002/ecs2.2414
10.1016/j.landurbplan.2011.02.019
10.1016/j.foreco.2005.02.016
10.1016/j.envsoft.2020.104844
10.1016/0304-3800(95)00152-2
10.4996/fireecology.0301003
10.1007/s10980-013-9927-4
10.1002/eap.2431
10.1890/120329
10.1038/s41598-018-24642-2
10.1002/ecs2.3214
10.1111/geb.13496
10.1007/s10980-017-0528-5
10.1111/ecog.04617
10.1126/science.263.5147.641
10.1071/WF13058
10.1038/ncomms1731
10.1002/ecs2.3150
10.1890/1051-0761(1999)009[1232:DCIFSP]2.0.CO;2
10.1002/fee.1791
10.1016/j.envsoft.2019.03.002
10.1016/j.ecolmodel.2004.03.016
10.1016/j.envsoft.2014.09.003
10.1016/j.foreco.2011.11.038
10.1007/s10021-020-00498-4
10.1007/s10980-018-0761-6
10.1016/j.foreco.2022.120258
10.1016/j.ecolmodel.2006.10.009
10.1002/eap.1460
10.1016/j.foreco.2011.05.004
10.1002/ecs2.1695
10.1016/j.ecolmodel.2004.03.015
10.1007/s10980-019-00947-z
10.1057/jos.2012.20
10.1002/ecs2.2934
10.2307/1312740
10.1071/WF09125
10.1016/j.ecolmodel.2015.06.033
10.1016/j.envsoft.2017.04.004
10.1016/S0378-1127(03)00052-5
10.1002/ecs2.4153
10.1002/ecs2.2702
10.1007/BF00129703
10.1002/ecs2.1471
10.1016/j.tree.2017.08.011
10.3389/fevo.2019.00239
10.2307/1478995
10.1007/s10021-014-9813-1
10.1007/s10980-007-9098-2
10.1016/j.ecolmodel.2019.03.022
10.3955/046.089.0306
10.3389/ffgc.2022.805179
10.3390/f9040192
10.32614/RJ-2018-009
10.1016/j.foreco.2019.01.033
10.1007/s10021-017-0175-3
10.1007/s10980-017-0540-9
10.1016/j.envsoft.2015.10.004
10.1016/j.foreco.2016.01.034
10.1002/eap.2507
10.1002/ecs2.1663
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ecolmodel.2022.110099
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1872-7026
ExternalDocumentID 10_1016_j_ecolmodel_2022_110099
S0304380022002022
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABLST
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
VH1
WH7
WUQ
Y6R
ZY4
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c397t-b5bcf5186638ca988acece3e1730b9ea98f382851c0e327a5bd6fd8bfe02b62d3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000858597800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3800
IngestDate Sun Sep 28 08:07:00 EDT 2025
Sat Nov 29 07:25:01 EST 2025
Tue Nov 18 21:01:48 EST 2025
Fri Feb 23 02:36:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords LANDIS-II
Climate change
Forest landscape models
Wildfire-vegetation interactions
Temperate forests
Process-based modeling
Carbon
Disturbance modeling
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c397t-b5bcf5186638ca988acece3e1730b9ea98f382851c0e327a5bd6fd8bfe02b62d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4376-1737
OpenAccessLink https://dx.doi.org/10.1016/j.ecolmodel.2022.110099
PQID 2723107389
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2723107389
crossref_citationtrail_10_1016_j_ecolmodel_2022_110099
crossref_primary_10_1016_j_ecolmodel_2022_110099
elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2022_110099
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Ecological modelling
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Agee (bib0002) 1998; 72
Jeronimo, Kane, Churchill, Lutz, North, Asner, Franklin (bib0035) 2019; 437
Krofcheck, Hurteau, Scheller, Loudermilk (bib0043) 2017; 8
Syphard, Scheller, Ward, Spencer, Strittholt (bib0093) 2011; 20
Eidenshink, Schwind, Brewer, Zhu, Quayle, Howard (bib0012) 2007; 3
Burns, Honkala (bib0004) 1990
Dixon (bib0011) 2002
Wang, He, Spetich, Shifley, Thompson, Dijak, Wang (bib0094) 2014; 62
Hargrove, Pickering (bib0021) 1992; 6
Perry, Hessburg, Skinner, Spies, Stephens, Taylor, Franklin, McComb, Riegel (bib0062) 2011; 262
Larson, Churchill (bib0044) 2012; 267
Riley, Grenfell, Finney, Wiener (bib0072) 2021; 8
Hessburg, Agee (bib0025) 2003; 178
Rykiel (bib0075) 1996; 90
He, Yang, Shifley, Thompson (bib0024) 2011; 100
Lutz (bib0050) 2015; 89
Parks, Miller, Parisien, Holsinger, Dobrowski (bib97) 2015; 6
Scholl, Taylor (bib0082) 2010; 20
Hagmann, Hessburg, Prichard, Povak, Brown, Fulé, Keane, Knapp, Lydersen, Metlen, Reilly, Sánchez Meador, Stephens, Stevens, Taylor, Yocom, Battaglia, Churchill, Daniels, Falk, Henson, Johnston, Krawchuk, Levine, Meigs, Merschel, North, Safford, Swetnam, Waltz (bib0019) 2021; 31
Moritz, Hessburg, Povak, McKenzie, Miller, Falk (bib0057) 2011
Sargent, Sheppard, Pooch, Pegden (bib0076) 1984
Wickham (bib0096) 2016
Gustafson (bib0018) 2013; 28
.
Scheller, Domingo, Sturtevant, Williams, Rudy, Gustafson, Mladenoff (bib0079) 2007; 201
Cansler, McKenzie (bib0005) 2014; 24
Shifley, Rittenhouse, Millspaugh, Millspaugh, Thompson III (bib0085) 2009
McKenzie, Duveneck, Morreale, Thompson (bib0054) 2019; 117
Baddeley, Rubak (bib99) 2015
Hessburg, Spies, Perry, Skinner, Taylor, Brown, Stephens, Larson, Churchill, Povak, Singleton, McComb, Zielinski, Collins, Salter, Keane, Franklin, Riegel (bib0031) 2016; 366
Keane, Loehman, Holsinger, Falk, Higuera, Hood, Hessburg (bib0038) 2018; 9
Povak, Salter, Hessburg, Prichard, Gray (bib0067) 2020
Abatzoglou, Brown (bib0001) 2012; 32
Robbins, Loudermilk, Reilly, O’Brien, Jones, Gerstle, Scheller (bib100) 2022; 13
Simons-Legaard, Legaard, Weiskittel (bib0087) 2015; 313
Creutzburg, Scheller, Lucash, LeDuc, Johnson (bib0010) 2017; 27
Wang, Wotton, Cantin, Parisien, Anderson, Moore (bib98) 2017; 6
Povak, Kane, Collins, Lydersen, Kane (bib0066) 2020; 35
Leenhouts (bib0045) 1998; 2
Martin, Hurteau, Hungate, Koch, North (bib0052) 2015; 18
Furniss, Das, Mantgem, Stephenson, Lutz (bib0015) 2022
Ryan, Knapp, Varner (bib0074) 2013; 11
Hessburg, Miller, Parks, Povak, Taylor, Higuera, Prichard, North, Collins, Hurteau, Larson, Allen, Stephens, Rivera-Huerta, Stevens-Rumann, Daniels, Gedalof, Gray, Kane, Churchill, Hagmann, Spies, Cansler, Belote, Veblen, Battaglia, Hoffman, Skinner, Safford, Salter (bib0027) 2019; 7
Boulanger, Arseneault, Boucher, Gauthier, Cyr, Taylor, Price, Dupuis (bib0003) 2019; 34
Hessburg, Agee, Franklin (bib0026) 2005; 211
Short (bib0086)
Watershed Boundary Dataset for Washington State. 2019.
Rastetter (bib0069) 1996; 46
Scheller, Kretchun, Loudermilk, Hurteau, Weisberg, Skinner (bib0081) 2018; 21
Shifley, He, Lischke, Wang, Jin, Gustafson, Thompson, Thompson, Dijak, Yang (bib0084) 2017; 32
Hessburg, Salter, James (bib0028) 2007; 22
Stevens, Kling, Schwilk, Varner, Kane (bib0090) 2020; 29
Liang, Hurteau, Westerling (bib0046) 2018; 16
Reilly, Dunn, Meigs, Spies, Kennedy, Bailey, Briggs (bib0070) 2017; 8
Hessburg, Salter, Richmond, Smith (bib0029) 2000; 3
Loehman, Flatley, Holsinger, Thode (bib0048) 2018; 9
Povak, Hessburg, Salter (bib0065) 2018; 9
Povak, Furniss, Hessburg, Salter, Wigmosta, Duan, LeFevre (bib0064) 2022; 5
Haugo, Kellogg, Cansler, Kolden, Kemp, Robertson, Metlen, Vaillant, Restaino (bib0023) 2019; 10
Mladenoff (bib0055) 2004; 180
Loudermilk, Scheller, Weisberg, Yang, Dilts, Karam, Skinner (bib0049) 2013; 19
Stephens, Bernal, Collins, Finney, Lautenberger, Saah (bib0089) 2022; 518
Suárez-Muñoz, Mina, Salazar, Navarro-Cerrillo, Quero, Bonet-García (bib0092) 2021; 9
Morgan, Keane, Dillon, Jain, Hudak, Karau, Sikkink, Holden, Strand (bib0056) 2014; 23
Hijmans, R.J. 2021. Raster: geographic data analysis and modeling.
Scheller, Kretchun, Hawbaker, Henne (bib0078) 2019; 401
Oreskes, Shrader-Frechette, Belitz (bib0058) 1994; 263
Harvey, Andrus, Anderson (bib0022) 2019; 10
McKenzie, Kennedy (bib0053) 2012; 3
Serra-Diaz, Maxwell, Lucash, Scheller, Laflower, Miller, Tepley, Epstein, Anderson-Teixeira, Thompson (bib0083) 2018; 8
Flanagan, Bhotika, Hawley, Starr, Wiesner, Hiers, O'Brien, Goodrick, Callaham, Scheller, Klepzig, Taylor, Loudermilk (bib0013) 2019; 10
Jin, He, Thompson (bib0036) 2016; 75
Hessburg, Smith, Salter (bib0030) 1999; 9
Keane, Cary, Davies, Flannigan, Gardner, Lavorel, Lenihan, Li, Rupp (bib0037) 2004; 179
Hesselbarth, Sciaini, With, Wiegand, Nowosad (bib0032) 2019; 42
Furniss, Larson, Kane, Lutz (bib0017) 2020; 11
Cassell, Scheller, Lucash, Hurteau, Loudermilk (bib0006) 2019; 10
Coop, Parks, Stevens-Rumann, Ritter, Hoffman (bib0009) 2022
Connolly, Keith, Colwell, Rahbek (bib0008) 2017; 32
Flatley, Fulé (bib0014) 2016; 7
Hilborn, Mangel (bib0034) 2013
(bib0088) 2020
Hargrove, W.W., and F.M. Hoffman. 2004. A flux atlas for representativeness and statistical extrapolation of the AmeriFlux network. ORNL Technical Memorandum, No. ORNL/TM-2004/112, Oak Ridge National Laboratory. Available online at
Petter, Mairota, Albrich, Bebi, Brůna, Bugmann, Haffenden, Scheller, Schmatz, Seidl, Speich, Vacchiano, Lischke (bib0063) 2020; 134
Scheller, Hua, Bolstad, Birdsey, Mladenoff (bib0080) 2011; 222
Keane, Parsons, Hessburg (bib0040) 2002; 151
Furniss, Kane, Larson, Lutz (bib0016) 2020; 237
Keane, Loehman, Clark, Smithwick, Miller, Perera, Sturtevant, Buse (bib0039) 2015
Collins, Stevens, Miller, Stephens, Brown, North (bib0007) 2017; 32
Ling, Prince, Baiocchi, Dymond, Xi, Hurtt (bib0047) 2020; 11
Keyser, Krofcheck, Remy, Allen, Hurteau (bib0041) 2020; 23
bib0068
Otto, Day (bib0059) 2011
Pebesma (bib0061) 2018; 10
Keyser, Dixon (bib0042) 2008
Parton (bib0060) 1996
Ma, Xiao, Bu, Doughty, Hu, Chen, Li, Zhao (bib0051) 2017; 94
Sargent (bib0077) 2013; 7
Scholl (10.1016/j.ecolmodel.2022.110099_bib0082) 2010; 20
Hargrove (10.1016/j.ecolmodel.2022.110099_bib0021) 1992; 6
Povak (10.1016/j.ecolmodel.2022.110099_bib0067) 2020
Abatzoglou (10.1016/j.ecolmodel.2022.110099_bib0001) 2012; 32
Stevens (10.1016/j.ecolmodel.2022.110099_bib0090) 2020; 29
Petter (10.1016/j.ecolmodel.2022.110099_bib0063) 2020; 134
Simons-Legaard (10.1016/j.ecolmodel.2022.110099_bib0087) 2015; 313
Wickham (10.1016/j.ecolmodel.2022.110099_bib0096) 2016
Gustafson (10.1016/j.ecolmodel.2022.110099_bib0018) 2013; 28
Moritz (10.1016/j.ecolmodel.2022.110099_bib0057) 2011
Hagmann (10.1016/j.ecolmodel.2022.110099_bib0019) 2021; 31
Connolly (10.1016/j.ecolmodel.2022.110099_bib0008) 2017; 32
Hessburg (10.1016/j.ecolmodel.2022.110099_bib0026) 2005; 211
Burns (10.1016/j.ecolmodel.2022.110099_bib0004) 1990
Furniss (10.1016/j.ecolmodel.2022.110099_bib0016) 2020; 237
Haugo (10.1016/j.ecolmodel.2022.110099_bib0023) 2019; 10
Reilly (10.1016/j.ecolmodel.2022.110099_bib0070) 2017; 8
Hessburg (10.1016/j.ecolmodel.2022.110099_bib0025) 2003; 178
Jeronimo (10.1016/j.ecolmodel.2022.110099_bib0035) 2019; 437
Furniss (10.1016/j.ecolmodel.2022.110099_bib0017) 2020; 11
Hesselbarth (10.1016/j.ecolmodel.2022.110099_bib0032) 2019; 42
Perry (10.1016/j.ecolmodel.2022.110099_bib0062) 2011; 262
Wang (10.1016/j.ecolmodel.2022.110099_bib0094) 2014; 62
Liang (10.1016/j.ecolmodel.2022.110099_bib0046) 2018; 16
Jin (10.1016/j.ecolmodel.2022.110099_bib0036) 2016; 75
Scheller (10.1016/j.ecolmodel.2022.110099_bib0078) 2019; 401
Scheller (10.1016/j.ecolmodel.2022.110099_bib0080) 2011; 222
Ma (10.1016/j.ecolmodel.2022.110099_bib0051) 2017; 94
Keane (10.1016/j.ecolmodel.2022.110099_bib0038) 2018; 9
Otto (10.1016/j.ecolmodel.2022.110099_bib0059) 2011
Cansler (10.1016/j.ecolmodel.2022.110099_bib0005) 2014; 24
Larson (10.1016/j.ecolmodel.2022.110099_bib0044) 2012; 267
McKenzie (10.1016/j.ecolmodel.2022.110099_bib0053) 2012; 3
Shifley (10.1016/j.ecolmodel.2022.110099_bib0084) 2017; 32
10.1016/j.ecolmodel.2022.110099_bib0033
Flanagan (10.1016/j.ecolmodel.2022.110099_bib0013) 2019; 10
Eidenshink (10.1016/j.ecolmodel.2022.110099_bib0012) 2007; 3
Scheller (10.1016/j.ecolmodel.2022.110099_bib0081) 2018; 21
Suárez-Muñoz (10.1016/j.ecolmodel.2022.110099_bib0092) 2021; 9
Krofcheck (10.1016/j.ecolmodel.2022.110099_bib0043) 2017; 8
Pebesma (10.1016/j.ecolmodel.2022.110099_bib0061) 2018; 10
Cassell (10.1016/j.ecolmodel.2022.110099_bib0006) 2019; 10
Dixon (10.1016/j.ecolmodel.2022.110099_bib0011) 2002
Stephens (10.1016/j.ecolmodel.2022.110099_bib0089) 2022; 518
Coop (10.1016/j.ecolmodel.2022.110099_bib0009) 2022
McKenzie (10.1016/j.ecolmodel.2022.110099_bib0054) 2019; 117
Riley (10.1016/j.ecolmodel.2022.110099_bib0072) 2021; 8
Leenhouts (10.1016/j.ecolmodel.2022.110099_bib0045) 1998; 2
Creutzburg (10.1016/j.ecolmodel.2022.110099_bib0010) 2017; 27
Ling (10.1016/j.ecolmodel.2022.110099_bib0047) 2020; 11
Robbins (10.1016/j.ecolmodel.2022.110099_bib100) 2022; 13
Martin (10.1016/j.ecolmodel.2022.110099_bib0052) 2015; 18
Rastetter (10.1016/j.ecolmodel.2022.110099_bib0069) 1996; 46
Keyser (10.1016/j.ecolmodel.2022.110099_bib0041) 2020; 23
Rykiel (10.1016/j.ecolmodel.2022.110099_bib0075) 1996; 90
Wang (10.1016/j.ecolmodel.2022.110099_bib98) 2017; 6
Sargent (10.1016/j.ecolmodel.2022.110099_bib0076) 1984
Hessburg (10.1016/j.ecolmodel.2022.110099_bib0030) 1999; 9
Loehman (10.1016/j.ecolmodel.2022.110099_bib0048) 2018; 9
Povak (10.1016/j.ecolmodel.2022.110099_bib0066) 2020; 35
Hessburg (10.1016/j.ecolmodel.2022.110099_bib0027) 2019; 7
10.1016/j.ecolmodel.2022.110099_bib0020
Keyser (10.1016/j.ecolmodel.2022.110099_bib0042) 2008
He (10.1016/j.ecolmodel.2022.110099_bib0024) 2011; 100
Serra-Diaz (10.1016/j.ecolmodel.2022.110099_bib0083) 2018; 8
Syphard (10.1016/j.ecolmodel.2022.110099_bib0093) 2011; 20
(10.1016/j.ecolmodel.2022.110099_bib0088) 2020
Parton (10.1016/j.ecolmodel.2022.110099_bib0060) 1996
Hessburg (10.1016/j.ecolmodel.2022.110099_bib0031) 2016; 366
Povak (10.1016/j.ecolmodel.2022.110099_bib0064) 2022; 5
Short (10.1016/j.ecolmodel.2022.110099_bib0086)
Oreskes (10.1016/j.ecolmodel.2022.110099_bib0058) 1994; 263
Mladenoff (10.1016/j.ecolmodel.2022.110099_bib0055) 2004; 180
Hilborn (10.1016/j.ecolmodel.2022.110099_bib0034) 2013
Keane (10.1016/j.ecolmodel.2022.110099_bib0039) 2015
Flatley (10.1016/j.ecolmodel.2022.110099_bib0014) 2016; 7
Hessburg (10.1016/j.ecolmodel.2022.110099_bib0028) 2007; 22
Harvey (10.1016/j.ecolmodel.2022.110099_bib0022) 2019; 10
Collins (10.1016/j.ecolmodel.2022.110099_bib0007) 2017; 32
Furniss (10.1016/j.ecolmodel.2022.110099_bib0015) 2022
Baddeley (10.1016/j.ecolmodel.2022.110099_bib99) 2015
Keane (10.1016/j.ecolmodel.2022.110099_bib0037) 2004; 179
Parks (10.1016/j.ecolmodel.2022.110099_bib97) 2015; 6
Lutz (10.1016/j.ecolmodel.2022.110099_bib0050) 2015; 89
Hessburg (10.1016/j.ecolmodel.2022.110099_bib0029) 2000; 3
Keane (10.1016/j.ecolmodel.2022.110099_bib0040) 2002; 151
Povak (10.1016/j.ecolmodel.2022.110099_bib0065) 2018; 9
Loudermilk (10.1016/j.ecolmodel.2022.110099_bib0049) 2013; 19
Ryan (10.1016/j.ecolmodel.2022.110099_bib0074) 2013; 11
Scheller (10.1016/j.ecolmodel.2022.110099_bib0079) 2007; 201
10.1016/j.ecolmodel.2022.110099_bib0095
Boulanger (10.1016/j.ecolmodel.2022.110099_bib0003) 2019; 34
Shifley (10.1016/j.ecolmodel.2022.110099_bib0085) 2009
Morgan (10.1016/j.ecolmodel.2022.110099_bib0056) 2014; 23
Sargent (10.1016/j.ecolmodel.2022.110099_bib0077) 2013; 7
Agee (10.1016/j.ecolmodel.2022.110099_bib0002) 1998; 72
References_xml – reference: Hijmans, R.J. 2021. Raster: geographic data analysis and modeling.
– year: 2011
  ident: bib0059
  article-title: A Biologist's Guide to Mathematical Modeling in Ecology and Evolution
– volume: 11
  start-page: e03150
  year: 2020
  ident: bib0047
  article-title: Impact of fire and harvest on forest ecosystem services in a species-rich area in the southern Appalachians
  publication-title: Ecosphere
– volume: 23
  start-page: 1045
  year: 2014
  end-page: 1060
  ident: bib0056
  article-title: Challenges of assessing fire and burn severity using field measures, remote sensing and modelling
  publication-title: Int. J. Wildland Fire
– volume: 8
  start-page: e01663
  year: 2017
  ident: bib0043
  article-title: Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada
  publication-title: Ecosphere
– year: 2022
  ident: bib0009
  article-title: Extreme fire spread events and area burned under recent and future climate in the western USA
  publication-title: Glob. Ecol. Biogeogr.
– volume: 10
  start-page: e02702
  year: 2019
  ident: bib0023
  article-title: The missing fire: quantifying human exclusion of wildfire in Pacific Northwest forests, USA
  publication-title: Ecosphere
– volume: 401
  start-page: 85
  year: 2019
  end-page: 93
  ident: bib0078
  article-title: A landscape model of variable social-ecological fire regimes
  publication-title: Ecol. Model.
– volume: 35
  start-page: 293
  year: 2020
  end-page: 318
  ident: bib0066
  article-title: Multi-scaled drivers of severity patterns vary across land ownerships for the 2013 Rim Fire, California
  publication-title: Landsc. Ecol.
– volume: 366
  start-page: 221
  year: 2016
  end-page: 250
  ident: bib0031
  article-title: Tamm review: management of mixed-severity fire regime forests in Oregon, Washington, and Northern California
  publication-title: For. Ecol. Manag.
– volume: 11
  start-page: e03214
  year: 2020
  ident: bib0017
  article-title: Wildfire and drought moderate the spatial elements of tree mortality
  publication-title: Ecosphere
– year: 1990
  ident: bib0004
  article-title: Silvics of North America, Vol. 1 Conifers. Page Pp. 675. No. Handbook 654
– volume: 7
  start-page: e01471
  year: 2016
  ident: bib0014
  article-title: Are historical fire regimes compatible with future climate? Implications for forest restoration
  publication-title: Ecosphere
– volume: 211
  start-page: 117
  year: 2005
  end-page: 139
  ident: bib0026
  article-title: Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras
  publication-title: For. Ecol. Manag.
– volume: 518
  year: 2022
  ident: bib0089
  article-title: Mass fire behavior created by extensive tree mortality and high tree density not predicted by operational fire behavior models in the southern Sierra Nevada
  publication-title: For. Ecol. Manag.
– volume: 9
  start-page: 1232
  year: 1999
  end-page: 1252
  ident: bib0030
  article-title: Detecting change in forest spatial patterns from reference conditions
  publication-title: Ecol. Appl.
– volume: 7
  start-page: 239
  year: 2019
  ident: bib0027
  article-title: Climate, environment, and disturbance history govern resilience of western North American forests
  publication-title: Front. Ecol. Evol.
– volume: 10
  start-page: e02772
  year: 2019
  ident: bib0013
  article-title: Quantifying carbon and species dynamics under different fire regimes in a southeastern U.S. pineland
  publication-title: Ecosphere
– volume: 3
  start-page: 726
  year: 2012
  ident: bib0053
  article-title: Power laws reveal phase transitions in landscape controls of fire regimes
  publication-title: Nat. Commun.
– ident: bib0086
  article-title: Spatial wildfire occurrence data for the United States, 1992-2015 [FPA_FOD_20170508]
– reference: Watershed Boundary Dataset for Washington State. 2019.
– start-page: 51
  year: 2011
  end-page: 86
  ident: bib0057
  article-title: Native fire regimes and landscape resilience
  publication-title: The Landscape Ecology of Fire
– start-page: 415
  year: 2009
  end-page: 448
  ident: bib0085
  article-title: Validation of landscape-scale decision support models that predict vegetation and wildlife dynamics
  publication-title: Models for Planning Wildlife Conservation in Large Landscapes
– volume: 9
  year: 2018
  ident: bib0038
  article-title: Use of landscape simulation modeling to quantify resilience for ecological applications
  publication-title: Ecosphere
– volume: 16
  start-page: 207
  year: 2018
  end-page: 212
  ident: bib0046
  article-title: Large-scale restoration increases carbon stability under projected climate and wildfire regimes
  publication-title: Front. Ecol. Environ.
– volume: 32
  start-page: 1543
  year: 2017
  end-page: 1552
  ident: bib0007
  article-title: Alternative characterization of forest fire regimes: incorporating spatial patterns
  publication-title: Landsc. Ecol.
– volume: 22
  start-page: 5
  year: 2007
  end-page: 24
  ident: bib0028
  article-title: -examining fire severity relations in pre-management era mixed conifer forests: inferences from landscape patterns of forest structure
  publication-title: Landsc. Ecol.
– reference: Hargrove, W.W., and F.M. Hoffman. 2004. A flux atlas for representativeness and statistical extrapolation of the AmeriFlux network. ORNL Technical Memorandum, No. ORNL/TM-2004/112, Oak Ridge National Laboratory. Available online at:
– year: 2020
  ident: bib0088
  article-title: Gridded National Soil Survey Geographic (gNATSGO) Database for Washington State
– volume: 20
  start-page: 362
  year: 2010
  end-page: 380
  ident: bib0082
  article-title: Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA
  publication-title: Ecol. Appl.
– volume: 8
  start-page: 11
  year: 2021
  ident: bib0072
  article-title: TreeMap, a tree-level model of conterminous US forests circa 2014 produced by imputation of FIA plot data
  publication-title: Sci. Data
– volume: 94
  start-page: 127
  year: 2017
  end-page: 139
  ident: bib0051
  article-title: Application of the space-for-time substitution method in validating long-term biomass predictions of a forest landscape model
  publication-title: Environ. Model. Softw.
– volume: 10
  start-page: e02934
  year: 2019
  ident: bib0006
  article-title: Widespread severe wildfires under climate change lead to increased forest homogeneity in dry mixed-conifer forests
  publication-title: Ecosphere
– volume: 222
  start-page: 144
  year: 2011
  end-page: 153
  ident: bib0080
  article-title: The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in Lake States Mesic forests
  publication-title: Ecol. Model.
– volume: 19
  start-page: 3502
  year: 2013
  end-page: 3515
  ident: bib0049
  article-title: Carbon dynamics in the future forest: the importance of long-term successional legacy and climate–fire interactions
  publication-title: Glob. Chang. Biol.
– volume: 180
  start-page: 7
  year: 2004
  end-page: 19
  ident: bib0055
  article-title: LANDIS and forest landscape models
  publication-title: Ecol. Model.
– volume: 62
  start-page: 230
  year: 2014
  end-page: 239
  ident: bib0094
  article-title: A framework for evaluating forest landscape model predictions using empirical data and knowledge
  publication-title: Environ. Model. Softw.
– volume: 32
  start-page: 1307
  year: 2017
  end-page: 1325
  ident: bib0084
  article-title: The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models
  publication-title: Landsc. Ecol.
– volume: 437
  start-page: 70
  year: 2019
  end-page: 86
  ident: bib0035
  article-title: Forest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra Nevada
  publication-title: For. Ecol. Manag.
– volume: 89
  start-page: 255
  year: 2015
  end-page: 269
  ident: bib0050
  article-title: The evolution of long-term data for forestry: large temperate research plots in an era of global change
  publication-title: Northwest Sci.
– volume: 2
  start-page: 1
  year: 1998
  end-page: 22
  ident: bib0045
  article-title: Assessment of biomass burning in the conterminous United States
  publication-title: Conserv. Ecol.
– year: 2002
  ident: bib0011
– volume: 8
  start-page: e01695
  year: 2017
  ident: bib0070
  article-title: Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010)
  publication-title: Ecosphere
– volume: 267
  start-page: 74
  year: 2012
  end-page: 92
  ident: bib0044
  article-title: Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments
  publication-title: For. Ecol. Manag.
– year: 2015
  ident: bib99
  publication-title: Spatial point patterns: methodology and applications with R
– volume: 179
  start-page: 3
  year: 2004
  end-page: 27
  ident: bib0037
  article-title: A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics
  publication-title: Ecol. Model.
– ident: bib0068
  article-title: R: a language and environment for statistical computing. R foundation for statistical computing
– start-page: 201
  year: 2015
  end-page: 231
  ident: bib0039
  article-title: Exploring interactions among multiple disturbance agents in forest landscapes: simulating effects of fire, beetles, and disease under climate change
  publication-title: Simulation Modeling of Forest Landscape Disturbances
– volume: 3
  start-page: 163
  year: 2000
  end-page: 180
  ident: bib0029
  article-title: Ecological subregions of the interior Columbia Basin, USA
  publication-title: Appl. Veg. Sci.
– start-page: 115
  year: 1984
  end-page: 122
  ident: bib0076
  article-title: A tutorial on verification and validation of simulation models
  publication-title: In: Proceedings of the 1984 Winter Simulation Conference
– volume: 31
  start-page: e02431
  year: 2021
  ident: bib0019
  article-title: Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests
  publication-title: Ecol. Appl.
– volume: 21
  start-page: 643
  year: 2018
  end-page: 656
  ident: bib0081
  article-title: Interactions among fuel management, species composition, bark beetles, and climate change and the potential effects on forests of the Lake Tahoe basin
  publication-title: Ecosystems
– volume: 151
  start-page: 29
  year: 2002
  end-page: 49
  ident: bib0040
  article-title: Estimating historical range and variation of landscape patch dynamics: limitations of the simulation approach
  publication-title: Ecol. Model.
– volume: 13
  start-page: e4153
  year: 2022
  ident: bib100
  article-title: Delayed fire mortality has long-term ecological effects across the Southern Appalachian landscape
  publication-title: Ecosphere
– volume: 24
  start-page: 1037
  year: 2014
  end-page: 1056
  ident: bib0005
  article-title: Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA
  publication-title: Ecol. Appl.
– volume: 313
  start-page: 325
  year: 2015
  end-page: 332
  ident: bib0087
  article-title: Predicting aboveground biomass with LANDIS-II: a global and temporal analysis of parameter sensitivity
  publication-title: Ecol. Model.
– volume: 5
  year: 2022
  ident: bib0064
  article-title: Evaluating basin-scale forest adaptation scenarios: wildfire, streamflow, biomass, and economic recovery synergies and trade-offs
  publication-title: Front. For. Glob. Chang.
– volume: 6
  start-page: 251
  year: 1992
  end-page: 258
  ident: bib0021
  article-title: Pseudoreplication: a sine qua non for regional ecology
  publication-title: Landsc. Ecol.
– volume: 32
  start-page: 772
  year: 2012
  end-page: 780
  ident: bib0001
  article-title: A comparison of statistical downscaling methods suited for wildfire applications
  publication-title: Int. J. Climatol.
– volume: 10
  start-page: 439
  year: 2018
  end-page: 446
  ident: bib0061
  article-title: Simple features for R: standardized support for spatial vector data
  publication-title: R J.
– volume: 117
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib0054
  article-title: Local and global parameter sensitivity within an ecophysiologically based forest landscape model
  publication-title: Environ. Model. Softw.
– volume: 263
  start-page: 641
  year: 1994
  end-page: 646
  ident: bib0058
  article-title: Verification, validation, and confirmation of numerical models in the earth sciences
  publication-title: Science
– year: 1996
  ident: bib0060
  article-title: The CENTURY Model. Pages 283–291 Evaluation of Soil Organic Matter Models
– volume: 20
  start-page: 364
  year: 2011
  ident: bib0093
  article-title: Simulating landscape-scale effects of fuels treatments in the Sierra Nevada, California, USA
  publication-title: Int. J. Wildland Fire
– year: 2016
  ident: bib0096
  article-title: ggplot2: Elegant Graphics for Data Analysis
– volume: 27
  start-page: 503
  year: 2017
  end-page: 518
  ident: bib0010
  article-title: Forest management scenarios in a changing climate: trade-offs between carbon, timber, and old forest
  publication-title: Ecol. Appl.
– volume: 8
  start-page: 6749
  year: 2018
  ident: bib0083
  article-title: Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century
  publication-title: Sci. Rep.
– volume: 7
  start-page: 12
  year: 2013
  end-page: 24
  ident: bib0077
  article-title: Verification and validation of simulation models
  publication-title: J. Simul.
– year: 2013
  ident: bib0034
  article-title: The Ecological Detective
– volume: 9
  start-page: 192
  year: 2018
  ident: bib0048
  article-title: Can land management buffer impacts of climate changes and altered fire regimes on ecosystems of the southwestern United States?
  publication-title: Forests
– volume: 9
  start-page: e02443
  year: 2018
  ident: bib0065
  article-title: Evidence for scale-dependent topographic controls on wildfire spread
  publication-title: Ecosphere
– volume: 10
  start-page: e02600
  year: 2019
  ident: bib0022
  article-title: Incorporating biophysical gradients and uncertainty into burn severity maps in a temperate fire-prone forested region
  publication-title: Ecosphere
– volume: 201
  start-page: 409
  year: 2007
  end-page: 419
  ident: bib0079
  article-title: Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution
  publication-title: Ecol. Model.
– volume: 134
  year: 2020
  ident: bib0063
  article-title: How robust are future projections of forest landscape dynamics? Insights from a systematic comparison of four forest landscape models
  publication-title: Environ. Model. Softw.
– volume: 11
  start-page: e15
  year: 2013
  end-page: e24
  ident: bib0074
  article-title: Prescribed fire in North American forests and woodlands: history, current practice, and challenges
  publication-title: Front. Ecol. Environ.
– volume: 75
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib0036
  article-title: Are more complex physiological models of forest ecosystems better choices for plot and regional predictions?
  publication-title: Environ. Model. Softw.
– volume: 6
  start-page: 5
  year: 2017
  ident: bib98
  article-title: cffdrs: an R package for the Canadian forest fire danger rating system
  publication-title: Ecol. Process.
– volume: 46
  start-page: 190
  year: 1996
  end-page: 198
  ident: bib0069
  article-title: Validating models of ecosystem response to global change
  publication-title: Bioscience
– volume: 3
  start-page: 3
  year: 2007
  end-page: 21
  ident: bib0012
  article-title: A project for monitoring trends in burn severity
  publication-title: Fire Ecol.
– volume: 100
  start-page: 400
  year: 2011
  end-page: 402
  ident: bib0024
  article-title: Challenges of forest landscape modeling—simulating large landscapes and validating results
  publication-title: Landsc. Urban Plan.
– start-page: e2507
  year: 2022
  ident: bib0015
  article-title: Crowding, climate, and the case for social distancing among trees
  publication-title: Ecol. Appl.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib97
  article-title: Wildland fire deficit and surplus in the western United States, 1984–2012
  publication-title: Ecosphere
– volume: 178
  start-page: 23
  year: 2003
  end-page: 59
  ident: bib0025
  article-title: An environmental narrative of Inland Northwest United States forests, 1800–2000
  publication-title: For. Ecol. Manag.
– volume: 23
  start-page: 1702
  year: 2020
  end-page: 1713
  ident: bib0041
  article-title: Simulated increases in fire activity reinforce shrub conversion in a southwestern US forest
  publication-title: Ecosystems
– volume: 42
  start-page: 1648
  year: 2019
  end-page: 1657
  ident: bib0032
  article-title: Landscapemetrics: an open-source R tool to calculate landscape metrics
  publication-title: Ecography
– volume: 237
  year: 2020
  ident: bib0016
  article-title: Detecting tree mortality with Landsat-derived spectral indices: improving ecological accuracy by examining uncertainty
  publication-title: Remote Sens. Environ.
– volume: 32
  start-page: 835
  year: 2017
  end-page: 844
  ident: bib0008
  article-title: Process, mechanism, and modeling in macroecology
  publication-title: Trends Ecol. Evol.
– reference: .
– volume: 9
  year: 2021
  ident: bib0092
  article-title: A step-by-step guide to initialize and calibrate landscape models: a case study in the Mediterranean mountains
  publication-title: Front. Ecol. Evol.
– volume: 72
  start-page: 12
  year: 1998
  ident: bib0002
  article-title: The landscape ecology of western forest fire regimes
  publication-title: Northwest Sci.
– volume: 34
  start-page: 159
  year: 2019
  end-page: 174
  ident: bib0003
  article-title: Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern Canada
  publication-title: Landsc. Ecol.
– year: 2008
  ident: bib0042
  article-title: East Cascades (EC) Variant Overview. Page 68. Internal Rep
– volume: 28
  start-page: 1429
  year: 2013
  end-page: 1437
  ident: bib0018
  article-title: When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world
  publication-title: Landsc. Ecol.
– volume: 262
  start-page: 703
  year: 2011
  end-page: 717
  ident: bib0062
  article-title: The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California
  publication-title: For. Ecol. Manag.
– year: 2020
  ident: bib0067
  article-title: Fire-fire and fire-vegetation dynamics: lessons from REBURN modeling
  publication-title: Ecosystems
– volume: 90
  start-page: 229
  year: 1996
  end-page: 244
  ident: bib0075
  article-title: Testing ecological models: the meaning of validation
  publication-title: Ecol. Model.
– volume: 18
  start-page: 76
  year: 2015
  end-page: 88
  ident: bib0052
  article-title: Carbon tradeoffs of restoration and provision of endangered species habitat in a fire-maintained forest
  publication-title: Ecosystems
– volume: 29
  start-page: 944
  year: 2020
  end-page: 955
  ident: bib0090
  article-title: Biogeography of fire regimes in western U.S. conifer forests: a trait-based approach
  publication-title: Glob. Ecol. Biogeogr.
– year: 2002
  ident: 10.1016/j.ecolmodel.2022.110099_bib0011
– volume: 24
  start-page: 1037
  issue: 5
  year: 2014
  ident: 10.1016/j.ecolmodel.2022.110099_bib0005
  article-title: Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA
  publication-title: Ecol. Appl.
  doi: 10.1890/13-1077.1
– volume: 20
  start-page: 362
  issue: 2
  year: 2010
  ident: 10.1016/j.ecolmodel.2022.110099_bib0082
  article-title: Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA
  publication-title: Ecol. Appl.
  doi: 10.1890/08-2324.1
– volume: 6
  start-page: 1
  issue: 12
  year: 2015
  ident: 10.1016/j.ecolmodel.2022.110099_bib97
  article-title: Wildland fire deficit and surplus in the western United States, 1984–2012
  publication-title: Ecosphere
  doi: 10.1890/ES15-00294.1
– volume: 6
  start-page: 5
  issue: 1
  year: 2017
  ident: 10.1016/j.ecolmodel.2022.110099_bib98
  article-title: cffdrs: an R package for the Canadian forest fire danger rating system
  publication-title: Ecol. Process.
  doi: 10.1186/s13717-017-0070-z
– volume: 10
  start-page: e02772
  issue: 6
  year: 2019
  ident: 10.1016/j.ecolmodel.2022.110099_bib0013
  article-title: Quantifying carbon and species dynamics under different fire regimes in a southeastern U.S. pineland
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2772
– volume: 151
  start-page: 29
  issue: 1
  year: 2002
  ident: 10.1016/j.ecolmodel.2022.110099_bib0040
  article-title: Estimating historical range and variation of landscape patch dynamics: limitations of the simulation approach
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(01)00470-7
– volume: 8
  start-page: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.ecolmodel.2022.110099_bib0072
  article-title: TreeMap, a tree-level model of conterminous US forests circa 2014 produced by imputation of FIA plot data
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00782-x
– volume: 10
  start-page: e02600
  issue: 2
  year: 2019
  ident: 10.1016/j.ecolmodel.2022.110099_bib0022
  article-title: Incorporating biophysical gradients and uncertainty into burn severity maps in a temperate fire-prone forested region
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2600
– volume: 32
  start-page: 772
  issue: 5
  year: 2012
  ident: 10.1016/j.ecolmodel.2022.110099_bib0001
  article-title: A comparison of statistical downscaling methods suited for wildfire applications
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.2312
– volume: 237
  year: 2020
  ident: 10.1016/j.ecolmodel.2022.110099_bib0016
  article-title: Detecting tree mortality with Landsat-derived spectral indices: improving ecological accuracy by examining uncertainty
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111497
– ident: 10.1016/j.ecolmodel.2022.110099_bib0033
– volume: 19
  start-page: 3502
  issue: 11
  year: 2013
  ident: 10.1016/j.ecolmodel.2022.110099_bib0049
  article-title: Carbon dynamics in the future forest: the importance of long-term successional legacy and climate–fire interactions
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12310
– volume: 9
  start-page: e02443
  issue: 10
  year: 2018
  ident: 10.1016/j.ecolmodel.2022.110099_bib0065
  article-title: Evidence for scale-dependent topographic controls on wildfire spread
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2443
– volume: 72
  start-page: 12
  issue: 24
  year: 1998
  ident: 10.1016/j.ecolmodel.2022.110099_bib0002
  article-title: The landscape ecology of western forest fire regimes
  publication-title: Northwest Sci.
– volume: 29
  start-page: 944
  issue: 5
  year: 2020
  ident: 10.1016/j.ecolmodel.2022.110099_bib0090
  article-title: Biogeography of fire regimes in western U.S. conifer forests: a trait-based approach
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.13079
– volume: 9
  year: 2021
  ident: 10.1016/j.ecolmodel.2022.110099_bib0092
  article-title: A step-by-step guide to initialize and calibrate landscape models: a case study in the Mediterranean mountains
  publication-title: Front. Ecol. Evol.
– volume: 222
  start-page: 144
  issue: 1
  year: 2011
  ident: 10.1016/j.ecolmodel.2022.110099_bib0080
  article-title: The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in Lake States Mesic forests
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2010.09.009
– volume: 9
  issue: 9
  year: 2018
  ident: 10.1016/j.ecolmodel.2022.110099_bib0038
  article-title: Use of landscape simulation modeling to quantify resilience for ecological applications
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2414
– volume: 100
  start-page: 400
  issue: 4
  year: 2011
  ident: 10.1016/j.ecolmodel.2022.110099_bib0024
  article-title: Challenges of forest landscape modeling—simulating large landscapes and validating results
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2011.02.019
– volume: 211
  start-page: 117
  year: 2005
  ident: 10.1016/j.ecolmodel.2022.110099_bib0026
  article-title: Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2005.02.016
– volume: 2
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.ecolmodel.2022.110099_bib0045
  article-title: Assessment of biomass burning in the conterminous United States
  publication-title: Conserv. Ecol.
– volume: 134
  year: 2020
  ident: 10.1016/j.ecolmodel.2022.110099_bib0063
  article-title: How robust are future projections of forest landscape dynamics? Insights from a systematic comparison of four forest landscape models
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2020.104844
– volume: 90
  start-page: 229
  issue: 3
  year: 1996
  ident: 10.1016/j.ecolmodel.2022.110099_bib0075
  article-title: Testing ecological models: the meaning of validation
  publication-title: Ecol. Model.
  doi: 10.1016/0304-3800(95)00152-2
– ident: 10.1016/j.ecolmodel.2022.110099_bib0020
– volume: 3
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.ecolmodel.2022.110099_bib0012
  article-title: A project for monitoring trends in burn severity
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.0301003
– volume: 28
  start-page: 1429
  issue: 8
  year: 2013
  ident: 10.1016/j.ecolmodel.2022.110099_bib0018
  article-title: When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-013-9927-4
– volume: 31
  start-page: e02431
  issue: 8
  year: 2021
  ident: 10.1016/j.ecolmodel.2022.110099_bib0019
  article-title: Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.2431
– year: 2011
  ident: 10.1016/j.ecolmodel.2022.110099_bib0059
– volume: 11
  start-page: e15
  issue: s1
  year: 2013
  ident: 10.1016/j.ecolmodel.2022.110099_bib0074
  article-title: Prescribed fire in North American forests and woodlands: history, current practice, and challenges
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/120329
– volume: 8
  start-page: 6749
  issue: 1
  year: 2018
  ident: 10.1016/j.ecolmodel.2022.110099_bib0083
  article-title: Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24642-2
– volume: 11
  start-page: e03214
  issue: 8
  year: 2020
  ident: 10.1016/j.ecolmodel.2022.110099_bib0017
  article-title: Wildfire and drought moderate the spatial elements of tree mortality
  publication-title: Ecosphere
  doi: 10.1002/ecs2.3214
– year: 2022
  ident: 10.1016/j.ecolmodel.2022.110099_bib0009
  article-title: Extreme fire spread events and area burned under recent and future climate in the western USA
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.13496
– volume: 32
  start-page: 1543
  issue: 8
  year: 2017
  ident: 10.1016/j.ecolmodel.2022.110099_bib0007
  article-title: Alternative characterization of forest fire regimes: incorporating spatial patterns
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-017-0528-5
– volume: 42
  start-page: 1648
  year: 2019
  ident: 10.1016/j.ecolmodel.2022.110099_bib0032
  article-title: Landscapemetrics: an open-source R tool to calculate landscape metrics
  publication-title: Ecography
  doi: 10.1111/ecog.04617
– volume: 263
  start-page: 641
  issue: 5147
  year: 1994
  ident: 10.1016/j.ecolmodel.2022.110099_bib0058
  article-title: Verification, validation, and confirmation of numerical models in the earth sciences
  publication-title: Science
  doi: 10.1126/science.263.5147.641
– volume: 23
  start-page: 1045
  issue: 8
  year: 2014
  ident: 10.1016/j.ecolmodel.2022.110099_bib0056
  article-title: Challenges of assessing fire and burn severity using field measures, remote sensing and modelling
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF13058
– start-page: 51
  year: 2011
  ident: 10.1016/j.ecolmodel.2022.110099_bib0057
  article-title: Native fire regimes and landscape resilience
– volume: 3
  start-page: 726
  issue: 1
  year: 2012
  ident: 10.1016/j.ecolmodel.2022.110099_bib0053
  article-title: Power laws reveal phase transitions in landscape controls of fire regimes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1731
– volume: 11
  start-page: e03150
  issue: 6
  year: 2020
  ident: 10.1016/j.ecolmodel.2022.110099_bib0047
  article-title: Impact of fire and harvest on forest ecosystem services in a species-rich area in the southern Appalachians
  publication-title: Ecosphere
  doi: 10.1002/ecs2.3150
– volume: 9
  start-page: 1232
  issue: 4
  year: 1999
  ident: 10.1016/j.ecolmodel.2022.110099_bib0030
  article-title: Detecting change in forest spatial patterns from reference conditions
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(1999)009[1232:DCIFSP]2.0.CO;2
– year: 2008
  ident: 10.1016/j.ecolmodel.2022.110099_bib0042
– volume: 16
  start-page: 207
  issue: 4
  year: 2018
  ident: 10.1016/j.ecolmodel.2022.110099_bib0046
  article-title: Large-scale restoration increases carbon stability under projected climate and wildfire regimes
  publication-title: Front. Ecol. Environ.
  doi: 10.1002/fee.1791
– volume: 117
  start-page: 1
  year: 2019
  ident: 10.1016/j.ecolmodel.2022.110099_bib0054
  article-title: Local and global parameter sensitivity within an ecophysiologically based forest landscape model
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.03.002
– volume: 180
  start-page: 7
  issue: 1
  year: 2004
  ident: 10.1016/j.ecolmodel.2022.110099_bib0055
  article-title: LANDIS and forest landscape models
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2004.03.016
– volume: 62
  start-page: 230
  year: 2014
  ident: 10.1016/j.ecolmodel.2022.110099_bib0094
  article-title: A framework for evaluating forest landscape model predictions using empirical data and knowledge
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2014.09.003
– volume: 267
  start-page: 74
  year: 2012
  ident: 10.1016/j.ecolmodel.2022.110099_bib0044
  article-title: Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2011.11.038
– volume: 23
  start-page: 1702
  issue: 8
  year: 2020
  ident: 10.1016/j.ecolmodel.2022.110099_bib0041
  article-title: Simulated increases in fire activity reinforce shrub conversion in a southwestern US forest
  publication-title: Ecosystems
  doi: 10.1007/s10021-020-00498-4
– volume: 34
  start-page: 159
  issue: 1
  year: 2019
  ident: 10.1016/j.ecolmodel.2022.110099_bib0003
  article-title: Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern Canada
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-018-0761-6
– volume: 518
  year: 2022
  ident: 10.1016/j.ecolmodel.2022.110099_bib0089
  article-title: Mass fire behavior created by extensive tree mortality and high tree density not predicted by operational fire behavior models in the southern Sierra Nevada
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2022.120258
– year: 2015
  ident: 10.1016/j.ecolmodel.2022.110099_bib99
– year: 2013
  ident: 10.1016/j.ecolmodel.2022.110099_bib0034
– volume: 201
  start-page: 409
  issue: 3–4
  year: 2007
  ident: 10.1016/j.ecolmodel.2022.110099_bib0079
  article-title: Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2006.10.009
– volume: 27
  start-page: 503
  issue: 2
  year: 2017
  ident: 10.1016/j.ecolmodel.2022.110099_bib0010
  article-title: Forest management scenarios in a changing climate: trade-offs between carbon, timber, and old forest
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.1460
– volume: 262
  start-page: 703
  issue: 5
  year: 2011
  ident: 10.1016/j.ecolmodel.2022.110099_bib0062
  article-title: The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2011.05.004
– volume: 8
  start-page: e01695
  issue: 3
  year: 2017
  ident: 10.1016/j.ecolmodel.2022.110099_bib0070
  article-title: Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010)
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1695
– volume: 179
  start-page: 3
  issue: 1
  year: 2004
  ident: 10.1016/j.ecolmodel.2022.110099_bib0037
  article-title: A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2004.03.015
– start-page: 201
  year: 2015
  ident: 10.1016/j.ecolmodel.2022.110099_bib0039
  article-title: Exploring interactions among multiple disturbance agents in forest landscapes: simulating effects of fire, beetles, and disease under climate change
– volume: 35
  start-page: 293
  issue: 2
  year: 2020
  ident: 10.1016/j.ecolmodel.2022.110099_bib0066
  article-title: Multi-scaled drivers of severity patterns vary across land ownerships for the 2013 Rim Fire, California
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-019-00947-z
– volume: 7
  start-page: 12
  issue: 1
  year: 2013
  ident: 10.1016/j.ecolmodel.2022.110099_bib0077
  article-title: Verification and validation of simulation models
  publication-title: J. Simul.
  doi: 10.1057/jos.2012.20
– volume: 10
  start-page: e02934
  issue: 11
  year: 2019
  ident: 10.1016/j.ecolmodel.2022.110099_bib0006
  article-title: Widespread severe wildfires under climate change lead to increased forest homogeneity in dry mixed-conifer forests
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2934
– volume: 46
  start-page: 190
  issue: 3
  year: 1996
  ident: 10.1016/j.ecolmodel.2022.110099_bib0069
  article-title: Validating models of ecosystem response to global change
  publication-title: Bioscience
  doi: 10.2307/1312740
– volume: 20
  start-page: 364
  issue: 3
  year: 2011
  ident: 10.1016/j.ecolmodel.2022.110099_bib0093
  article-title: Simulating landscape-scale effects of fuels treatments in the Sierra Nevada, California, USA
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF09125
– volume: 313
  start-page: 325
  year: 2015
  ident: 10.1016/j.ecolmodel.2022.110099_bib0087
  article-title: Predicting aboveground biomass with LANDIS-II: a global and temporal analysis of parameter sensitivity
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2015.06.033
– volume: 94
  start-page: 127
  year: 2017
  ident: 10.1016/j.ecolmodel.2022.110099_bib0051
  article-title: Application of the space-for-time substitution method in validating long-term biomass predictions of a forest landscape model
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.04.004
– volume: 178
  start-page: 23
  issue: 1–2
  year: 2003
  ident: 10.1016/j.ecolmodel.2022.110099_bib0025
  article-title: An environmental narrative of Inland Northwest United States forests, 1800–2000
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(03)00052-5
– volume: 13
  start-page: e4153
  issue: 6
  year: 2022
  ident: 10.1016/j.ecolmodel.2022.110099_bib100
  article-title: Delayed fire mortality has long-term ecological effects across the Southern Appalachian landscape
  publication-title: Ecosphere
  doi: 10.1002/ecs2.4153
– volume: 10
  start-page: e02702
  issue: 4
  year: 2019
  ident: 10.1016/j.ecolmodel.2022.110099_bib0023
  article-title: The missing fire: quantifying human exclusion of wildfire in Pacific Northwest forests, USA
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2702
– year: 2016
  ident: 10.1016/j.ecolmodel.2022.110099_bib0096
– year: 1996
  ident: 10.1016/j.ecolmodel.2022.110099_bib0060
– volume: 6
  start-page: 251
  issue: 4
  year: 1992
  ident: 10.1016/j.ecolmodel.2022.110099_bib0021
  article-title: Pseudoreplication: a sine qua non for regional ecology
  publication-title: Landsc. Ecol.
  doi: 10.1007/BF00129703
– start-page: 115
  year: 1984
  ident: 10.1016/j.ecolmodel.2022.110099_bib0076
  article-title: A tutorial on verification and validation of simulation models
– volume: 7
  start-page: e01471
  issue: 10
  year: 2016
  ident: 10.1016/j.ecolmodel.2022.110099_bib0014
  article-title: Are historical fire regimes compatible with future climate? Implications for forest restoration
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1471
– start-page: 415
  year: 2009
  ident: 10.1016/j.ecolmodel.2022.110099_bib0085
  article-title: Validation of landscape-scale decision support models that predict vegetation and wildlife dynamics
– volume: 32
  start-page: 835
  issue: 11
  year: 2017
  ident: 10.1016/j.ecolmodel.2022.110099_bib0008
  article-title: Process, mechanism, and modeling in macroecology
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2017.08.011
– volume: 7
  start-page: 239
  year: 2019
  ident: 10.1016/j.ecolmodel.2022.110099_bib0027
  article-title: Climate, environment, and disturbance history govern resilience of western North American forests
  publication-title: Front. Ecol. Evol.
  doi: 10.3389/fevo.2019.00239
– year: 2020
  ident: 10.1016/j.ecolmodel.2022.110099_bib0088
– volume: 3
  start-page: 163
  issue: 2
  year: 2000
  ident: 10.1016/j.ecolmodel.2022.110099_bib0029
  article-title: Ecological subregions of the interior Columbia Basin, USA
  publication-title: Appl. Veg. Sci.
  doi: 10.2307/1478995
– volume: 18
  start-page: 76
  issue: 1
  year: 2015
  ident: 10.1016/j.ecolmodel.2022.110099_bib0052
  article-title: Carbon tradeoffs of restoration and provision of endangered species habitat in a fire-maintained forest
  publication-title: Ecosystems
  doi: 10.1007/s10021-014-9813-1
– volume: 22
  start-page: 5
  issue: S1
  year: 2007
  ident: 10.1016/j.ecolmodel.2022.110099_bib0028
  article-title: Re-examining fire severity relations in pre-management era mixed conifer forests: inferences from landscape patterns of forest structure
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-007-9098-2
– volume: 401
  start-page: 85
  year: 2019
  ident: 10.1016/j.ecolmodel.2022.110099_bib0078
  article-title: A landscape model of variable social-ecological fire regimes
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.03.022
– volume: 89
  start-page: 255
  issue: 3
  year: 2015
  ident: 10.1016/j.ecolmodel.2022.110099_bib0050
  article-title: The evolution of long-term data for forestry: large temperate research plots in an era of global change
  publication-title: Northwest Sci.
  doi: 10.3955/046.089.0306
– volume: 5
  year: 2022
  ident: 10.1016/j.ecolmodel.2022.110099_bib0064
  article-title: Evaluating basin-scale forest adaptation scenarios: wildfire, streamflow, biomass, and economic recovery synergies and trade-offs
  publication-title: Front. For. Glob. Chang.
  doi: 10.3389/ffgc.2022.805179
– volume: 9
  start-page: 192
  issue: 4
  year: 2018
  ident: 10.1016/j.ecolmodel.2022.110099_bib0048
  article-title: Can land management buffer impacts of climate changes and altered fire regimes on ecosystems of the southwestern United States?
  publication-title: Forests
  doi: 10.3390/f9040192
– volume: 10
  start-page: 439
  issue: 1
  year: 2018
  ident: 10.1016/j.ecolmodel.2022.110099_bib0061
  article-title: Simple features for R: standardized support for spatial vector data
  publication-title: R J.
  doi: 10.32614/RJ-2018-009
– ident: 10.1016/j.ecolmodel.2022.110099_bib0086
– volume: 437
  start-page: 70
  year: 2019
  ident: 10.1016/j.ecolmodel.2022.110099_bib0035
  article-title: Forest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra Nevada
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2019.01.033
– volume: 21
  start-page: 643
  issue: 4
  year: 2018
  ident: 10.1016/j.ecolmodel.2022.110099_bib0081
  article-title: Interactions among fuel management, species composition, bark beetles, and climate change and the potential effects on forests of the Lake Tahoe basin
  publication-title: Ecosystems
  doi: 10.1007/s10021-017-0175-3
– year: 1990
  ident: 10.1016/j.ecolmodel.2022.110099_bib0004
– volume: 32
  start-page: 1307
  issue: 7
  year: 2017
  ident: 10.1016/j.ecolmodel.2022.110099_bib0084
  article-title: The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-017-0540-9
– volume: 75
  start-page: 1
  year: 2016
  ident: 10.1016/j.ecolmodel.2022.110099_bib0036
  article-title: Are more complex physiological models of forest ecosystems better choices for plot and regional predictions?
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.10.004
– volume: 366
  start-page: 221
  year: 2016
  ident: 10.1016/j.ecolmodel.2022.110099_bib0031
  article-title: Tamm review: management of mixed-severity fire regime forests in Oregon, Washington, and Northern California
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2016.01.034
– year: 2020
  ident: 10.1016/j.ecolmodel.2022.110099_bib0067
  article-title: Fire-fire and fire-vegetation dynamics: lessons from REBURN modeling
  publication-title: Ecosystems
– start-page: e2507
  year: 2022
  ident: 10.1016/j.ecolmodel.2022.110099_bib0015
  article-title: Crowding, climate, and the case for social distancing among trees
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.2507
– volume: 8
  start-page: e01663
  issue: 1
  year: 2017
  ident: 10.1016/j.ecolmodel.2022.110099_bib0043
  article-title: Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1663
– ident: 10.1016/j.ecolmodel.2022.110099_bib0095
SSID ssj0001282
Score 2.459849
Snippet •Establishes consistent, generalizable standards for calibrating and validating LANDIS-II.•Initialization methods based on publicly available, full coverage...
Process-based Forest Landscape Models (FLMs) rely on first principles to simulate ecological patterns and processes, making them uniquely powerful for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110099
SubjectTerms biomass
Carbon
Climate change
data collection
Disturbance modeling
Forest landscape models
forest vegetation simulator
forests
LANDIS-II
landscapes
model validation
mountains
Process-based modeling
Temperate forests
Wildfire-vegetation interactions
Title Predicting future patterns, processes, and their interactions: Benchmark calibration and validation procedures for forest landscape models
URI https://dx.doi.org/10.1016/j.ecolmodel.2022.110099
https://www.proquest.com/docview/2723107389
Volume 473
WOSCitedRecordID wos000858597800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001282
  issn: 0304-3800
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBhIvCAYT4yYj8ZalcpOmcfZWUCfYw1RpQ-pb5Diu6FbSKumq7S_sB_H7OMfHSdYNNBDioVGVm5N-X30uPhfGPoRCgR4glJ8ZAwbKIJN-FmWRH2B1NJXrQObCNpuIj4_lZJKMO50fdS7Meh4Xhby8TJb_FWrYB2Bj6uxfwN3cFHbAdwAdtgA7bP8I-HGJay82mpkKhmDtVHT7WcSWlBhAk4OLnpyVtmpESTkONkbuI7zRt--qPPcAQ7SoV3XYMjzqjPow0b1yGMHWdMAPiBjPJg9jWBV12ak2fP-6mWvtwXktOJFB8G4zauFOwR7eUbf11FYVrgfVsYzeYXNovFirc8dptNMrb9gcO6FYAGRRF90gjoLOyQH2cW_DyXE3-4YyvnBVRwpa1zE0gcsYLAZBWfj1DN-nbil3pAU5Ls66YOjP7Vt3cWzMjBDUtelWKe4THBEHDDC0BbYP2HYQRwnMptvDL6PJUaMDgNR361f0hBuRhb8c7nd60S0Nwao9p0_ZE2ev8CHx7BnrmGKHPSIcr3bY7qhNlITTnKSonrPrloacaMhrGu7zhoT7HMjCLQX5TQoe8IaA_AYB7dktAXlLQA7k40RA3hCQEwFfsK-Ho9NPn33X98PXoB2vcLLQ0wgrMYZSq0RKpY02oemBNMoSA3umIRZe7GlhwiBWUZYPprnMpkYE2SDIw122VSwK85Jx0ZN9nfS0wjpbIIpU3AeRlYtpnuskVvkeG9S_eqpdUXzszTJP6-jHs7SBK0W4UoJrj4nmwiXVhbn_koMa1tSpt6S2psDH-y9-XxMhBQGAq3qqMIuLKg1iNNFiMDxe_csAr9nj9o_3hm2tygvzlj3U69WsKt85fv8E67XhLA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+future+patterns%2C+processes%2C+and+their+interactions%3A+Benchmark+calibration+and+validation+procedures+for+forest+landscape+models&rft.jtitle=Ecological+modelling&rft.au=Furniss%2C+Tucker+J.&rft.au=Hessburg%2C+Paul+F.&rft.au=Povak%2C+Nicholas+A.&rft.au=Salter%2C+R.+Brion&rft.date=2022-11-01&rft.pub=Elsevier+B.V&rft.issn=0304-3800&rft.eissn=1872-7026&rft.volume=473&rft_id=info:doi/10.1016%2Fj.ecolmodel.2022.110099&rft.externalDocID=S0304380022002022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon