A multinomial logistic regression modeling approach for anomaly intrusion detection

Although researchers have long studied using statistical modeling techniques to detect anomaly intrusion and profile user behavior, the feasibility of applying multinomial logistic regression modeling to predict multi-attack types has not been addressed, and the risk factors associated with individu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & security Ročník 24; číslo 8; s. 662 - 674
Hlavní autor: Wang, Yun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2005
Témata:
ISSN:0167-4048, 1872-6208
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Although researchers have long studied using statistical modeling techniques to detect anomaly intrusion and profile user behavior, the feasibility of applying multinomial logistic regression modeling to predict multi-attack types has not been addressed, and the risk factors associated with individual major attacks remain unclear. To address the gaps, this study used the KDD-cup 1999 data and bootstrap simulation method to fit 3000 multinomial logistic regression models with the most frequent attack types ( probe, DoS, U2R, and R2L) as an unordered independent variable, and identified 13 risk factors that are statistically significantly associated with these attacks. These risk factors were then used to construct a final multinomial model that had an ROC area of 0.99 for detecting abnormal events. Compared with the top KDD-cup 1999 winning results that were based on a rule-based decision tree algorithm, the multinomial logistic model-based classification results had similar sensitivity values in detecting normal (98.3% vs. 99.5%), probe (85.6% vs. 83.3%), and DoS (97.2% vs. 97.1%); remarkably high sensitivity in U2R (25.9% vs. 13.2%) and R2L (11.2% vs. 8.4%); and a significantly lower overall misclassification rate (18.9% vs. 35.7%). The study emphasizes that the multinomial logistic regression modeling technique with the 13 risk factors provides a robust approach to detect anomaly intrusion.
AbstractList Although researchers have long studied using statistical modeling techniques to detect anomaly intrusion and profile user behavior, the feasibility of applying multinomial logistic regression modeling to predict multi-attack types has not been addressed, and the risk factors associated with individual major attacks remain unclear. To address the gaps, this study used the KDD-cup 1999 data and bootstrap simulation method to fit 3000 multinomial logistic regression models with the most frequent attack types ( probe, DoS, U2R, and R2L) as an unordered independent variable, and identified 13 risk factors that are statistically significantly associated with these attacks. These risk factors were then used to construct a final multinomial model that had an ROC area of 0.99 for detecting abnormal events. Compared with the top KDD-cup 1999 winning results that were based on a rule-based decision tree algorithm, the multinomial logistic model-based classification results had similar sensitivity values in detecting normal (98.3% vs. 99.5%), probe (85.6% vs. 83.3%), and DoS (97.2% vs. 97.1%); remarkably high sensitivity in U2R (25.9% vs. 13.2%) and R2L (11.2% vs. 8.4%); and a significantly lower overall misclassification rate (18.9% vs. 35.7%). The study emphasizes that the multinomial logistic regression modeling technique with the 13 risk factors provides a robust approach to detect anomaly intrusion.
Although researchers have long studied using statistical modeling techniques to detect anomaly intrusion and profile user behavior, the feasibility of applying multinomial logistic regression modeling to predict multi-attack types has not been addressed, and the risk factors associated with individual major attacks remain unclear. To address the gaps, this study used the KDD-cup 1999 data and bootstrap simulation method to fit 3000 multinomial logistic regression models with the most frequent attack types (probe, DoS, U2R, and R2L) as an unordered independent variable, and identified 13 risk factors that are statistically significantly associated with these attacks. These risk factors were then used to construct a final multinomial model that had an ROC area of 0.99 for detecting abnormal events. Compared with the top KDD-cup 1999 winning results that were based on a rule-based decision tree algorithm, the multinomial logistic model-based classification results had similar sensitivity values in detecting normal (98.3% vs. 99.5%), probe (85.6% vs. 83.3%), and DoS (97.2% vs. 97.1%); remarkably high sensitivity in U2R (25.9% vs. 13.2%) and R2L (11.2% vs. 8.4%); and a significantly lower overall misclassification rate (18.9% vs. 35.7%). The study emphasizes that the multinomial logistic regression modeling technique with the 13 risk factors provides a robust approach to detect anomaly intrusion.
Author Wang, Yun
Author_xml – sequence: 1
  givenname: Yun
  surname: Wang
  fullname: Wang, Yun
  email: yun.wang.yw38@yale.edu
  organization: Center for Outcomes Research and Evaluation, Yale University and Yale New Haven Health System, GB415, 20 York Street, New Haven, CT 06511, USA
BookMark eNp9kE9LAzEQxYMo2Fa_gKc9eduabLKbFLwU8R8UPKjnME1ma0p2U5NU6Ld313ryIAzMHN7vMe9NyWkfeiTkitE5o6y52c5NSDivKK3n41B-QiZMyapsKqpOyWQQyVJQoc7JNKUtpUw2Sk3I67Lo9j67PnQOfOHDxqXsTBFxEzElF_qiCxa96zcF7HYxgPko2hALGAjwh8L1Oe5_dBYzmjxcF-SsBZ_w8nfPyPvD_dvdU7l6eXy-W65Kwxcyl6CoYLw1vGoFFwCqseuGt5UFLhayBpS8tYyDAIkLJejaKNaArW1dGyGB8xm5PvoOb33uMWXduWTQe-gx7JOuFrypOJeDsDoKTQwpRWz1LroO4kEzqsf-9FaP_emxPz0OHd3VH8i4DGO-HMH5_9HbI4pD-i-HUSfjsDdoXRwq0ja4__BvcKKPuw
CitedBy_id crossref_primary_10_1108_CG_08_2016_0169
crossref_primary_10_1038_s41598_020_80371_5
crossref_primary_10_1155_2020_8860418
crossref_primary_10_1016_j_jclepro_2017_11_221
crossref_primary_10_1016_j_procs_2020_08_020
crossref_primary_10_1007_s13278_013_0097_9
crossref_primary_10_1109_JIOT_2022_3197323
crossref_primary_10_1001_jamanetworkopen_2018_1079
crossref_primary_10_1016_j_eswa_2010_04_017
crossref_primary_10_1007_s10586_023_04165_w
crossref_primary_10_3390_electronics12051121
crossref_primary_10_1007_s11269_013_0478_x
crossref_primary_10_1016_j_eswa_2021_116208
crossref_primary_10_3390_app13169363
crossref_primary_10_1016_j_jss_2018_05_016
crossref_primary_10_1007_s12530_010_9026_6
crossref_primary_10_1186_s13673_016_0076_z
crossref_primary_10_1016_j_is_2021_101759
crossref_primary_10_1016_j_comcom_2009_10_010
crossref_primary_10_1109_ACCESS_2021_3106873
crossref_primary_10_1109_ACCESS_2021_3129775
crossref_primary_10_1002_mar_21309
crossref_primary_10_1016_j_autcon_2014_04_002
crossref_primary_10_1080_09397140_2014_892340
crossref_primary_10_1016_j_jphotobiol_2016_11_013
crossref_primary_10_1016_j_future_2019_01_004
crossref_primary_10_1109_ACCESS_2020_2997939
crossref_primary_10_1016_j_envc_2023_100811
crossref_primary_10_3390_app13063792
crossref_primary_10_1057_palgrave_sj_8350073
crossref_primary_10_1016_j_asoc_2025_113298
crossref_primary_10_1002_phy2_6
crossref_primary_10_1016_j_cose_2022_102709
crossref_primary_10_1016_j_egyr_2022_11_116
crossref_primary_10_1016_j_ufug_2022_127551
crossref_primary_10_3390_digital2040027
crossref_primary_10_3390_jmse11010221
crossref_primary_10_1016_j_eswa_2018_03_027
crossref_primary_10_1016_j_jnca_2022_103392
crossref_primary_10_3390_app12031550
crossref_primary_10_1007_s10462_012_9372_9
crossref_primary_10_1155_2022_1942847
crossref_primary_10_3390_info13120553
crossref_primary_10_1016_j_comnet_2021_108008
crossref_primary_10_1016_j_sysarc_2017_10_011
crossref_primary_10_1061__ASCE_ME_1943_5479_0000910
crossref_primary_10_1080_15536548_2007_10855825
crossref_primary_10_1016_j_comcom_2006_07_018
crossref_primary_10_3390_math9080902
crossref_primary_10_3390_app12094184
crossref_primary_10_1287_ijoc_2022_0132
crossref_primary_10_1038_s41598_022_25237_8
crossref_primary_10_1109_TNSM_2021_3078381
crossref_primary_10_1016_j_compeleceng_2013_02_005
crossref_primary_10_1002_cpe_3955
crossref_primary_10_1016_j_inffus_2015_04_001
crossref_primary_10_1016_j_procs_2015_08_528
crossref_primary_10_1061__ASCE_MT_1943_5533_0000588
Cites_doi 10.1016/S0167-4048(03)00112-3
ContentType Journal Article
Copyright 2005 Elsevier Ltd
Copyright_xml – notice: 2005 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cose.2005.05.003
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6208
EndPage 674
ExternalDocumentID 10_1016_j_cose_2005_05_003
S0167404805000751
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLX
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG8
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SBM
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
XJE
XPP
XSW
YK3
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c397t-a80413fc32f434aa86db63f2da34975ae73fd13a4a7e9840bc816ad5d55c47a33
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000234189600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-4048
IngestDate Sat Sep 27 17:11:42 EDT 2025
Sat Nov 29 05:55:37 EST 2025
Tue Nov 18 21:56:34 EST 2025
Fri Feb 23 02:20:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Bootstrap
Multinomial logistic regression model
Computer security
Intrusion detection
Classification
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c397t-a80413fc32f434aa86db63f2da34975ae73fd13a4a7e9840bc816ad5d55c47a33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29362337
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_29362337
crossref_primary_10_1016_j_cose_2005_05_003
crossref_citationtrail_10_1016_j_cose_2005_05_003
elsevier_sciencedirect_doi_10_1016_j_cose_2005_05_003
PublicationCentury 2000
PublicationDate 2005-11-01
PublicationDateYYYYMMDD 2005-11-01
PublicationDate_xml – month: 11
  year: 2005
  text: 2005-11-01
  day: 01
PublicationDecade 2000
PublicationTitle Computers & security
PublicationYear 2005
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lunt T, Javitz H, Valdes A. A real-time intrusion detection expert system (IDES). SRI Project 6784, SRI International Technical Report; 1992.
Qin, Hwang (bib18) 2004
Shyu, Chen, Sarinnapakorn, Chang (bib14) 2003
McFadden (bib23) 1974
Cannady (bib3) 1998
KDD-Cup (bib20) 1999
Cannady (bib4) 2000
Zhou, Lang (bib19) 2003
INFOSEC Research Council (bib27) January 21, 2004
Bridges, Vaughn (bib11) 2000
Stolfo, Fan, Lee, Prodromidis, Chan (bib22) 2000
Dacid, Hosmer (bib25) 2000
Masum, Ye, Chen, Noh (bib17) 2000
Kosko (bib10) 1993
Zhang, Li, Manikopoulos, Jorgenson, Ucles (bib5) 2001
Barbard, Wu, Jajodia (bib16) 2001
Efron, Tibshirani (bib24) 1994
Gomez, Dasgupta (bib12) 2002
Taylor, Alves-Foss (bib15) 2001
Hossain, Bridges (bib9) 2001
Sekar, Bendre, Dhurjati, Bollinei (bib13) 2001
Elkan (bib26) 2000; 3
Gao, Ma, Yang (bib7) 2002
Taylor, Alves-Foss (bib28) 2002
Anderson (bib1) 1980
Lippmann, Cunningham (bib2) 1999
Cho, Park (bib8) 2003; 22
Cannady (10.1016/j.cose.2005.05.003_bib4) 2000
Efron (10.1016/j.cose.2005.05.003_bib24) 1994
Barbard (10.1016/j.cose.2005.05.003_bib16) 2001
Qin (10.1016/j.cose.2005.05.003_bib18) 2004
Lippmann (10.1016/j.cose.2005.05.003_bib2) 1999
Shyu (10.1016/j.cose.2005.05.003_bib14) 2003
Anderson (10.1016/j.cose.2005.05.003_bib1) 1980
Zhang (10.1016/j.cose.2005.05.003_bib5) 2001
Masum (10.1016/j.cose.2005.05.003_bib17) 2000
10.1016/j.cose.2005.05.003_bib6
KDD-Cup (10.1016/j.cose.2005.05.003_bib20) 1999
Hossain (10.1016/j.cose.2005.05.003_bib9) 2001
McFadden (10.1016/j.cose.2005.05.003_bib23) 1974
Stolfo (10.1016/j.cose.2005.05.003_bib22) 2000
Gomez (10.1016/j.cose.2005.05.003_bib12) 2002
Dacid (10.1016/j.cose.2005.05.003_bib25) 2000
Zhou (10.1016/j.cose.2005.05.003_bib19) 2003
INFOSEC Research Council (10.1016/j.cose.2005.05.003_bib27)
Taylor (10.1016/j.cose.2005.05.003_bib28) 2002
Taylor (10.1016/j.cose.2005.05.003_bib15) 2001
Kosko (10.1016/j.cose.2005.05.003_bib10) 1993
Bridges (10.1016/j.cose.2005.05.003_bib11) 2000
Gao (10.1016/j.cose.2005.05.003_bib7) 2002
Sekar (10.1016/j.cose.2005.05.003_bib13) 2001
Cannady (10.1016/j.cose.2005.05.003_bib3) 1998
Cho (10.1016/j.cose.2005.05.003_bib8) 2003; 22
Elkan (10.1016/j.cose.2005.05.003_bib26) 2000; 3
References_xml – year: 2001
  ident: bib9
  article-title: A framework for an adaptive intrusion detection system with data mining
  publication-title: Proceedings of the 13th Canadian information technology security symposium
– year: 2003
  ident: bib14
  article-title: A novel anomaly detection scheme based on principal component classifier
  publication-title: Proceedings of the IEEE foundations and new directions of data mining workshop, in conjunction with the 3rd IEEE International Conference on Data Mining (ICDM)
– year: 2002
  ident: bib12
  article-title: Evolving fuzzy classifiers for intrusion detection
  publication-title: Proceedings of 3rd annual IEEE information assurance workshop
– year: 1998
  ident: bib3
  article-title: The application of artificial neural networks to misuse detection: initial results
  publication-title: Proceedings of the 1st international workshop on the Recent Advances in Intrusion Detection (RAID)
– year: 2001
  ident: bib16
  article-title: Detecting novel network intrusions using Bayes estimators
  publication-title: Proceedings of the 1st SIAM international conference on data mining
– year: 1999
  ident: bib2
  article-title: Improving intrusion detection performance using keyword selection and neural networks
  publication-title: Proceedings of the second international workshop on Recent Advances in Intrusion Detection (RAID99)
– year: 2001
  ident: bib13
  article-title: A fast automaton-based method for detecting anomalous program behavior
  publication-title: Proceedings of the IEEE symposium on security and privacy
– reference: Lunt T, Javitz H, Valdes A. A real-time intrusion detection expert system (IDES). SRI Project 6784, SRI International Technical Report; 1992.
– year: 2000
  ident: bib25
  article-title: Applied logistic regression
– year: 2003
  ident: bib19
  article-title: Mining frequency content of network traffic for intrusion detection
  publication-title: Proceedings of the IASTED international conference on communication, network, and information security
– year: 2002
  ident: bib28
  article-title: An empirical analysis of NATE: network analysis of anomalous traffic events
  publication-title: Proceedings of the 10th new security paradigms workshop
– volume: 22
  start-page: 45
  year: 2003
  end-page: 55
  ident: bib8
  article-title: Efficient anomaly detection by modeling privilege flows using hidden Markov model
  publication-title: Computer and Security
– year: 1994
  ident: bib24
  article-title: An introduction to the bootstrap
– year: 2002
  ident: bib7
  article-title: HMMS (hidden Markov models) based on anomaly intrusion detection method
  publication-title: Proceedings of the first international conference on machine learning and cybernetics
– year: 1999
  ident: bib20
  publication-title: KDD data available on the web
– year: 2001
  ident: bib5
  article-title: HIDE: a hierarchical network intrusion detection system using statistical preprocessing and neural network classification
  publication-title: Proceedings of the 2001 IEEE workshop on information assurance and security
– year: 1993
  ident: bib10
  article-title: Fuzzy thinking, the new science of fuzzy logic
– year: 2000
  ident: bib17
  article-title: Chi-square statistical profiling for anomaly detection
  publication-title: Proceedings of the 2000 IEEE workshop on information assurance and security
– year: 2000
  ident: bib4
  article-title: Next generation intrusion detection: autonomous reinforcement learning of network attacks
  publication-title: Proceedings of the 23rd national information systems security conference
– year: January 21, 2004
  ident: bib27
  article-title: National scale INFOSEC research hard problems list
– year: 2000
  ident: bib22
  article-title: Cost-based modeling and evaluation for data mining with application to fraud and intrusion detection
  publication-title: Proceedings of the DARPA information survivability conference
– year: 1980
  ident: bib1
  article-title: Computer security threat monitoring and surveillance
– year: 2004
  ident: bib18
  article-title: Frequent rules for intrusive anomaly detection with Internet datamining
  publication-title: Proceedings of the 13th USENIX security symposium
– start-page: 105
  year: 1974
  end-page: 142
  ident: bib23
  article-title: Conditional logit analysis of qualitative choice behavior
  publication-title: Frontiers in econometrics
– volume: 3
  start-page: 262
  year: 2000
  end-page: 294
  ident: bib26
  article-title: Results of the KDD' 99 classifier learning contest
  publication-title: ACM Transactions on Information and System Security
– year: 2001
  ident: bib15
  article-title: “Low cost” network intrusion detection
  publication-title: Proceedings of the new security paradigms workshop
– year: 2000
  ident: bib11
  article-title: Fuzzy data mining and genetic algorithms applied to intrusion detection
  publication-title: Proceedings of the 23rd national information systems security conference
– year: 2002
  ident: 10.1016/j.cose.2005.05.003_bib28
  article-title: An empirical analysis of NATE: network analysis of anomalous traffic events
– year: 1980
  ident: 10.1016/j.cose.2005.05.003_bib1
– year: 2001
  ident: 10.1016/j.cose.2005.05.003_bib16
  article-title: Detecting novel network intrusions using Bayes estimators
– year: 1994
  ident: 10.1016/j.cose.2005.05.003_bib24
– year: 2000
  ident: 10.1016/j.cose.2005.05.003_bib25
– volume: 3
  start-page: 262
  issue: 4
  year: 2000
  ident: 10.1016/j.cose.2005.05.003_bib26
  article-title: Results of the KDD' 99 classifier learning contest
  publication-title: ACM Transactions on Information and System Security
– year: 2003
  ident: 10.1016/j.cose.2005.05.003_bib19
  article-title: Mining frequency content of network traffic for intrusion detection
– volume: 22
  start-page: 45
  issue: 1
  year: 2003
  ident: 10.1016/j.cose.2005.05.003_bib8
  article-title: Efficient anomaly detection by modeling privilege flows using hidden Markov model
  publication-title: Computer and Security
  doi: 10.1016/S0167-4048(03)00112-3
– year: 2000
  ident: 10.1016/j.cose.2005.05.003_bib17
  article-title: Chi-square statistical profiling for anomaly detection
– year: 2001
  ident: 10.1016/j.cose.2005.05.003_bib15
  article-title: “Low cost” network intrusion detection
– year: 2001
  ident: 10.1016/j.cose.2005.05.003_bib9
  article-title: A framework for an adaptive intrusion detection system with data mining
– year: 2000
  ident: 10.1016/j.cose.2005.05.003_bib4
  article-title: Next generation intrusion detection: autonomous reinforcement learning of network attacks
– year: 2001
  ident: 10.1016/j.cose.2005.05.003_bib13
  article-title: A fast automaton-based method for detecting anomalous program behavior
– year: 2002
  ident: 10.1016/j.cose.2005.05.003_bib12
  article-title: Evolving fuzzy classifiers for intrusion detection
– year: 1999
  ident: 10.1016/j.cose.2005.05.003_bib20
  publication-title: KDD data available on the web
– year: 1999
  ident: 10.1016/j.cose.2005.05.003_bib2
  article-title: Improving intrusion detection performance using keyword selection and neural networks
– year: 2003
  ident: 10.1016/j.cose.2005.05.003_bib14
  article-title: A novel anomaly detection scheme based on principal component classifier
– year: 2002
  ident: 10.1016/j.cose.2005.05.003_bib7
  article-title: HMMS (hidden Markov models) based on anomaly intrusion detection method
– ident: 10.1016/j.cose.2005.05.003_bib6
– year: 2000
  ident: 10.1016/j.cose.2005.05.003_bib22
  article-title: Cost-based modeling and evaluation for data mining with application to fraud and intrusion detection
– year: 2000
  ident: 10.1016/j.cose.2005.05.003_bib11
  article-title: Fuzzy data mining and genetic algorithms applied to intrusion detection
– ident: 10.1016/j.cose.2005.05.003_bib27
– year: 2001
  ident: 10.1016/j.cose.2005.05.003_bib5
  article-title: HIDE: a hierarchical network intrusion detection system using statistical preprocessing and neural network classification
– start-page: 105
  year: 1974
  ident: 10.1016/j.cose.2005.05.003_bib23
  article-title: Conditional logit analysis of qualitative choice behavior
– year: 1998
  ident: 10.1016/j.cose.2005.05.003_bib3
  article-title: The application of artificial neural networks to misuse detection: initial results
– year: 2004
  ident: 10.1016/j.cose.2005.05.003_bib18
  article-title: Frequent rules for intrusive anomaly detection with Internet datamining
– year: 1993
  ident: 10.1016/j.cose.2005.05.003_bib10
SSID ssj0017688
Score 2.094116
Snippet Although researchers have long studied using statistical modeling techniques to detect anomaly intrusion and profile user behavior, the feasibility of applying...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 662
SubjectTerms Bootstrap
Classification
Computer security
Intrusion detection
Multinomial logistic regression model
Title A multinomial logistic regression modeling approach for anomaly intrusion detection
URI https://dx.doi.org/10.1016/j.cose.2005.05.003
https://www.proquest.com/docview/29362337
Volume 24
WOSCitedRecordID wos000234189600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LS8QwEICDuB68-Bbf5uBNKnbzao-LrKiICD5YTyVNU1HWrNhV_PlOmqS7rih6EJaylLa0_dLJzGQeCO1ReZhzRfMITC8ZUUE5fFI6jjQTJdFgZPO6zvbtubi4SHq99NK3hK_qdgLCmOT9PX3-V9SwD2Db1Nk_4G4uCjvgP0CHLWCH7a_Ad1yQoE03htfvMnzqOs33LuTVuO43dXKiLyjuQykHT7Jv0wBtHoY9rtDDOlDLjGuwoQ1EVQ-ayre_G_nlney4ezWf_AnMJ9aNuRhtJfRDV_8yyEiX5-zHQjIm8LiXpW7u5K7jzhex7DwEjwc2Bt_7sawri4wmobDwPjE3NRGDIRjtMbPXsM0zWWZ_ttBrqy1YChKt1Tnt9s6aNSQwpJKmsjs8j0-ZctF9k3fynVoyMUHXWsf1Aprz5gLuOMyLaEqbJTQfGGAvmZfRVQePUceBOh5Rx4E6DtQxUMeeOm6o44b6Cro57l4fnUS-X0akQKscRtLWkiKlIu2SEiplwouck7JdSEJTwaQWpCxiIqkUOgXDPldJzGXBCsYUFZKQVTRtBkavIayI4kJxKdMkpiLnMuVFUmqqcl4WSufrKA6vK1O-mLztadLPvge1jvabc55dKZUfj2aBQuaVQafkZTCofjxvNyDLQFLa5S9p9OC1ykCxBV2fiI0_3ccmmh19JVtoGmDobTSj3oYP1cuOH3MfCJeOyA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multinomial+logistic+regression+modeling+approach+for+anomaly+intrusion+detection&rft.jtitle=Computers+%26+security&rft.au=Wang%2C+Yun&rft.date=2005-11-01&rft.issn=0167-4048&rft.volume=24&rft.issue=8&rft.spage=662&rft.epage=674&rft_id=info:doi/10.1016%2Fj.cose.2005.05.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cose_2005_05_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon