Mean field games with state constraints: from mild to pointwise solutions of the PDE system
Mean Field Games with state constraints are differential games with infinitely many agents, each agent facing a constraint on his state. The aim of this paper is to provide a meaning of the PDE system associated with these games, the so-called Mean Field Game system with state constraints. For this,...
Uloženo v:
| Vydáno v: | Calculus of variations and partial differential equations Ročník 60; číslo 3; s. 1 - 33 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 0944-2669, 1432-0835 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Mean Field Games with state constraints are differential games with infinitely many agents, each agent facing a constraint on his state. The aim of this paper is to provide a meaning of the PDE system associated with these games, the so-called Mean Field Game system with state constraints. For this, we show a global semiconvavity property of the value function associated with optimal control problems with state constraints. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0944-2669 1432-0835 |
| DOI: | 10.1007/s00526-021-01936-4 |