Predicting future patterns, processes, and their interactions: Benchmark calibration and validation procedures for forest landscape models
•Establishes consistent, generalizable standards for calibrating and validating LANDIS-II.•Initialization methods based on publicly available, full coverage datasets.•LANDIS-II can be calibrated to reliably simulate wildfire and biomass dynamics.•This study lowers the barrier to adapting forest land...
Gespeichert in:
| Veröffentlicht in: | Ecological modelling Jg. 473; S. 110099 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.11.2022
|
| Schlagworte: | |
| ISSN: | 0304-3800, 1872-7026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Establishes consistent, generalizable standards for calibrating and validating LANDIS-II.•Initialization methods based on publicly available, full coverage datasets.•LANDIS-II can be calibrated to reliably simulate wildfire and biomass dynamics.•This study lowers the barrier to adapting forest landscape models to new landscapes.•Aids independent assessment of the credibility of existing forest landscape models.
Process-based Forest Landscape Models (FLMs) rely on first principles to simulate ecological patterns and processes, making them uniquely powerful for forecasting ecological dynamics under unprecedented climatic and disturbance regimes. Persistent challenges with any ecological forecasting model are calibration (“tuning” the model) and validation (“proofing” the model). As no actual future data exist from which to conduct a formal model validation, model credibility is established through numerous tests against empirical datasets and comparisons with other types of models. The purpose of this study was to establish more consistent and generalizable standards for calibrating and validating LANDIS-II, a widely used, open-source FLM. We reviewed methods gleaned from a wide variety of previous FLM studies and advance some new techniques for evaluating the credibility of the model outputs. We used publicly available data with full coverage for the United States (US) so that our methods will be generalizable to other landscapes in the US, and we developed an ecologically meaningful set of validation metrics for evaluating the credibility of new applications.
We found that LANDIS-II could be calibrated to reliably simulate empirical vegetation-disturbance-climate dynamics in diverse, mountainous terrain and fire-prone landscapes of the eastern Cascade Mountains. We performed an inter-model validation between LANDIS-II and the Forest Vegetation Simulator (FVS), demonstrating consistent projections of biomass dynamics for all tree-dominated ecoregions in the study domain. Similarly, simulated fires reliably approximated the empirical fire event size and severity patch size distributions based on observed fire activity from 1984 to 2019. By establishing rigorous, transparent, and repeatable standards for calibrating and validating FLM dynamics, we sought to remove some of the barriers to adapting LANDIS-II to new landscapes and climates, facilitate further validation of existing models, and aid independent assessment of the credibility of forest landscape models. |
|---|---|
| AbstractList | Process-based Forest Landscape Models (FLMs) rely on first principles to simulate ecological patterns and processes, making them uniquely powerful for forecasting ecological dynamics under unprecedented climatic and disturbance regimes. Persistent challenges with any ecological forecasting model are calibration (“tuning” the model) and validation (“proofing” the model). As no actual future data exist from which to conduct a formal model validation, model credibility is established through numerous tests against empirical datasets and comparisons with other types of models. The purpose of this study was to establish more consistent and generalizable standards for calibrating and validating LANDIS-II, a widely used, open-source FLM. We reviewed methods gleaned from a wide variety of previous FLM studies and advance some new techniques for evaluating the credibility of the model outputs. We used publicly available data with full coverage for the United States (US) so that our methods will be generalizable to other landscapes in the US, and we developed an ecologically meaningful set of validation metrics for evaluating the credibility of new applications. We found that LANDIS-II could be calibrated to reliably simulate empirical vegetation-disturbance-climate dynamics in diverse, mountainous terrain and fire-prone landscapes of the eastern Cascade Mountains. We performed an inter-model validation between LANDIS-II and the Forest Vegetation Simulator (FVS), demonstrating consistent projections of biomass dynamics for all tree-dominated ecoregions in the study domain. Similarly, simulated fires reliably approximated the empirical fire event size and severity patch size distributions based on observed fire activity from 1984 to 2019. By establishing rigorous, transparent, and repeatable standards for calibrating and validating FLM dynamics, we sought to remove some of the barriers to adapting LANDIS-II to new landscapes and climates, facilitate further validation of existing models, and aid independent assessment of the credibility of forest landscape models. •Establishes consistent, generalizable standards for calibrating and validating LANDIS-II.•Initialization methods based on publicly available, full coverage datasets.•LANDIS-II can be calibrated to reliably simulate wildfire and biomass dynamics.•This study lowers the barrier to adapting forest landscape models to new landscapes.•Aids independent assessment of the credibility of existing forest landscape models. Process-based Forest Landscape Models (FLMs) rely on first principles to simulate ecological patterns and processes, making them uniquely powerful for forecasting ecological dynamics under unprecedented climatic and disturbance regimes. Persistent challenges with any ecological forecasting model are calibration (“tuning” the model) and validation (“proofing” the model). As no actual future data exist from which to conduct a formal model validation, model credibility is established through numerous tests against empirical datasets and comparisons with other types of models. The purpose of this study was to establish more consistent and generalizable standards for calibrating and validating LANDIS-II, a widely used, open-source FLM. We reviewed methods gleaned from a wide variety of previous FLM studies and advance some new techniques for evaluating the credibility of the model outputs. We used publicly available data with full coverage for the United States (US) so that our methods will be generalizable to other landscapes in the US, and we developed an ecologically meaningful set of validation metrics for evaluating the credibility of new applications. We found that LANDIS-II could be calibrated to reliably simulate empirical vegetation-disturbance-climate dynamics in diverse, mountainous terrain and fire-prone landscapes of the eastern Cascade Mountains. We performed an inter-model validation between LANDIS-II and the Forest Vegetation Simulator (FVS), demonstrating consistent projections of biomass dynamics for all tree-dominated ecoregions in the study domain. Similarly, simulated fires reliably approximated the empirical fire event size and severity patch size distributions based on observed fire activity from 1984 to 2019. By establishing rigorous, transparent, and repeatable standards for calibrating and validating FLM dynamics, we sought to remove some of the barriers to adapting LANDIS-II to new landscapes and climates, facilitate further validation of existing models, and aid independent assessment of the credibility of forest landscape models. |
| ArticleNumber | 110099 |
| Author | Hessburg, Paul F. Salter, R. Brion Wigmosta, Mark S. Furniss, Tucker J. Povak, Nicholas A. |
| Author_xml | – sequence: 1 givenname: Tucker J. orcidid: 0000-0002-4376-1737 surname: Furniss fullname: Furniss, Tucker J. email: tucker.furniss@usda.gov organization: USDA-FS, Pacific Northwest Research Station, 1133 N. Western Ave., Wenatchee, WA 98801, United States – sequence: 2 givenname: Paul F. surname: Hessburg fullname: Hessburg, Paul F. organization: USDA-FS, Pacific Northwest Research Station, 1133 N. Western Ave., Wenatchee, WA 98801, United States – sequence: 3 givenname: Nicholas A. surname: Povak fullname: Povak, Nicholas A. organization: USDA-FS, Pacific Northwest Research Station, 1133 N. Western Ave., Wenatchee, WA 98801, United States – sequence: 4 givenname: R. Brion surname: Salter fullname: Salter, R. Brion organization: USDA-FS, Pacific Northwest Research Station, 1133 N. Western Ave., Wenatchee, WA 98801, United States – sequence: 5 givenname: Mark S. surname: Wigmosta fullname: Wigmosta, Mark S. organization: University of Washington, College of Environment, SEFS, Seattle, WA, 98195, United States |
| BookMark | eNqNUcFO3DAQtRCVWCjfgI8cmu3YZhMHiQNFUJCQyqE9W854At5m463tReov8NV4NxUHLuVg2TN-7-nNvEO2P4aRGDsRMBcg6q_LOWEYVsHRMJcg5VwIgLbdYzOhG1k1IOt9NgMFZ5XSAAfsMKUlAAip5Yy9PERyHrMfH3m_yZtIfG1zpjimL3wdA1JKVJ52dDw_kY_cj-XXFkYY0zn_RiM-rWz8zdEOvot229-hn0vtpnKn44p24n2I20Mp86GgEto18Z359Jl96u2Q6PjffcR-3Vz_vLqt7n98v7u6vK9QtU2uukWH_ULoulYabau1RUJSJBoFXUul0yst9UIgkJKNXXSu7p3uegLZ1dKpI3Y66RZbfzbFiVn5hDQUPxQ2ychGKgGN0m2BXkxQjCGlSL1Bn3cz5Wj9YASYbQZmad4yMNsMzJRB4Tfv-Ovoy7b-foB5OTHLYujZUzQJfdl1CSsSZuOC_6_GK72PrQs |
| CitedBy_id | crossref_primary_10_1111_nph_18770 crossref_primary_10_1186_s42408_023_00190_7 crossref_primary_10_3389_fevo_2024_1112712 crossref_primary_10_1186_s42408_024_00339_y crossref_primary_10_1007_s10342_025_01775_4 crossref_primary_10_3389_ffgc_2023_1269081 crossref_primary_10_3390_f14101995 crossref_primary_10_1139_cjfr_2024_0085 crossref_primary_10_1016_j_envsoft_2025_106327 crossref_primary_10_1016_j_jenvman_2024_120083 crossref_primary_10_1016_j_scitotenv_2023_165869 crossref_primary_10_3389_ffgc_2023_1286980 |
| Cites_doi | 10.1890/13-1077.1 10.1890/08-2324.1 10.1890/ES15-00294.1 10.1186/s13717-017-0070-z 10.1002/ecs2.2772 10.1016/S0304-3800(01)00470-7 10.1038/s41597-020-00782-x 10.1002/ecs2.2600 10.1002/joc.2312 10.1016/j.rse.2019.111497 10.1111/gcb.12310 10.1002/ecs2.2443 10.1111/geb.13079 10.1016/j.ecolmodel.2010.09.009 10.1002/ecs2.2414 10.1016/j.landurbplan.2011.02.019 10.1016/j.foreco.2005.02.016 10.1016/j.envsoft.2020.104844 10.1016/0304-3800(95)00152-2 10.4996/fireecology.0301003 10.1007/s10980-013-9927-4 10.1002/eap.2431 10.1890/120329 10.1038/s41598-018-24642-2 10.1002/ecs2.3214 10.1111/geb.13496 10.1007/s10980-017-0528-5 10.1111/ecog.04617 10.1126/science.263.5147.641 10.1071/WF13058 10.1038/ncomms1731 10.1002/ecs2.3150 10.1890/1051-0761(1999)009[1232:DCIFSP]2.0.CO;2 10.1002/fee.1791 10.1016/j.envsoft.2019.03.002 10.1016/j.ecolmodel.2004.03.016 10.1016/j.envsoft.2014.09.003 10.1016/j.foreco.2011.11.038 10.1007/s10021-020-00498-4 10.1007/s10980-018-0761-6 10.1016/j.foreco.2022.120258 10.1016/j.ecolmodel.2006.10.009 10.1002/eap.1460 10.1016/j.foreco.2011.05.004 10.1002/ecs2.1695 10.1016/j.ecolmodel.2004.03.015 10.1007/s10980-019-00947-z 10.1057/jos.2012.20 10.1002/ecs2.2934 10.2307/1312740 10.1071/WF09125 10.1016/j.ecolmodel.2015.06.033 10.1016/j.envsoft.2017.04.004 10.1016/S0378-1127(03)00052-5 10.1002/ecs2.4153 10.1002/ecs2.2702 10.1007/BF00129703 10.1002/ecs2.1471 10.1016/j.tree.2017.08.011 10.3389/fevo.2019.00239 10.2307/1478995 10.1007/s10021-014-9813-1 10.1007/s10980-007-9098-2 10.1016/j.ecolmodel.2019.03.022 10.3955/046.089.0306 10.3389/ffgc.2022.805179 10.3390/f9040192 10.32614/RJ-2018-009 10.1016/j.foreco.2019.01.033 10.1007/s10021-017-0175-3 10.1007/s10980-017-0540-9 10.1016/j.envsoft.2015.10.004 10.1016/j.foreco.2016.01.034 10.1002/eap.2507 10.1002/ecs2.1663 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.ecolmodel.2022.110099 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology Environmental Sciences |
| EISSN | 1872-7026 |
| ExternalDocumentID | 10_1016_j_ecolmodel_2022_110099 S0304380022002022 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABLST ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEN SES SEW SPCBC SSA SSJ SSZ T5K VH1 WH7 WUQ Y6R ZY4 ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c397t-b5bcf5186638ca988acece3e1730b9ea98f382851c0e327a5bd6fd8bfe02b62d3 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000858597800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3800 |
| IngestDate | Sun Sep 28 08:07:00 EDT 2025 Sat Nov 29 07:25:01 EST 2025 Tue Nov 18 21:01:48 EST 2025 Fri Feb 23 02:36:39 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | LANDIS-II Climate change Forest landscape models Wildfire-vegetation interactions Temperate forests Process-based modeling Carbon Disturbance modeling |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c397t-b5bcf5186638ca988acece3e1730b9ea98f382851c0e327a5bd6fd8bfe02b62d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4376-1737 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.ecolmodel.2022.110099 |
| PQID | 2723107389 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2723107389 crossref_citationtrail_10_1016_j_ecolmodel_2022_110099 crossref_primary_10_1016_j_ecolmodel_2022_110099 elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2022_110099 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Ecological modelling |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Agee (bib0002) 1998; 72 Jeronimo, Kane, Churchill, Lutz, North, Asner, Franklin (bib0035) 2019; 437 Krofcheck, Hurteau, Scheller, Loudermilk (bib0043) 2017; 8 Syphard, Scheller, Ward, Spencer, Strittholt (bib0093) 2011; 20 Eidenshink, Schwind, Brewer, Zhu, Quayle, Howard (bib0012) 2007; 3 Burns, Honkala (bib0004) 1990 Dixon (bib0011) 2002 Wang, He, Spetich, Shifley, Thompson, Dijak, Wang (bib0094) 2014; 62 Hargrove, Pickering (bib0021) 1992; 6 Perry, Hessburg, Skinner, Spies, Stephens, Taylor, Franklin, McComb, Riegel (bib0062) 2011; 262 Larson, Churchill (bib0044) 2012; 267 Riley, Grenfell, Finney, Wiener (bib0072) 2021; 8 Hessburg, Agee (bib0025) 2003; 178 Rykiel (bib0075) 1996; 90 He, Yang, Shifley, Thompson (bib0024) 2011; 100 Lutz (bib0050) 2015; 89 Parks, Miller, Parisien, Holsinger, Dobrowski (bib97) 2015; 6 Scholl, Taylor (bib0082) 2010; 20 Hagmann, Hessburg, Prichard, Povak, Brown, Fulé, Keane, Knapp, Lydersen, Metlen, Reilly, Sánchez Meador, Stephens, Stevens, Taylor, Yocom, Battaglia, Churchill, Daniels, Falk, Henson, Johnston, Krawchuk, Levine, Meigs, Merschel, North, Safford, Swetnam, Waltz (bib0019) 2021; 31 Moritz, Hessburg, Povak, McKenzie, Miller, Falk (bib0057) 2011 Sargent, Sheppard, Pooch, Pegden (bib0076) 1984 Wickham (bib0096) 2016 Gustafson (bib0018) 2013; 28 . Scheller, Domingo, Sturtevant, Williams, Rudy, Gustafson, Mladenoff (bib0079) 2007; 201 Cansler, McKenzie (bib0005) 2014; 24 Shifley, Rittenhouse, Millspaugh, Millspaugh, Thompson III (bib0085) 2009 McKenzie, Duveneck, Morreale, Thompson (bib0054) 2019; 117 Baddeley, Rubak (bib99) 2015 Hessburg, Spies, Perry, Skinner, Taylor, Brown, Stephens, Larson, Churchill, Povak, Singleton, McComb, Zielinski, Collins, Salter, Keane, Franklin, Riegel (bib0031) 2016; 366 Keane, Loehman, Holsinger, Falk, Higuera, Hood, Hessburg (bib0038) 2018; 9 Povak, Salter, Hessburg, Prichard, Gray (bib0067) 2020 Abatzoglou, Brown (bib0001) 2012; 32 Robbins, Loudermilk, Reilly, O’Brien, Jones, Gerstle, Scheller (bib100) 2022; 13 Simons-Legaard, Legaard, Weiskittel (bib0087) 2015; 313 Creutzburg, Scheller, Lucash, LeDuc, Johnson (bib0010) 2017; 27 Wang, Wotton, Cantin, Parisien, Anderson, Moore (bib98) 2017; 6 Povak, Kane, Collins, Lydersen, Kane (bib0066) 2020; 35 Leenhouts (bib0045) 1998; 2 Martin, Hurteau, Hungate, Koch, North (bib0052) 2015; 18 Furniss, Das, Mantgem, Stephenson, Lutz (bib0015) 2022 Ryan, Knapp, Varner (bib0074) 2013; 11 Hessburg, Miller, Parks, Povak, Taylor, Higuera, Prichard, North, Collins, Hurteau, Larson, Allen, Stephens, Rivera-Huerta, Stevens-Rumann, Daniels, Gedalof, Gray, Kane, Churchill, Hagmann, Spies, Cansler, Belote, Veblen, Battaglia, Hoffman, Skinner, Safford, Salter (bib0027) 2019; 7 Boulanger, Arseneault, Boucher, Gauthier, Cyr, Taylor, Price, Dupuis (bib0003) 2019; 34 Hessburg, Agee, Franklin (bib0026) 2005; 211 Short (bib0086) Watershed Boundary Dataset for Washington State. 2019. Rastetter (bib0069) 1996; 46 Scheller, Kretchun, Loudermilk, Hurteau, Weisberg, Skinner (bib0081) 2018; 21 Shifley, He, Lischke, Wang, Jin, Gustafson, Thompson, Thompson, Dijak, Yang (bib0084) 2017; 32 Hessburg, Salter, James (bib0028) 2007; 22 Stevens, Kling, Schwilk, Varner, Kane (bib0090) 2020; 29 Liang, Hurteau, Westerling (bib0046) 2018; 16 Reilly, Dunn, Meigs, Spies, Kennedy, Bailey, Briggs (bib0070) 2017; 8 Hessburg, Salter, Richmond, Smith (bib0029) 2000; 3 Loehman, Flatley, Holsinger, Thode (bib0048) 2018; 9 Povak, Hessburg, Salter (bib0065) 2018; 9 Povak, Furniss, Hessburg, Salter, Wigmosta, Duan, LeFevre (bib0064) 2022; 5 Haugo, Kellogg, Cansler, Kolden, Kemp, Robertson, Metlen, Vaillant, Restaino (bib0023) 2019; 10 Mladenoff (bib0055) 2004; 180 Loudermilk, Scheller, Weisberg, Yang, Dilts, Karam, Skinner (bib0049) 2013; 19 Stephens, Bernal, Collins, Finney, Lautenberger, Saah (bib0089) 2022; 518 Suárez-Muñoz, Mina, Salazar, Navarro-Cerrillo, Quero, Bonet-García (bib0092) 2021; 9 Morgan, Keane, Dillon, Jain, Hudak, Karau, Sikkink, Holden, Strand (bib0056) 2014; 23 Hijmans, R.J. 2021. Raster: geographic data analysis and modeling. Scheller, Kretchun, Hawbaker, Henne (bib0078) 2019; 401 Oreskes, Shrader-Frechette, Belitz (bib0058) 1994; 263 Harvey, Andrus, Anderson (bib0022) 2019; 10 McKenzie, Kennedy (bib0053) 2012; 3 Serra-Diaz, Maxwell, Lucash, Scheller, Laflower, Miller, Tepley, Epstein, Anderson-Teixeira, Thompson (bib0083) 2018; 8 Flanagan, Bhotika, Hawley, Starr, Wiesner, Hiers, O'Brien, Goodrick, Callaham, Scheller, Klepzig, Taylor, Loudermilk (bib0013) 2019; 10 Jin, He, Thompson (bib0036) 2016; 75 Hessburg, Smith, Salter (bib0030) 1999; 9 Keane, Cary, Davies, Flannigan, Gardner, Lavorel, Lenihan, Li, Rupp (bib0037) 2004; 179 Hesselbarth, Sciaini, With, Wiegand, Nowosad (bib0032) 2019; 42 Furniss, Larson, Kane, Lutz (bib0017) 2020; 11 Cassell, Scheller, Lucash, Hurteau, Loudermilk (bib0006) 2019; 10 Coop, Parks, Stevens-Rumann, Ritter, Hoffman (bib0009) 2022 Connolly, Keith, Colwell, Rahbek (bib0008) 2017; 32 Flatley, Fulé (bib0014) 2016; 7 Hilborn, Mangel (bib0034) 2013 (bib0088) 2020 Hargrove, W.W., and F.M. Hoffman. 2004. A flux atlas for representativeness and statistical extrapolation of the AmeriFlux network. ORNL Technical Memorandum, No. ORNL/TM-2004/112, Oak Ridge National Laboratory. Available online at Petter, Mairota, Albrich, Bebi, Brůna, Bugmann, Haffenden, Scheller, Schmatz, Seidl, Speich, Vacchiano, Lischke (bib0063) 2020; 134 Scheller, Hua, Bolstad, Birdsey, Mladenoff (bib0080) 2011; 222 Keane, Parsons, Hessburg (bib0040) 2002; 151 Furniss, Kane, Larson, Lutz (bib0016) 2020; 237 Keane, Loehman, Clark, Smithwick, Miller, Perera, Sturtevant, Buse (bib0039) 2015 Collins, Stevens, Miller, Stephens, Brown, North (bib0007) 2017; 32 Ling, Prince, Baiocchi, Dymond, Xi, Hurtt (bib0047) 2020; 11 Keyser, Krofcheck, Remy, Allen, Hurteau (bib0041) 2020; 23 bib0068 Otto, Day (bib0059) 2011 Pebesma (bib0061) 2018; 10 Keyser, Dixon (bib0042) 2008 Parton (bib0060) 1996 Ma, Xiao, Bu, Doughty, Hu, Chen, Li, Zhao (bib0051) 2017; 94 Sargent (bib0077) 2013; 7 Scholl (10.1016/j.ecolmodel.2022.110099_bib0082) 2010; 20 Hargrove (10.1016/j.ecolmodel.2022.110099_bib0021) 1992; 6 Povak (10.1016/j.ecolmodel.2022.110099_bib0067) 2020 Abatzoglou (10.1016/j.ecolmodel.2022.110099_bib0001) 2012; 32 Stevens (10.1016/j.ecolmodel.2022.110099_bib0090) 2020; 29 Petter (10.1016/j.ecolmodel.2022.110099_bib0063) 2020; 134 Simons-Legaard (10.1016/j.ecolmodel.2022.110099_bib0087) 2015; 313 Wickham (10.1016/j.ecolmodel.2022.110099_bib0096) 2016 Gustafson (10.1016/j.ecolmodel.2022.110099_bib0018) 2013; 28 Moritz (10.1016/j.ecolmodel.2022.110099_bib0057) 2011 Hagmann (10.1016/j.ecolmodel.2022.110099_bib0019) 2021; 31 Connolly (10.1016/j.ecolmodel.2022.110099_bib0008) 2017; 32 Hessburg (10.1016/j.ecolmodel.2022.110099_bib0026) 2005; 211 Burns (10.1016/j.ecolmodel.2022.110099_bib0004) 1990 Furniss (10.1016/j.ecolmodel.2022.110099_bib0016) 2020; 237 Haugo (10.1016/j.ecolmodel.2022.110099_bib0023) 2019; 10 Reilly (10.1016/j.ecolmodel.2022.110099_bib0070) 2017; 8 Hessburg (10.1016/j.ecolmodel.2022.110099_bib0025) 2003; 178 Jeronimo (10.1016/j.ecolmodel.2022.110099_bib0035) 2019; 437 Furniss (10.1016/j.ecolmodel.2022.110099_bib0017) 2020; 11 Hesselbarth (10.1016/j.ecolmodel.2022.110099_bib0032) 2019; 42 Perry (10.1016/j.ecolmodel.2022.110099_bib0062) 2011; 262 Wang (10.1016/j.ecolmodel.2022.110099_bib0094) 2014; 62 Liang (10.1016/j.ecolmodel.2022.110099_bib0046) 2018; 16 Jin (10.1016/j.ecolmodel.2022.110099_bib0036) 2016; 75 Scheller (10.1016/j.ecolmodel.2022.110099_bib0078) 2019; 401 Scheller (10.1016/j.ecolmodel.2022.110099_bib0080) 2011; 222 Ma (10.1016/j.ecolmodel.2022.110099_bib0051) 2017; 94 Keane (10.1016/j.ecolmodel.2022.110099_bib0038) 2018; 9 Otto (10.1016/j.ecolmodel.2022.110099_bib0059) 2011 Cansler (10.1016/j.ecolmodel.2022.110099_bib0005) 2014; 24 Larson (10.1016/j.ecolmodel.2022.110099_bib0044) 2012; 267 McKenzie (10.1016/j.ecolmodel.2022.110099_bib0053) 2012; 3 Shifley (10.1016/j.ecolmodel.2022.110099_bib0084) 2017; 32 10.1016/j.ecolmodel.2022.110099_bib0033 Flanagan (10.1016/j.ecolmodel.2022.110099_bib0013) 2019; 10 Eidenshink (10.1016/j.ecolmodel.2022.110099_bib0012) 2007; 3 Scheller (10.1016/j.ecolmodel.2022.110099_bib0081) 2018; 21 Suárez-Muñoz (10.1016/j.ecolmodel.2022.110099_bib0092) 2021; 9 Krofcheck (10.1016/j.ecolmodel.2022.110099_bib0043) 2017; 8 Pebesma (10.1016/j.ecolmodel.2022.110099_bib0061) 2018; 10 Cassell (10.1016/j.ecolmodel.2022.110099_bib0006) 2019; 10 Dixon (10.1016/j.ecolmodel.2022.110099_bib0011) 2002 Stephens (10.1016/j.ecolmodel.2022.110099_bib0089) 2022; 518 Coop (10.1016/j.ecolmodel.2022.110099_bib0009) 2022 McKenzie (10.1016/j.ecolmodel.2022.110099_bib0054) 2019; 117 Riley (10.1016/j.ecolmodel.2022.110099_bib0072) 2021; 8 Leenhouts (10.1016/j.ecolmodel.2022.110099_bib0045) 1998; 2 Creutzburg (10.1016/j.ecolmodel.2022.110099_bib0010) 2017; 27 Ling (10.1016/j.ecolmodel.2022.110099_bib0047) 2020; 11 Robbins (10.1016/j.ecolmodel.2022.110099_bib100) 2022; 13 Martin (10.1016/j.ecolmodel.2022.110099_bib0052) 2015; 18 Rastetter (10.1016/j.ecolmodel.2022.110099_bib0069) 1996; 46 Keyser (10.1016/j.ecolmodel.2022.110099_bib0041) 2020; 23 Rykiel (10.1016/j.ecolmodel.2022.110099_bib0075) 1996; 90 Wang (10.1016/j.ecolmodel.2022.110099_bib98) 2017; 6 Sargent (10.1016/j.ecolmodel.2022.110099_bib0076) 1984 Hessburg (10.1016/j.ecolmodel.2022.110099_bib0030) 1999; 9 Loehman (10.1016/j.ecolmodel.2022.110099_bib0048) 2018; 9 Povak (10.1016/j.ecolmodel.2022.110099_bib0066) 2020; 35 Hessburg (10.1016/j.ecolmodel.2022.110099_bib0027) 2019; 7 10.1016/j.ecolmodel.2022.110099_bib0020 Keyser (10.1016/j.ecolmodel.2022.110099_bib0042) 2008 He (10.1016/j.ecolmodel.2022.110099_bib0024) 2011; 100 Serra-Diaz (10.1016/j.ecolmodel.2022.110099_bib0083) 2018; 8 Syphard (10.1016/j.ecolmodel.2022.110099_bib0093) 2011; 20 (10.1016/j.ecolmodel.2022.110099_bib0088) 2020 Parton (10.1016/j.ecolmodel.2022.110099_bib0060) 1996 Hessburg (10.1016/j.ecolmodel.2022.110099_bib0031) 2016; 366 Povak (10.1016/j.ecolmodel.2022.110099_bib0064) 2022; 5 Short (10.1016/j.ecolmodel.2022.110099_bib0086) Oreskes (10.1016/j.ecolmodel.2022.110099_bib0058) 1994; 263 Mladenoff (10.1016/j.ecolmodel.2022.110099_bib0055) 2004; 180 Hilborn (10.1016/j.ecolmodel.2022.110099_bib0034) 2013 Keane (10.1016/j.ecolmodel.2022.110099_bib0039) 2015 Flatley (10.1016/j.ecolmodel.2022.110099_bib0014) 2016; 7 Hessburg (10.1016/j.ecolmodel.2022.110099_bib0028) 2007; 22 Harvey (10.1016/j.ecolmodel.2022.110099_bib0022) 2019; 10 Collins (10.1016/j.ecolmodel.2022.110099_bib0007) 2017; 32 Furniss (10.1016/j.ecolmodel.2022.110099_bib0015) 2022 Baddeley (10.1016/j.ecolmodel.2022.110099_bib99) 2015 Keane (10.1016/j.ecolmodel.2022.110099_bib0037) 2004; 179 Parks (10.1016/j.ecolmodel.2022.110099_bib97) 2015; 6 Lutz (10.1016/j.ecolmodel.2022.110099_bib0050) 2015; 89 Hessburg (10.1016/j.ecolmodel.2022.110099_bib0029) 2000; 3 Keane (10.1016/j.ecolmodel.2022.110099_bib0040) 2002; 151 Povak (10.1016/j.ecolmodel.2022.110099_bib0065) 2018; 9 Loudermilk (10.1016/j.ecolmodel.2022.110099_bib0049) 2013; 19 Ryan (10.1016/j.ecolmodel.2022.110099_bib0074) 2013; 11 Scheller (10.1016/j.ecolmodel.2022.110099_bib0079) 2007; 201 10.1016/j.ecolmodel.2022.110099_bib0095 Boulanger (10.1016/j.ecolmodel.2022.110099_bib0003) 2019; 34 Shifley (10.1016/j.ecolmodel.2022.110099_bib0085) 2009 Morgan (10.1016/j.ecolmodel.2022.110099_bib0056) 2014; 23 Sargent (10.1016/j.ecolmodel.2022.110099_bib0077) 2013; 7 Agee (10.1016/j.ecolmodel.2022.110099_bib0002) 1998; 72 |
| References_xml | – reference: Hijmans, R.J. 2021. Raster: geographic data analysis and modeling. – year: 2011 ident: bib0059 article-title: A Biologist's Guide to Mathematical Modeling in Ecology and Evolution – volume: 11 start-page: e03150 year: 2020 ident: bib0047 article-title: Impact of fire and harvest on forest ecosystem services in a species-rich area in the southern Appalachians publication-title: Ecosphere – volume: 23 start-page: 1045 year: 2014 end-page: 1060 ident: bib0056 article-title: Challenges of assessing fire and burn severity using field measures, remote sensing and modelling publication-title: Int. J. Wildland Fire – volume: 8 start-page: e01663 year: 2017 ident: bib0043 article-title: Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada publication-title: Ecosphere – year: 2022 ident: bib0009 article-title: Extreme fire spread events and area burned under recent and future climate in the western USA publication-title: Glob. Ecol. Biogeogr. – volume: 10 start-page: e02702 year: 2019 ident: bib0023 article-title: The missing fire: quantifying human exclusion of wildfire in Pacific Northwest forests, USA publication-title: Ecosphere – volume: 401 start-page: 85 year: 2019 end-page: 93 ident: bib0078 article-title: A landscape model of variable social-ecological fire regimes publication-title: Ecol. Model. – volume: 35 start-page: 293 year: 2020 end-page: 318 ident: bib0066 article-title: Multi-scaled drivers of severity patterns vary across land ownerships for the 2013 Rim Fire, California publication-title: Landsc. Ecol. – volume: 366 start-page: 221 year: 2016 end-page: 250 ident: bib0031 article-title: Tamm review: management of mixed-severity fire regime forests in Oregon, Washington, and Northern California publication-title: For. Ecol. Manag. – volume: 11 start-page: e03214 year: 2020 ident: bib0017 article-title: Wildfire and drought moderate the spatial elements of tree mortality publication-title: Ecosphere – year: 1990 ident: bib0004 article-title: Silvics of North America, Vol. 1 Conifers. Page Pp. 675. No. Handbook 654 – volume: 7 start-page: e01471 year: 2016 ident: bib0014 article-title: Are historical fire regimes compatible with future climate? Implications for forest restoration publication-title: Ecosphere – volume: 211 start-page: 117 year: 2005 end-page: 139 ident: bib0026 article-title: Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras publication-title: For. Ecol. Manag. – volume: 518 year: 2022 ident: bib0089 article-title: Mass fire behavior created by extensive tree mortality and high tree density not predicted by operational fire behavior models in the southern Sierra Nevada publication-title: For. Ecol. Manag. – volume: 9 start-page: 1232 year: 1999 end-page: 1252 ident: bib0030 article-title: Detecting change in forest spatial patterns from reference conditions publication-title: Ecol. Appl. – volume: 7 start-page: 239 year: 2019 ident: bib0027 article-title: Climate, environment, and disturbance history govern resilience of western North American forests publication-title: Front. Ecol. Evol. – volume: 10 start-page: e02772 year: 2019 ident: bib0013 article-title: Quantifying carbon and species dynamics under different fire regimes in a southeastern U.S. pineland publication-title: Ecosphere – volume: 3 start-page: 726 year: 2012 ident: bib0053 article-title: Power laws reveal phase transitions in landscape controls of fire regimes publication-title: Nat. Commun. – ident: bib0086 article-title: Spatial wildfire occurrence data for the United States, 1992-2015 [FPA_FOD_20170508] – reference: Watershed Boundary Dataset for Washington State. 2019. – start-page: 51 year: 2011 end-page: 86 ident: bib0057 article-title: Native fire regimes and landscape resilience publication-title: The Landscape Ecology of Fire – start-page: 415 year: 2009 end-page: 448 ident: bib0085 article-title: Validation of landscape-scale decision support models that predict vegetation and wildlife dynamics publication-title: Models for Planning Wildlife Conservation in Large Landscapes – volume: 9 year: 2018 ident: bib0038 article-title: Use of landscape simulation modeling to quantify resilience for ecological applications publication-title: Ecosphere – volume: 16 start-page: 207 year: 2018 end-page: 212 ident: bib0046 article-title: Large-scale restoration increases carbon stability under projected climate and wildfire regimes publication-title: Front. Ecol. Environ. – volume: 32 start-page: 1543 year: 2017 end-page: 1552 ident: bib0007 article-title: Alternative characterization of forest fire regimes: incorporating spatial patterns publication-title: Landsc. Ecol. – volume: 22 start-page: 5 year: 2007 end-page: 24 ident: bib0028 article-title: -examining fire severity relations in pre-management era mixed conifer forests: inferences from landscape patterns of forest structure publication-title: Landsc. Ecol. – reference: Hargrove, W.W., and F.M. Hoffman. 2004. A flux atlas for representativeness and statistical extrapolation of the AmeriFlux network. ORNL Technical Memorandum, No. ORNL/TM-2004/112, Oak Ridge National Laboratory. Available online at: – year: 2020 ident: bib0088 article-title: Gridded National Soil Survey Geographic (gNATSGO) Database for Washington State – volume: 20 start-page: 362 year: 2010 end-page: 380 ident: bib0082 article-title: Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA publication-title: Ecol. Appl. – volume: 8 start-page: 11 year: 2021 ident: bib0072 article-title: TreeMap, a tree-level model of conterminous US forests circa 2014 produced by imputation of FIA plot data publication-title: Sci. Data – volume: 94 start-page: 127 year: 2017 end-page: 139 ident: bib0051 article-title: Application of the space-for-time substitution method in validating long-term biomass predictions of a forest landscape model publication-title: Environ. Model. Softw. – volume: 10 start-page: e02934 year: 2019 ident: bib0006 article-title: Widespread severe wildfires under climate change lead to increased forest homogeneity in dry mixed-conifer forests publication-title: Ecosphere – volume: 222 start-page: 144 year: 2011 end-page: 153 ident: bib0080 article-title: The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in Lake States Mesic forests publication-title: Ecol. Model. – volume: 19 start-page: 3502 year: 2013 end-page: 3515 ident: bib0049 article-title: Carbon dynamics in the future forest: the importance of long-term successional legacy and climate–fire interactions publication-title: Glob. Chang. Biol. – volume: 180 start-page: 7 year: 2004 end-page: 19 ident: bib0055 article-title: LANDIS and forest landscape models publication-title: Ecol. Model. – volume: 62 start-page: 230 year: 2014 end-page: 239 ident: bib0094 article-title: A framework for evaluating forest landscape model predictions using empirical data and knowledge publication-title: Environ. Model. Softw. – volume: 32 start-page: 1307 year: 2017 end-page: 1325 ident: bib0084 article-title: The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models publication-title: Landsc. Ecol. – volume: 437 start-page: 70 year: 2019 end-page: 86 ident: bib0035 article-title: Forest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra Nevada publication-title: For. Ecol. Manag. – volume: 89 start-page: 255 year: 2015 end-page: 269 ident: bib0050 article-title: The evolution of long-term data for forestry: large temperate research plots in an era of global change publication-title: Northwest Sci. – volume: 2 start-page: 1 year: 1998 end-page: 22 ident: bib0045 article-title: Assessment of biomass burning in the conterminous United States publication-title: Conserv. Ecol. – year: 2002 ident: bib0011 – volume: 8 start-page: e01695 year: 2017 ident: bib0070 article-title: Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010) publication-title: Ecosphere – volume: 267 start-page: 74 year: 2012 end-page: 92 ident: bib0044 article-title: Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments publication-title: For. Ecol. Manag. – year: 2015 ident: bib99 publication-title: Spatial point patterns: methodology and applications with R – volume: 179 start-page: 3 year: 2004 end-page: 27 ident: bib0037 article-title: A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics publication-title: Ecol. Model. – ident: bib0068 article-title: R: a language and environment for statistical computing. R foundation for statistical computing – start-page: 201 year: 2015 end-page: 231 ident: bib0039 article-title: Exploring interactions among multiple disturbance agents in forest landscapes: simulating effects of fire, beetles, and disease under climate change publication-title: Simulation Modeling of Forest Landscape Disturbances – volume: 3 start-page: 163 year: 2000 end-page: 180 ident: bib0029 article-title: Ecological subregions of the interior Columbia Basin, USA publication-title: Appl. Veg. Sci. – start-page: 115 year: 1984 end-page: 122 ident: bib0076 article-title: A tutorial on verification and validation of simulation models publication-title: In: Proceedings of the 1984 Winter Simulation Conference – volume: 31 start-page: e02431 year: 2021 ident: bib0019 article-title: Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests publication-title: Ecol. Appl. – volume: 21 start-page: 643 year: 2018 end-page: 656 ident: bib0081 article-title: Interactions among fuel management, species composition, bark beetles, and climate change and the potential effects on forests of the Lake Tahoe basin publication-title: Ecosystems – volume: 151 start-page: 29 year: 2002 end-page: 49 ident: bib0040 article-title: Estimating historical range and variation of landscape patch dynamics: limitations of the simulation approach publication-title: Ecol. Model. – volume: 13 start-page: e4153 year: 2022 ident: bib100 article-title: Delayed fire mortality has long-term ecological effects across the Southern Appalachian landscape publication-title: Ecosphere – volume: 24 start-page: 1037 year: 2014 end-page: 1056 ident: bib0005 article-title: Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA publication-title: Ecol. Appl. – volume: 313 start-page: 325 year: 2015 end-page: 332 ident: bib0087 article-title: Predicting aboveground biomass with LANDIS-II: a global and temporal analysis of parameter sensitivity publication-title: Ecol. Model. – volume: 5 year: 2022 ident: bib0064 article-title: Evaluating basin-scale forest adaptation scenarios: wildfire, streamflow, biomass, and economic recovery synergies and trade-offs publication-title: Front. For. Glob. Chang. – volume: 6 start-page: 251 year: 1992 end-page: 258 ident: bib0021 article-title: Pseudoreplication: a sine qua non for regional ecology publication-title: Landsc. Ecol. – volume: 32 start-page: 772 year: 2012 end-page: 780 ident: bib0001 article-title: A comparison of statistical downscaling methods suited for wildfire applications publication-title: Int. J. Climatol. – volume: 10 start-page: 439 year: 2018 end-page: 446 ident: bib0061 article-title: Simple features for R: standardized support for spatial vector data publication-title: R J. – volume: 117 start-page: 1 year: 2019 end-page: 13 ident: bib0054 article-title: Local and global parameter sensitivity within an ecophysiologically based forest landscape model publication-title: Environ. Model. Softw. – volume: 263 start-page: 641 year: 1994 end-page: 646 ident: bib0058 article-title: Verification, validation, and confirmation of numerical models in the earth sciences publication-title: Science – year: 1996 ident: bib0060 article-title: The CENTURY Model. Pages 283–291 Evaluation of Soil Organic Matter Models – volume: 20 start-page: 364 year: 2011 ident: bib0093 article-title: Simulating landscape-scale effects of fuels treatments in the Sierra Nevada, California, USA publication-title: Int. J. Wildland Fire – year: 2016 ident: bib0096 article-title: ggplot2: Elegant Graphics for Data Analysis – volume: 27 start-page: 503 year: 2017 end-page: 518 ident: bib0010 article-title: Forest management scenarios in a changing climate: trade-offs between carbon, timber, and old forest publication-title: Ecol. Appl. – volume: 8 start-page: 6749 year: 2018 ident: bib0083 article-title: Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century publication-title: Sci. Rep. – volume: 7 start-page: 12 year: 2013 end-page: 24 ident: bib0077 article-title: Verification and validation of simulation models publication-title: J. Simul. – year: 2013 ident: bib0034 article-title: The Ecological Detective – volume: 9 start-page: 192 year: 2018 ident: bib0048 article-title: Can land management buffer impacts of climate changes and altered fire regimes on ecosystems of the southwestern United States? publication-title: Forests – volume: 9 start-page: e02443 year: 2018 ident: bib0065 article-title: Evidence for scale-dependent topographic controls on wildfire spread publication-title: Ecosphere – volume: 10 start-page: e02600 year: 2019 ident: bib0022 article-title: Incorporating biophysical gradients and uncertainty into burn severity maps in a temperate fire-prone forested region publication-title: Ecosphere – volume: 201 start-page: 409 year: 2007 end-page: 419 ident: bib0079 article-title: Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution publication-title: Ecol. Model. – volume: 134 year: 2020 ident: bib0063 article-title: How robust are future projections of forest landscape dynamics? Insights from a systematic comparison of four forest landscape models publication-title: Environ. Model. Softw. – volume: 11 start-page: e15 year: 2013 end-page: e24 ident: bib0074 article-title: Prescribed fire in North American forests and woodlands: history, current practice, and challenges publication-title: Front. Ecol. Environ. – volume: 75 start-page: 1 year: 2016 end-page: 14 ident: bib0036 article-title: Are more complex physiological models of forest ecosystems better choices for plot and regional predictions? publication-title: Environ. Model. Softw. – volume: 6 start-page: 5 year: 2017 ident: bib98 article-title: cffdrs: an R package for the Canadian forest fire danger rating system publication-title: Ecol. Process. – volume: 46 start-page: 190 year: 1996 end-page: 198 ident: bib0069 article-title: Validating models of ecosystem response to global change publication-title: Bioscience – volume: 3 start-page: 3 year: 2007 end-page: 21 ident: bib0012 article-title: A project for monitoring trends in burn severity publication-title: Fire Ecol. – volume: 100 start-page: 400 year: 2011 end-page: 402 ident: bib0024 article-title: Challenges of forest landscape modeling—simulating large landscapes and validating results publication-title: Landsc. Urban Plan. – start-page: e2507 year: 2022 ident: bib0015 article-title: Crowding, climate, and the case for social distancing among trees publication-title: Ecol. Appl. – volume: 6 start-page: 1 year: 2015 end-page: 13 ident: bib97 article-title: Wildland fire deficit and surplus in the western United States, 1984–2012 publication-title: Ecosphere – volume: 178 start-page: 23 year: 2003 end-page: 59 ident: bib0025 article-title: An environmental narrative of Inland Northwest United States forests, 1800–2000 publication-title: For. Ecol. Manag. – volume: 23 start-page: 1702 year: 2020 end-page: 1713 ident: bib0041 article-title: Simulated increases in fire activity reinforce shrub conversion in a southwestern US forest publication-title: Ecosystems – volume: 42 start-page: 1648 year: 2019 end-page: 1657 ident: bib0032 article-title: Landscapemetrics: an open-source R tool to calculate landscape metrics publication-title: Ecography – volume: 237 year: 2020 ident: bib0016 article-title: Detecting tree mortality with Landsat-derived spectral indices: improving ecological accuracy by examining uncertainty publication-title: Remote Sens. Environ. – volume: 32 start-page: 835 year: 2017 end-page: 844 ident: bib0008 article-title: Process, mechanism, and modeling in macroecology publication-title: Trends Ecol. Evol. – reference: . – volume: 9 year: 2021 ident: bib0092 article-title: A step-by-step guide to initialize and calibrate landscape models: a case study in the Mediterranean mountains publication-title: Front. Ecol. Evol. – volume: 72 start-page: 12 year: 1998 ident: bib0002 article-title: The landscape ecology of western forest fire regimes publication-title: Northwest Sci. – volume: 34 start-page: 159 year: 2019 end-page: 174 ident: bib0003 article-title: Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern Canada publication-title: Landsc. Ecol. – year: 2008 ident: bib0042 article-title: East Cascades (EC) Variant Overview. Page 68. Internal Rep – volume: 28 start-page: 1429 year: 2013 end-page: 1437 ident: bib0018 article-title: When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world publication-title: Landsc. Ecol. – volume: 262 start-page: 703 year: 2011 end-page: 717 ident: bib0062 article-title: The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California publication-title: For. Ecol. Manag. – year: 2020 ident: bib0067 article-title: Fire-fire and fire-vegetation dynamics: lessons from REBURN modeling publication-title: Ecosystems – volume: 90 start-page: 229 year: 1996 end-page: 244 ident: bib0075 article-title: Testing ecological models: the meaning of validation publication-title: Ecol. Model. – volume: 18 start-page: 76 year: 2015 end-page: 88 ident: bib0052 article-title: Carbon tradeoffs of restoration and provision of endangered species habitat in a fire-maintained forest publication-title: Ecosystems – volume: 29 start-page: 944 year: 2020 end-page: 955 ident: bib0090 article-title: Biogeography of fire regimes in western U.S. conifer forests: a trait-based approach publication-title: Glob. Ecol. Biogeogr. – year: 2002 ident: 10.1016/j.ecolmodel.2022.110099_bib0011 – volume: 24 start-page: 1037 issue: 5 year: 2014 ident: 10.1016/j.ecolmodel.2022.110099_bib0005 article-title: Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA publication-title: Ecol. Appl. doi: 10.1890/13-1077.1 – volume: 20 start-page: 362 issue: 2 year: 2010 ident: 10.1016/j.ecolmodel.2022.110099_bib0082 article-title: Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA publication-title: Ecol. Appl. doi: 10.1890/08-2324.1 – volume: 6 start-page: 1 issue: 12 year: 2015 ident: 10.1016/j.ecolmodel.2022.110099_bib97 article-title: Wildland fire deficit and surplus in the western United States, 1984–2012 publication-title: Ecosphere doi: 10.1890/ES15-00294.1 – volume: 6 start-page: 5 issue: 1 year: 2017 ident: 10.1016/j.ecolmodel.2022.110099_bib98 article-title: cffdrs: an R package for the Canadian forest fire danger rating system publication-title: Ecol. Process. doi: 10.1186/s13717-017-0070-z – volume: 10 start-page: e02772 issue: 6 year: 2019 ident: 10.1016/j.ecolmodel.2022.110099_bib0013 article-title: Quantifying carbon and species dynamics under different fire regimes in a southeastern U.S. pineland publication-title: Ecosphere doi: 10.1002/ecs2.2772 – volume: 151 start-page: 29 issue: 1 year: 2002 ident: 10.1016/j.ecolmodel.2022.110099_bib0040 article-title: Estimating historical range and variation of landscape patch dynamics: limitations of the simulation approach publication-title: Ecol. Model. doi: 10.1016/S0304-3800(01)00470-7 – volume: 8 start-page: 11 issue: 1 year: 2021 ident: 10.1016/j.ecolmodel.2022.110099_bib0072 article-title: TreeMap, a tree-level model of conterminous US forests circa 2014 produced by imputation of FIA plot data publication-title: Sci. Data doi: 10.1038/s41597-020-00782-x – volume: 10 start-page: e02600 issue: 2 year: 2019 ident: 10.1016/j.ecolmodel.2022.110099_bib0022 article-title: Incorporating biophysical gradients and uncertainty into burn severity maps in a temperate fire-prone forested region publication-title: Ecosphere doi: 10.1002/ecs2.2600 – volume: 32 start-page: 772 issue: 5 year: 2012 ident: 10.1016/j.ecolmodel.2022.110099_bib0001 article-title: A comparison of statistical downscaling methods suited for wildfire applications publication-title: Int. J. Climatol. doi: 10.1002/joc.2312 – volume: 237 year: 2020 ident: 10.1016/j.ecolmodel.2022.110099_bib0016 article-title: Detecting tree mortality with Landsat-derived spectral indices: improving ecological accuracy by examining uncertainty publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111497 – ident: 10.1016/j.ecolmodel.2022.110099_bib0033 – volume: 19 start-page: 3502 issue: 11 year: 2013 ident: 10.1016/j.ecolmodel.2022.110099_bib0049 article-title: Carbon dynamics in the future forest: the importance of long-term successional legacy and climate–fire interactions publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12310 – volume: 9 start-page: e02443 issue: 10 year: 2018 ident: 10.1016/j.ecolmodel.2022.110099_bib0065 article-title: Evidence for scale-dependent topographic controls on wildfire spread publication-title: Ecosphere doi: 10.1002/ecs2.2443 – volume: 72 start-page: 12 issue: 24 year: 1998 ident: 10.1016/j.ecolmodel.2022.110099_bib0002 article-title: The landscape ecology of western forest fire regimes publication-title: Northwest Sci. – volume: 29 start-page: 944 issue: 5 year: 2020 ident: 10.1016/j.ecolmodel.2022.110099_bib0090 article-title: Biogeography of fire regimes in western U.S. conifer forests: a trait-based approach publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.13079 – volume: 9 year: 2021 ident: 10.1016/j.ecolmodel.2022.110099_bib0092 article-title: A step-by-step guide to initialize and calibrate landscape models: a case study in the Mediterranean mountains publication-title: Front. Ecol. Evol. – volume: 222 start-page: 144 issue: 1 year: 2011 ident: 10.1016/j.ecolmodel.2022.110099_bib0080 article-title: The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in Lake States Mesic forests publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2010.09.009 – volume: 9 issue: 9 year: 2018 ident: 10.1016/j.ecolmodel.2022.110099_bib0038 article-title: Use of landscape simulation modeling to quantify resilience for ecological applications publication-title: Ecosphere doi: 10.1002/ecs2.2414 – volume: 100 start-page: 400 issue: 4 year: 2011 ident: 10.1016/j.ecolmodel.2022.110099_bib0024 article-title: Challenges of forest landscape modeling—simulating large landscapes and validating results publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2011.02.019 – volume: 211 start-page: 117 year: 2005 ident: 10.1016/j.ecolmodel.2022.110099_bib0026 article-title: Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2005.02.016 – volume: 2 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.ecolmodel.2022.110099_bib0045 article-title: Assessment of biomass burning in the conterminous United States publication-title: Conserv. Ecol. – volume: 134 year: 2020 ident: 10.1016/j.ecolmodel.2022.110099_bib0063 article-title: How robust are future projections of forest landscape dynamics? Insights from a systematic comparison of four forest landscape models publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2020.104844 – volume: 90 start-page: 229 issue: 3 year: 1996 ident: 10.1016/j.ecolmodel.2022.110099_bib0075 article-title: Testing ecological models: the meaning of validation publication-title: Ecol. Model. doi: 10.1016/0304-3800(95)00152-2 – ident: 10.1016/j.ecolmodel.2022.110099_bib0020 – volume: 3 start-page: 3 issue: 1 year: 2007 ident: 10.1016/j.ecolmodel.2022.110099_bib0012 article-title: A project for monitoring trends in burn severity publication-title: Fire Ecol. doi: 10.4996/fireecology.0301003 – volume: 28 start-page: 1429 issue: 8 year: 2013 ident: 10.1016/j.ecolmodel.2022.110099_bib0018 article-title: When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world publication-title: Landsc. Ecol. doi: 10.1007/s10980-013-9927-4 – volume: 31 start-page: e02431 issue: 8 year: 2021 ident: 10.1016/j.ecolmodel.2022.110099_bib0019 article-title: Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests publication-title: Ecol. Appl. doi: 10.1002/eap.2431 – year: 2011 ident: 10.1016/j.ecolmodel.2022.110099_bib0059 – volume: 11 start-page: e15 issue: s1 year: 2013 ident: 10.1016/j.ecolmodel.2022.110099_bib0074 article-title: Prescribed fire in North American forests and woodlands: history, current practice, and challenges publication-title: Front. Ecol. Environ. doi: 10.1890/120329 – volume: 8 start-page: 6749 issue: 1 year: 2018 ident: 10.1016/j.ecolmodel.2022.110099_bib0083 article-title: Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century publication-title: Sci. Rep. doi: 10.1038/s41598-018-24642-2 – volume: 11 start-page: e03214 issue: 8 year: 2020 ident: 10.1016/j.ecolmodel.2022.110099_bib0017 article-title: Wildfire and drought moderate the spatial elements of tree mortality publication-title: Ecosphere doi: 10.1002/ecs2.3214 – year: 2022 ident: 10.1016/j.ecolmodel.2022.110099_bib0009 article-title: Extreme fire spread events and area burned under recent and future climate in the western USA publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.13496 – volume: 32 start-page: 1543 issue: 8 year: 2017 ident: 10.1016/j.ecolmodel.2022.110099_bib0007 article-title: Alternative characterization of forest fire regimes: incorporating spatial patterns publication-title: Landsc. Ecol. doi: 10.1007/s10980-017-0528-5 – volume: 42 start-page: 1648 year: 2019 ident: 10.1016/j.ecolmodel.2022.110099_bib0032 article-title: Landscapemetrics: an open-source R tool to calculate landscape metrics publication-title: Ecography doi: 10.1111/ecog.04617 – volume: 263 start-page: 641 issue: 5147 year: 1994 ident: 10.1016/j.ecolmodel.2022.110099_bib0058 article-title: Verification, validation, and confirmation of numerical models in the earth sciences publication-title: Science doi: 10.1126/science.263.5147.641 – volume: 23 start-page: 1045 issue: 8 year: 2014 ident: 10.1016/j.ecolmodel.2022.110099_bib0056 article-title: Challenges of assessing fire and burn severity using field measures, remote sensing and modelling publication-title: Int. J. Wildland Fire doi: 10.1071/WF13058 – start-page: 51 year: 2011 ident: 10.1016/j.ecolmodel.2022.110099_bib0057 article-title: Native fire regimes and landscape resilience – volume: 3 start-page: 726 issue: 1 year: 2012 ident: 10.1016/j.ecolmodel.2022.110099_bib0053 article-title: Power laws reveal phase transitions in landscape controls of fire regimes publication-title: Nat. Commun. doi: 10.1038/ncomms1731 – volume: 11 start-page: e03150 issue: 6 year: 2020 ident: 10.1016/j.ecolmodel.2022.110099_bib0047 article-title: Impact of fire and harvest on forest ecosystem services in a species-rich area in the southern Appalachians publication-title: Ecosphere doi: 10.1002/ecs2.3150 – volume: 9 start-page: 1232 issue: 4 year: 1999 ident: 10.1016/j.ecolmodel.2022.110099_bib0030 article-title: Detecting change in forest spatial patterns from reference conditions publication-title: Ecol. Appl. doi: 10.1890/1051-0761(1999)009[1232:DCIFSP]2.0.CO;2 – year: 2008 ident: 10.1016/j.ecolmodel.2022.110099_bib0042 – volume: 16 start-page: 207 issue: 4 year: 2018 ident: 10.1016/j.ecolmodel.2022.110099_bib0046 article-title: Large-scale restoration increases carbon stability under projected climate and wildfire regimes publication-title: Front. Ecol. Environ. doi: 10.1002/fee.1791 – volume: 117 start-page: 1 year: 2019 ident: 10.1016/j.ecolmodel.2022.110099_bib0054 article-title: Local and global parameter sensitivity within an ecophysiologically based forest landscape model publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.03.002 – volume: 180 start-page: 7 issue: 1 year: 2004 ident: 10.1016/j.ecolmodel.2022.110099_bib0055 article-title: LANDIS and forest landscape models publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2004.03.016 – volume: 62 start-page: 230 year: 2014 ident: 10.1016/j.ecolmodel.2022.110099_bib0094 article-title: A framework for evaluating forest landscape model predictions using empirical data and knowledge publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.09.003 – volume: 267 start-page: 74 year: 2012 ident: 10.1016/j.ecolmodel.2022.110099_bib0044 article-title: Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2011.11.038 – volume: 23 start-page: 1702 issue: 8 year: 2020 ident: 10.1016/j.ecolmodel.2022.110099_bib0041 article-title: Simulated increases in fire activity reinforce shrub conversion in a southwestern US forest publication-title: Ecosystems doi: 10.1007/s10021-020-00498-4 – volume: 34 start-page: 159 issue: 1 year: 2019 ident: 10.1016/j.ecolmodel.2022.110099_bib0003 article-title: Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern Canada publication-title: Landsc. Ecol. doi: 10.1007/s10980-018-0761-6 – volume: 518 year: 2022 ident: 10.1016/j.ecolmodel.2022.110099_bib0089 article-title: Mass fire behavior created by extensive tree mortality and high tree density not predicted by operational fire behavior models in the southern Sierra Nevada publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2022.120258 – year: 2015 ident: 10.1016/j.ecolmodel.2022.110099_bib99 – year: 2013 ident: 10.1016/j.ecolmodel.2022.110099_bib0034 – volume: 201 start-page: 409 issue: 3–4 year: 2007 ident: 10.1016/j.ecolmodel.2022.110099_bib0079 article-title: Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2006.10.009 – volume: 27 start-page: 503 issue: 2 year: 2017 ident: 10.1016/j.ecolmodel.2022.110099_bib0010 article-title: Forest management scenarios in a changing climate: trade-offs between carbon, timber, and old forest publication-title: Ecol. Appl. doi: 10.1002/eap.1460 – volume: 262 start-page: 703 issue: 5 year: 2011 ident: 10.1016/j.ecolmodel.2022.110099_bib0062 article-title: The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2011.05.004 – volume: 8 start-page: e01695 issue: 3 year: 2017 ident: 10.1016/j.ecolmodel.2022.110099_bib0070 article-title: Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010) publication-title: Ecosphere doi: 10.1002/ecs2.1695 – volume: 179 start-page: 3 issue: 1 year: 2004 ident: 10.1016/j.ecolmodel.2022.110099_bib0037 article-title: A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2004.03.015 – start-page: 201 year: 2015 ident: 10.1016/j.ecolmodel.2022.110099_bib0039 article-title: Exploring interactions among multiple disturbance agents in forest landscapes: simulating effects of fire, beetles, and disease under climate change – volume: 35 start-page: 293 issue: 2 year: 2020 ident: 10.1016/j.ecolmodel.2022.110099_bib0066 article-title: Multi-scaled drivers of severity patterns vary across land ownerships for the 2013 Rim Fire, California publication-title: Landsc. Ecol. doi: 10.1007/s10980-019-00947-z – volume: 7 start-page: 12 issue: 1 year: 2013 ident: 10.1016/j.ecolmodel.2022.110099_bib0077 article-title: Verification and validation of simulation models publication-title: J. Simul. doi: 10.1057/jos.2012.20 – volume: 10 start-page: e02934 issue: 11 year: 2019 ident: 10.1016/j.ecolmodel.2022.110099_bib0006 article-title: Widespread severe wildfires under climate change lead to increased forest homogeneity in dry mixed-conifer forests publication-title: Ecosphere doi: 10.1002/ecs2.2934 – volume: 46 start-page: 190 issue: 3 year: 1996 ident: 10.1016/j.ecolmodel.2022.110099_bib0069 article-title: Validating models of ecosystem response to global change publication-title: Bioscience doi: 10.2307/1312740 – volume: 20 start-page: 364 issue: 3 year: 2011 ident: 10.1016/j.ecolmodel.2022.110099_bib0093 article-title: Simulating landscape-scale effects of fuels treatments in the Sierra Nevada, California, USA publication-title: Int. J. Wildland Fire doi: 10.1071/WF09125 – volume: 313 start-page: 325 year: 2015 ident: 10.1016/j.ecolmodel.2022.110099_bib0087 article-title: Predicting aboveground biomass with LANDIS-II: a global and temporal analysis of parameter sensitivity publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2015.06.033 – volume: 94 start-page: 127 year: 2017 ident: 10.1016/j.ecolmodel.2022.110099_bib0051 article-title: Application of the space-for-time substitution method in validating long-term biomass predictions of a forest landscape model publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.04.004 – volume: 178 start-page: 23 issue: 1–2 year: 2003 ident: 10.1016/j.ecolmodel.2022.110099_bib0025 article-title: An environmental narrative of Inland Northwest United States forests, 1800–2000 publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(03)00052-5 – volume: 13 start-page: e4153 issue: 6 year: 2022 ident: 10.1016/j.ecolmodel.2022.110099_bib100 article-title: Delayed fire mortality has long-term ecological effects across the Southern Appalachian landscape publication-title: Ecosphere doi: 10.1002/ecs2.4153 – volume: 10 start-page: e02702 issue: 4 year: 2019 ident: 10.1016/j.ecolmodel.2022.110099_bib0023 article-title: The missing fire: quantifying human exclusion of wildfire in Pacific Northwest forests, USA publication-title: Ecosphere doi: 10.1002/ecs2.2702 – year: 2016 ident: 10.1016/j.ecolmodel.2022.110099_bib0096 – year: 1996 ident: 10.1016/j.ecolmodel.2022.110099_bib0060 – volume: 6 start-page: 251 issue: 4 year: 1992 ident: 10.1016/j.ecolmodel.2022.110099_bib0021 article-title: Pseudoreplication: a sine qua non for regional ecology publication-title: Landsc. Ecol. doi: 10.1007/BF00129703 – start-page: 115 year: 1984 ident: 10.1016/j.ecolmodel.2022.110099_bib0076 article-title: A tutorial on verification and validation of simulation models – volume: 7 start-page: e01471 issue: 10 year: 2016 ident: 10.1016/j.ecolmodel.2022.110099_bib0014 article-title: Are historical fire regimes compatible with future climate? Implications for forest restoration publication-title: Ecosphere doi: 10.1002/ecs2.1471 – start-page: 415 year: 2009 ident: 10.1016/j.ecolmodel.2022.110099_bib0085 article-title: Validation of landscape-scale decision support models that predict vegetation and wildlife dynamics – volume: 32 start-page: 835 issue: 11 year: 2017 ident: 10.1016/j.ecolmodel.2022.110099_bib0008 article-title: Process, mechanism, and modeling in macroecology publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2017.08.011 – volume: 7 start-page: 239 year: 2019 ident: 10.1016/j.ecolmodel.2022.110099_bib0027 article-title: Climate, environment, and disturbance history govern resilience of western North American forests publication-title: Front. Ecol. Evol. doi: 10.3389/fevo.2019.00239 – year: 2020 ident: 10.1016/j.ecolmodel.2022.110099_bib0088 – volume: 3 start-page: 163 issue: 2 year: 2000 ident: 10.1016/j.ecolmodel.2022.110099_bib0029 article-title: Ecological subregions of the interior Columbia Basin, USA publication-title: Appl. Veg. Sci. doi: 10.2307/1478995 – volume: 18 start-page: 76 issue: 1 year: 2015 ident: 10.1016/j.ecolmodel.2022.110099_bib0052 article-title: Carbon tradeoffs of restoration and provision of endangered species habitat in a fire-maintained forest publication-title: Ecosystems doi: 10.1007/s10021-014-9813-1 – volume: 22 start-page: 5 issue: S1 year: 2007 ident: 10.1016/j.ecolmodel.2022.110099_bib0028 article-title: Re-examining fire severity relations in pre-management era mixed conifer forests: inferences from landscape patterns of forest structure publication-title: Landsc. Ecol. doi: 10.1007/s10980-007-9098-2 – volume: 401 start-page: 85 year: 2019 ident: 10.1016/j.ecolmodel.2022.110099_bib0078 article-title: A landscape model of variable social-ecological fire regimes publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2019.03.022 – volume: 89 start-page: 255 issue: 3 year: 2015 ident: 10.1016/j.ecolmodel.2022.110099_bib0050 article-title: The evolution of long-term data for forestry: large temperate research plots in an era of global change publication-title: Northwest Sci. doi: 10.3955/046.089.0306 – volume: 5 year: 2022 ident: 10.1016/j.ecolmodel.2022.110099_bib0064 article-title: Evaluating basin-scale forest adaptation scenarios: wildfire, streamflow, biomass, and economic recovery synergies and trade-offs publication-title: Front. For. Glob. Chang. doi: 10.3389/ffgc.2022.805179 – volume: 9 start-page: 192 issue: 4 year: 2018 ident: 10.1016/j.ecolmodel.2022.110099_bib0048 article-title: Can land management buffer impacts of climate changes and altered fire regimes on ecosystems of the southwestern United States? publication-title: Forests doi: 10.3390/f9040192 – volume: 10 start-page: 439 issue: 1 year: 2018 ident: 10.1016/j.ecolmodel.2022.110099_bib0061 article-title: Simple features for R: standardized support for spatial vector data publication-title: R J. doi: 10.32614/RJ-2018-009 – ident: 10.1016/j.ecolmodel.2022.110099_bib0086 – volume: 437 start-page: 70 year: 2019 ident: 10.1016/j.ecolmodel.2022.110099_bib0035 article-title: Forest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra Nevada publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2019.01.033 – volume: 21 start-page: 643 issue: 4 year: 2018 ident: 10.1016/j.ecolmodel.2022.110099_bib0081 article-title: Interactions among fuel management, species composition, bark beetles, and climate change and the potential effects on forests of the Lake Tahoe basin publication-title: Ecosystems doi: 10.1007/s10021-017-0175-3 – year: 1990 ident: 10.1016/j.ecolmodel.2022.110099_bib0004 – volume: 32 start-page: 1307 issue: 7 year: 2017 ident: 10.1016/j.ecolmodel.2022.110099_bib0084 article-title: The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models publication-title: Landsc. Ecol. doi: 10.1007/s10980-017-0540-9 – volume: 75 start-page: 1 year: 2016 ident: 10.1016/j.ecolmodel.2022.110099_bib0036 article-title: Are more complex physiological models of forest ecosystems better choices for plot and regional predictions? publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.10.004 – volume: 366 start-page: 221 year: 2016 ident: 10.1016/j.ecolmodel.2022.110099_bib0031 article-title: Tamm review: management of mixed-severity fire regime forests in Oregon, Washington, and Northern California publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2016.01.034 – year: 2020 ident: 10.1016/j.ecolmodel.2022.110099_bib0067 article-title: Fire-fire and fire-vegetation dynamics: lessons from REBURN modeling publication-title: Ecosystems – start-page: e2507 year: 2022 ident: 10.1016/j.ecolmodel.2022.110099_bib0015 article-title: Crowding, climate, and the case for social distancing among trees publication-title: Ecol. Appl. doi: 10.1002/eap.2507 – volume: 8 start-page: e01663 issue: 1 year: 2017 ident: 10.1016/j.ecolmodel.2022.110099_bib0043 article-title: Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada publication-title: Ecosphere doi: 10.1002/ecs2.1663 – ident: 10.1016/j.ecolmodel.2022.110099_bib0095 |
| SSID | ssj0001282 |
| Score | 2.459849 |
| Snippet | •Establishes consistent, generalizable standards for calibrating and validating LANDIS-II.•Initialization methods based on publicly available, full coverage... Process-based Forest Landscape Models (FLMs) rely on first principles to simulate ecological patterns and processes, making them uniquely powerful for... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 110099 |
| SubjectTerms | biomass Carbon Climate change data collection Disturbance modeling Forest landscape models forest vegetation simulator forests LANDIS-II landscapes model validation mountains Process-based modeling Temperate forests Wildfire-vegetation interactions |
| Title | Predicting future patterns, processes, and their interactions: Benchmark calibration and validation procedures for forest landscape models |
| URI | https://dx.doi.org/10.1016/j.ecolmodel.2022.110099 https://www.proquest.com/docview/2723107389 |
| Volume | 473 |
| WOSCitedRecordID | wos000858597800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001282 issn: 0304-3800 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbKBhI3CAYT409GQtx0mdI4TZzdDdRpoKpUopN6Z8WOo3UraUm6arwCT8Gjco7tJB0a2rjgolGVxk7c8-Ucn39C3uVRT6o89D0p4SUPZeJ7CfOVFzIdh6qX5lqZROFhPBrx6TQZdzq_6lyY9TwuCn51lSz_K6nhHBAbU2f_gdzNpHACvgPR4Qhkh-OdCD8u0fdiopltwRCsnYpmP0OxpU0MsMzBRU_OSlM1orQ5DiZG7gOs6OxbWl50gYaoUa_qsGV41Jntw2TnyuAOpqYDfkDEdE3yMIZV2S471TXbv2p4rflxXgtORBCsbWZbuNtgj9ZjdQJPjO6gOpSxDUceL9bphUM0aulVa5v9agMBEEJoAnHwcwYO0I17jYHDJXah84b7_ibTDmPWXWIOA1YYvVEUWKvE-QFo8XOzpAOc3A1ppV_t8R99Ecenw6GYDKaT98vvHvYlQ_-9a9Jyj2wHcT8Bvrl99Gkw_dxIe5DvzlNlH_JaDOGN9_7bDuiPvYDZ4Ewek0dOM6FHFlFPSEcXO-SBpdiPHbI7aFMi4TInE6qn5GcLOGoBR2vA7dMGbvsUYEEN2Ogm2A5pAzW6ATVzdQs12kKNAsyohRptoEYt1J6R0-PB5OOJ5zp8eAr2wStP9oFR9LHmIuMqTThPFfAGpnsgd2Si4UzOsMRiT_maBXHal1mUZ1zm2g9kFGRsl2wVi0I_JzTnWkodxEGe6TAKcs6zJOIhY2EaMin5Honqf10oV_4eu7DMRR3neC4acgkkl7Dk2iN-M3BpK8DcPuSwJqtwG1m7QRUAztsHv62BIIDVo_8uLfTishKwOFDGYlAxXtzhmpfkYfs2vSJbq_JSvyb31Xo1q8o3Dsa_ARiG1TM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+future+patterns%2C+processes%2C+and+their+interactions%3A+Benchmark+calibration+and+validation+procedures+for+forest+landscape+models&rft.jtitle=Ecological+modelling&rft.au=Furniss%2C+Tucker+J&rft.au=Hessburg%2C+Paul+F&rft.au=Povak%2C+Nicholas+A&rft.au=Salter%2C+R+Brion&rft.date=2022-11-01&rft.issn=0304-3800&rft.volume=473+p.110099-&rft_id=info:doi/10.1016%2Fj.ecolmodel.2022.110099&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon |