Benchmarking Image Processing Algorithms for Unmanned Aerial System-Assisted Crack Detection in Concrete Structures

This paper summarizes the results of traditional image processing algorithms for detection of defects in concrete using images taken by Unmanned Aerial Systems (UASs). Such algorithms are useful for improving the accuracy of crack detection during autonomous inspection of bridges and other structure...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Infrastructures (Basel) Ročník 4; číslo 2; s. 19
Hlavní autoři: Dorafshan, Sattar, Thomas, Robert J., Maguire, Marc
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 30.04.2019
Témata:
ISSN:2412-3811, 2412-3811
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper summarizes the results of traditional image processing algorithms for detection of defects in concrete using images taken by Unmanned Aerial Systems (UASs). Such algorithms are useful for improving the accuracy of crack detection during autonomous inspection of bridges and other structures, and they have yet to be compared and evaluated on a dataset of concrete images taken by UAS. The authors created a generic image processing algorithm for crack detection, which included the major steps of filter design, edge detection, image enhancement, and segmentation, designed to uniformly compare different edge detectors. Edge detection was carried out by six filters in the spatial (Roberts, Prewitt, Sobel, and Laplacian of Gaussian) and frequency (Butterworth and Gaussian) domains. These algorithms were applied to fifty images each of defected and sound concrete. Performances of the six filters were compared in terms of accuracy, precision, minimum detectable crack width, computational time, and noise-to-signal ratio. In general, frequency domain techniques were slower than spatial domain methods because of the computational intensity of the Fourier and inverse Fourier transformations used to move between spatial and frequency domains. Frequency domain methods also produced noisier images than spatial domain methods. Crack detection in the spatial domain using the Laplacian of Gaussian filter proved to be the fastest, most accurate, and most precise method, and it resulted in the finest detectable crack width. The Laplacian of Gaussian filter in spatial domain is recommended for future applications of real-time crack detection using UAS.
AbstractList This paper summarizes the results of traditional image processing algorithms for detection of defects in concrete using images taken by Unmanned Aerial Systems (UASs). Such algorithms are useful for improving the accuracy of crack detection during autonomous inspection of bridges and other structures, and they have yet to be compared and evaluated on a dataset of concrete images taken by UAS. The authors created a generic image processing algorithm for crack detection, which included the major steps of filter design, edge detection, image enhancement, and segmentation, designed to uniformly compare different edge detectors. Edge detection was carried out by six filters in the spatial (Roberts, Prewitt, Sobel, and Laplacian of Gaussian) and frequency (Butterworth and Gaussian) domains. These algorithms were applied to fifty images each of defected and sound concrete. Performances of the six filters were compared in terms of accuracy, precision, minimum detectable crack width, computational time, and noise-to-signal ratio. In general, frequency domain techniques were slower than spatial domain methods because of the computational intensity of the Fourier and inverse Fourier transformations used to move between spatial and frequency domains. Frequency domain methods also produced noisier images than spatial domain methods. Crack detection in the spatial domain using the Laplacian of Gaussian filter proved to be the fastest, most accurate, and most precise method, and it resulted in the finest detectable crack width. The Laplacian of Gaussian filter in spatial domain is recommended for future applications of real-time crack detection using UAS.
Author Dorafshan, Sattar
Thomas, Robert J.
Maguire, Marc
Author_xml – sequence: 1
  givenname: Sattar
  surname: Dorafshan
  fullname: Dorafshan, Sattar
– sequence: 2
  givenname: Robert J.
  orcidid: 0000-0002-7591-2405
  surname: Thomas
  fullname: Thomas, Robert J.
– sequence: 3
  givenname: Marc
  surname: Maguire
  fullname: Maguire, Marc
BookMark eNqFUV1rVDEQDVLBWvsXJODz1Xzdj4Av61p1oaBQ-xxmk8k223uTmmQf-u_Nuioigk8zczjncGbmOTmLKSIhLzl7LaVmb0L0GUrNB1sPGYtigjGun5Bzobjo5MT52R_9M3JZyp6xxprGaeLnpLzDaO8WyPch7uhmgR3SLzlZLOUIrOZdyqHeLYX6lOltXCBGdHSFOcBMbx5LxaVbNXJrHF1nsPf0PVa0NaRIQ6TrFG1uAL35HfIFeephLnj5s16Q2w9XX9efuuvPHzfr1XVnpR5rBz36LXhkYhq54uOEEgY9SHQCrd4663twgJ4ptFsnQXGrrNAcwI1WD728IJuTr0uwNw85tDUfTYJgfgAp7wzkGuyMRgovxNQDOq3U1oJuA5PNFy0ogaJ5vTp5PeT07YClmn065NjiG9GrqeeDlGNjvT2xbE6lZPTGhgrHU9QMYTacmePXzL-_1uTDX_Jfof8j_A7Xk6g7
CitedBy_id crossref_primary_10_1016_j_measurement_2022_111590
crossref_primary_10_3390_su14138117
crossref_primary_10_1016_j_aei_2021_101303
crossref_primary_10_1016_j_istruc_2025_109423
crossref_primary_10_1111_mice_12932
crossref_primary_10_1155_2020_8829715
crossref_primary_10_1007_s10706_025_03097_z
crossref_primary_10_3233_JIFS_239709
crossref_primary_10_3390_infrastructures10060129
crossref_primary_10_3390_s24092736
crossref_primary_10_3390_infrastructures10070161
crossref_primary_10_3390_s20102778
crossref_primary_10_1016_j_jobe_2020_101672
crossref_primary_10_1007_s12517_024_11897_5
crossref_primary_10_1016_j_autcon_2023_104867
crossref_primary_10_1016_j_engstruct_2019_109930
crossref_primary_10_3390_buildings13030800
crossref_primary_10_1109_ACCESS_2025_3571984
crossref_primary_10_3390_electronics12183862
crossref_primary_10_3390_rs13091809
crossref_primary_10_3390_s22124469
crossref_primary_10_3390_app9132686
crossref_primary_10_3390_infrastructures4040072
crossref_primary_10_1016_j_conbuildmat_2020_120109
crossref_primary_10_1016_j_cscm_2024_e02962
crossref_primary_10_3390_s19194304
crossref_primary_10_1016_j_conbuildmat_2019_117750
crossref_primary_10_3390_agronomy11010085
crossref_primary_10_1108_ECAM_06_2023_0613
crossref_primary_10_3390_app13084981
crossref_primary_10_1016_j_conbuildmat_2025_141583
crossref_primary_10_1155_2021_8858545
crossref_primary_10_54355_tbus_5_3_2025_0085
crossref_primary_10_1016_j_autcon_2020_103133
crossref_primary_10_1088_1361_6501_ad080e
crossref_primary_10_1016_j_autcon_2019_102843
crossref_primary_10_1007_s41024_023_00371_6
crossref_primary_10_3390_electronics11203357
crossref_primary_10_3390_infrastructures6080115
crossref_primary_10_1016_j_autcon_2022_104316
crossref_primary_10_3390_buildings14010151
crossref_primary_10_1007_s10064_021_02249_8
crossref_primary_10_1061__ASCE_CF_1943_5509_0001652
crossref_primary_10_1088_1361_6501_ada786
crossref_primary_10_1080_1573062X_2020_1758166
Cites_doi 10.1016/j.cemconres.2017.04.018
10.1109/TSMC.1979.4310076
10.1016/j.autcon.2009.04.003
10.1061/(ASCE)CF.1943-5509.0000465
10.1117/12.2044875
10.1117/12.2063963
10.1109/ICRA.2017.7989421
10.1109/SSRR.2018.8468642
10.1002/tee.20244
10.1061/(ASCE)CF.1943-5509.0000802
10.1061/(ASCE)1084-0702(2004)9:4(403)
10.7708/ijtte.2018.8(1).01
10.1016/j.conbuildmat.2018.02.126
10.32548/RS.2018.012
10.1061/(ASCE)BE.1943-5592.0001291
10.1016/j.proeng.2015.10.031
10.1049/SBEW008E
10.1177/1475921715624502
10.1023/A:1022508121821
10.1109/RCAR.2017.8311866
10.1016/j.autcon.2017.06.024
10.1061/(ASCE)IS.1943-555X.0000353
10.1002/stc.2321
10.17226/25397
10.1109/ICUAS.2018.8453409
10.1016/j.ijleo.2015.09.147
10.1109/ICUAS.2017.7991459
10.1007/s13349-018-0285-4
10.1109/ROBIO.2017.8324593
10.1080/15732479.2017.1330891
10.1063/1.5039097
10.1016/j.aej.2017.01.020
10.1109/ICIP.2017.8296693
10.1080/15732470500253164
10.1016/j.conbuildmat.2018.08.011
10.1016/j.conbuildmat.2019.01.150
10.1002/stc.1831
10.1061/(ASCE)0887-3801(2003)17:4(255)
10.1016/j.dib.2018.11.015
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/infrastructures4020019
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2412-3811
ExternalDocumentID oai_doaj_org_article_32f2285aed944bca928503ecbeca42e2
10_3390_infrastructures4020019
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c397t-a5efbafe028714178e3a6963ed2ec9bdcf5adaef04ecbd3a41c4c291aad7c9653
IEDL.DBID DOA
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000623629200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2412-3811
IngestDate Fri Oct 03 12:51:13 EDT 2025
Sun Nov 09 07:53:01 EST 2025
Sat Nov 29 07:17:15 EST 2025
Tue Nov 18 21:07:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-a5efbafe028714178e3a6963ed2ec9bdcf5adaef04ecbd3a41c4c291aad7c9653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7591-2405
OpenAccessLink https://doaj.org/article/32f2285aed944bca928503ecbeca42e2
PQID 2548516337
PQPubID 2055405
ParticipantIDs doaj_primary_oai_doaj_org_article_32f2285aed944bca928503ecbeca42e2
proquest_journals_2548516337
crossref_citationtrail_10_3390_infrastructures4020019
crossref_primary_10_3390_infrastructures4020019
PublicationCentury 2000
PublicationDate 2019-04-30
PublicationDateYYYYMMDD 2019-04-30
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-30
  day: 30
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Infrastructures (Basel)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Khaloo (ref_8) 2018; 14
Dorafshan (ref_28) 2018; 186
Omar (ref_10) 2017; 83
Gopalakrishnan (ref_17) 2018; 8
ref_13
Ebrahimkhanlou (ref_22) 2016; 15
ref_18
ref_16
ref_15
Graybeal (ref_23) 2002; 21
Talab (ref_42) 2016; 127
Yang (ref_36) 2018; 1967
Vaghefi (ref_19) 2013; 29
Hoang (ref_32) 2018; 195
Dorafshan (ref_7) 2018; 23
Frangopol (ref_26) 2007; 3
Dorafshan (ref_21) 2018; 21
Dorafshan (ref_3) 2018; 8
Mohan (ref_43) 2018; 57
ref_27
Ali (ref_39) 2018; Volume 10598
Rimkus (ref_41) 2015; 122
Gucunski (ref_4) 2014; Volume 9063
Yamaguchi (ref_35) 2008; 3
Lattanzi (ref_5) 2017; 23
Phares (ref_24) 2004; 9
ref_31
Agdas (ref_25) 2015; 30
Butterworth (ref_45) 1930; 7
Abudayyeh (ref_29) 2003; 17
ref_37
Omar (ref_11) 2018; 168
Ellenberg (ref_20) 2016; 23
Otsu (ref_47) 1979; 9
Oh (ref_38) 2009; 18
Kim (ref_30) 2017; 99
Luo (ref_33) 2019; 204
ref_46
Sony (ref_12) 2019; 26
Farhidzadeh (ref_14) 2014; Volume 9064
ref_40
ref_1
Gonzalez (ref_44) 1977; Volume 13
ref_2
ref_49
ref_48
ref_9
Hoang (ref_34) 2018; 2018
ref_6
References_xml – ident: ref_9
– ident: ref_49
– volume: 99
  start-page: 53
  year: 2017
  ident: ref_30
  article-title: Comparative analysis of image binarization methods for crack identification in concrete structures
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2017.04.018
– volume: 9
  start-page: 62
  year: 1979
  ident: ref_47
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Manand Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 18
  start-page: 929
  year: 2009
  ident: ref_38
  article-title: Bridge inspection robot system with machine vision
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2009.04.003
– volume: 29
  start-page: 04014102
  year: 2013
  ident: ref_19
  article-title: Combined imaging technologies for concrete bridge deck condition assessment
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000465
– ident: ref_1
– volume: Volume 9064
  start-page: 90642H
  year: 2014
  ident: ref_14
  article-title: A vision-based technique for damage assessment of reinforced concrete structures
  publication-title: Health Monitoring of Structural and Biological Systems 2014
  doi: 10.1117/12.2044875
– volume: Volume 9063
  start-page: 90630N
  year: 2014
  ident: ref_4
  article-title: Nondestructive evaluation inspection of the Arlington Memorial Bridge using a robotic assisted bridge inspection tool (RABIT)
  publication-title: Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2014
  doi: 10.1117/12.2063963
– ident: ref_6
  doi: 10.1109/ICRA.2017.7989421
– ident: ref_40
  doi: 10.1109/SSRR.2018.8468642
– volume: 3
  start-page: 128
  year: 2008
  ident: ref_35
  article-title: Image-based crack detection for real concrete surfaces
  publication-title: IEEJ. Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.20244
– volume: 30
  start-page: 04015049
  year: 2015
  ident: ref_25
  article-title: Comparison of visual inspection and structural-health monitoring as bridge condition assessment methods
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000802
– volume: 9
  start-page: 403
  year: 2004
  ident: ref_24
  article-title: Routine highway bridge inspection condition documentation accuracy and reliability
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)1084-0702(2004)9:4(403)
– ident: ref_31
– volume: 195
  start-page: 3924120
  year: 2018
  ident: ref_32
  article-title: Detection of surface crack in building structures using image processing technique with an improved Otsu method for image thresholding
  publication-title: Adv. Civ. Eng.
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_17
  article-title: Crack Damage Detection in Unmanned Aerial Vehicle Images of Civil Infrastructure Using Pre-Trained Deep Learning Model
  publication-title: Int. J. Traffic Transp. Eng.
  doi: 10.7708/ijtte.2018.8(1).01
– volume: 168
  start-page: 313
  year: 2018
  ident: ref_11
  article-title: Infrared thermography model for automated detection of delamination in RC bridge decks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.02.126
– ident: ref_13
  doi: 10.32548/RS.2018.012
– volume: 23
  start-page: 04018078
  year: 2018
  ident: ref_7
  article-title: Fatigue crack detection using unmanned aerial systems in fracture critical inspection of steel bridges
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001291
– volume: 122
  start-page: 239
  year: 2015
  ident: ref_41
  article-title: Processing digital images for crack localization in reinforced concrete members
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.10.031
– ident: ref_46
  doi: 10.1049/SBEW008E
– volume: 15
  start-page: 81
  year: 2016
  ident: ref_22
  article-title: Multifractal analysis of crack patterns in reinforced concrete shear walls
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921715624502
– volume: 21
  start-page: 67
  year: 2002
  ident: ref_23
  article-title: Visual inspection of highway bridges
  publication-title: J. Nondestruct. Eval.
  doi: 10.1023/A:1022508121821
– ident: ref_37
  doi: 10.1109/RCAR.2017.8311866
– volume: 83
  start-page: 360
  year: 2017
  ident: ref_10
  article-title: Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.06.024
– volume: 23
  start-page: 04017004
  year: 2017
  ident: ref_5
  article-title: Review of robotic infrastructure inspection systems
  publication-title: J. Infrastruct. Syst.
  doi: 10.1061/(ASCE)IS.1943-555X.0000353
– volume: 26
  start-page: e2321
  year: 2019
  ident: ref_12
  article-title: A literature review of next-generation smart sensing technology in structural health monitoring
  publication-title: Struct. Control. Health Monit.
  doi: 10.1002/stc.2321
– ident: ref_48
  doi: 10.17226/25397
– ident: ref_27
  doi: 10.1109/ICUAS.2018.8453409
– volume: Volume 13
  start-page: 451
  year: 1977
  ident: ref_44
  article-title: Digital image processing
  publication-title: Applied Mathematics and Computation 1997
– volume: Volume 10598
  start-page: 105980L
  year: 2018
  ident: ref_39
  article-title: Vision-based concrete crack detection technique using cascade features
  publication-title: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018
– volume: 7
  start-page: 536
  year: 1930
  ident: ref_45
  article-title: On the theory of filter amplifiers
  publication-title: Wirel. Eng.
– volume: 127
  start-page: 1030
  year: 2016
  ident: ref_42
  article-title: Detection crack in image using Otsu method and multiple filtering in image processing techniques
  publication-title: Opt. Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2015.09.147
– ident: ref_2
  doi: 10.1109/ICUAS.2017.7991459
– volume: 8
  start-page: 443
  year: 2018
  ident: ref_3
  article-title: Bridge inspection: Human performance, unmanned aerial systems and automation
  publication-title: J. Civ. Struct. Health Monit.
  doi: 10.1007/s13349-018-0285-4
– ident: ref_18
  doi: 10.1109/ROBIO.2017.8324593
– volume: 14
  start-page: 124
  year: 2018
  ident: ref_8
  article-title: Unmanned aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D modelling
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732479.2017.1330891
– volume: 1967
  start-page: 040023
  year: 2018
  ident: ref_36
  article-title: The crack detection algorithm of pavement image based on edge information
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5039097
– volume: 57
  start-page: 787
  year: 2018
  ident: ref_43
  article-title: Crack detection using image processing: A critical review and analysis
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2017.01.020
– ident: ref_16
  doi: 10.1109/ICIP.2017.8296693
– volume: 3
  start-page: 29
  year: 2007
  ident: ref_26
  article-title: Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost∗
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732470500253164
– volume: 186
  start-page: 1031
  year: 2018
  ident: ref_28
  article-title: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.08.011
– ident: ref_15
– volume: 204
  start-page: 244
  year: 2019
  ident: ref_33
  article-title: A fast adaptive crack detection algorithm based on a double-edge extraction operator of FSM
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.150
– volume: 23
  start-page: 1168
  year: 2016
  ident: ref_20
  article-title: Bridge related damage quantification using unmanned aerial vehicle imagery
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.1831
– volume: 17
  start-page: 255
  year: 2003
  ident: ref_29
  article-title: Analysis of edge-detection techniques for crack identification in bridges
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2003)17:4(255)
– volume: 21
  start-page: 1664
  year: 2018
  ident: ref_21
  article-title: SDNET2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks
  publication-title: Data Brief
  doi: 10.1016/j.dib.2018.11.015
– volume: 2018
  start-page: 7163580
  year: 2018
  ident: ref_34
  article-title: Metaheuristic Optimized Edge Detection for Recognition of Concrete Wall Cracks: A Comparative Study on the Performances of Roberts, Prewitt, Canny, and Sobel Algorithms
  publication-title: Adv. Civ. Eng.
SSID ssj0002087881
Score 2.344748
Snippet This paper summarizes the results of traditional image processing algorithms for detection of defects in concrete using images taken by Unmanned Aerial Systems...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 19
SubjectTerms Accuracy
Algorithms
Bridge inspection
Bridges
Computing time
Concrete
Concrete structures
crack detection
Cracks
Edge detection
Filter design (mathematics)
Fourier transforms
Frequency domain analysis
Image enhancement
Image filters
Image processing
Image segmentation
Inspections
noncontact methods
Sensors
Sound filters
Standard deviation
structural condition assessment
unmanned aerial systems
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest advanced technologies & aerospace journals
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIADb8RCQT5wtTZrOw-f0HahAglVlaCo4hJNxpO2ajdbNml_P2PHu1QCwYFjJnHk5BuPZ8b2N0K8BW8yR1mjsta0yuatUxV4VJRj5kriKTFWUfj2uTw4qI6P3WFKuPVpW-XGJkZD7VcYcuRTDmTYOSiMKd9d_lChalRYXU0lNG6LO4ElIZRuOMy_b3MsOqsCW_p4MNhwdD9l1NYwMrNecTgbgqdIsnNjTorU_b9Z5jjd7D_8344-Eg-Soynno2Y8FreoeyLu36AffCr6PVbR0yXEdLn8tGTTItPBgSCYX5zwe4fTZS_Zs5VH3RKCUZbzqLRy5DpXjG_QFC8Xa8Bz-Z6GuLmrk2edXKw6dkoHkl-2_-KZONr_8HXxUaUiDArZVRkU5NQ20FIWQis7KysyUPCoJa8JXeOxzcEDtZklbLwBO0OL2s0AfImuyM1zsdOtOnohJBbQBL5-U5TaNuyaevAVAEuw8lTBROQbGGpMDOWhUMZFzZFKgK_-M3wTMd22uxw5Ov7ZYi-gvH06cGxHwWp9UqchWxvdal3lQN5Z2yA4vsgMfyUhWE16InY3ClCngd_Xv9B_-ffbr8Q99r3SwtSu2OEu0mtxF6-Hs379JurxT4YtBOw
  priority: 102
  providerName: ProQuest
Title Benchmarking Image Processing Algorithms for Unmanned Aerial System-Assisted Crack Detection in Concrete Structures
URI https://www.proquest.com/docview/2548516337
https://doaj.org/article/32f2285aed944bca928503ecbeca42e2
Volume 4
WOSCitedRecordID wos000623629200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2412-3811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002087881
  issn: 2412-3811
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2412-3811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002087881
  issn: 2412-3811
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2412-3811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002087881
  issn: 2412-3811
  databaseCode: P5Z
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2412-3811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002087881
  issn: 2412-3811
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2412-3811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002087881
  issn: 2412-3811
  databaseCode: PIMPY
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QcIAD4ikGA-XAtVrXpI8ctwECCaaKl4BL5SYur61D2-D346RlmgQSFy6VajVKYzuOvyb9zNgRGOEr9HPPL0ThybBQXgJGexhqX8VIS6KronB3Eff7yf29SudKfdkzYRU9cKW4lgiKIEhCQKOkzDUouvEFauobZIAu-vqxmgNTr257LbE86dUvwYJwfYvsNYaKk_WDgKyFTY5eZ241cqT9P2KyW2hO19lanSHyTvVmG2wBy022OscbuMUmXfKt5yG479z8fEgxgdcn_q2gM3gaEeZ_Hk44paT8thyCjaa847yNVyTlHhnGmtjw3hj0Gz_GqTuVVfKXkvdGJWWTU-TXs6Fss9vTk5vemVdXT_A05RhTD0IscijQt5hItuMEBUQ03dAEqFVudBGCASx8Sco0AmRbSx2oNoCJtYpCscMWy1GJu4zrCHJLtC-iOJA55ZQGTAJAEp0YTKDBwm8tZrqmFrcVLgYZQQyr_ex37TdYa9buvSLX-LNF1xpp9rQlx3YCcpmsdpnsL5dpsOa3ibN6xk4yAsqUfEZCxHv_0cc-W6HUqt53arJFGggesGX9OX2ZjA_ZUvekn14dOqelaxo-kiw9v0wfvgDPNfvD
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDgl44D5RGOAHeIya2s7FDwh1HdOqdVUlNjSewol9sk2s6WgCiD_Fb-TYScokEDztgcc4sRTbn8_Fl-9j7CVYGWoM8yAsZBGoqNBBCtYEGJlQJ0gu0asovJ8ms1l6cqLnG-xHdxfGHavsbKI31HZp3Br5gBIZCg5iKZM3l58Dpxrldlc7CY0GFgf4_RulbNXryS6N7ysh9t4ejfeDVlUgMOR76wAiLHIoMHS5ghomKUqICYZoBRqdW1NEYAGLUKHJrQQ1NMoIPQSwidGxU4kgk7-pHNh7bHM-OZx_WK_qiDB1_OzNVWQpdTggnKyg4YL9Qgm0S9c8rc8VL-jFAn7zBd7B7d3937rmHrvThtJ81GD_PtvA8gG7fYVg8SGrdmgSni3AbwjwyYKMJ2-vRriC0cUptaM-W1ScYnd-XC7AuR0-8tOSN2zuASHYzQXLxyswn_gu1v74WsnPSz5elhR218jfrfv-ETu-llZvsV65LPEx4yaG3CkSyDgRKqfg24JNAajEpBZT6LOoG_bMtBzsTgrkIqNczMEl-zNc-mywrnfZsJD8s8aOQ9X6a8ci7guWq9OsNUqZFIUQaQRotVK5AU0PoaRWogElUPTZdge4rDVtVfYLbU_-_voFu7l_dDjNppPZwVN2iyLNdhtum_Xod_EZu2G-1ufV6nk7izj7eN3o_AmwOWgA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamgRA8MK6iYwM_wGPU1M7NDwh17SqqTVUlGJp4CSf28TaxplsTQPw1ft2OnaRMAsHTHniMk0hx_J2bL9_H2CswMlQYFkFopQ2i2KogA6MDjHWoUqSQ6FUUPh6ms1l2fKzmG-xndxbGbavsfKJ31Gap3Rx5nwoZSg4SKdO-bbdFzMeTtxeXgVOQciutnZxGA5ED_PGdyrfqzXRMY_1aiMn-h9G7oFUYCDTF4TqAGG0BFkNXN0SDNEMJCUESjUCtCqNtDAbQhhHqwkiIBjrSQg0ATKpV4hQjyP3fSqnGdNsJ5_Gn9fyOCDPH1N4cSpZShX1CzAoaVtivVEq7ws0T_FyLh1424Leo4EPdZOt__kkP2P02webDxiIesg0sH7F712gXH7Nqj0zzdAF-mYBPF-RSeXtgwjUMz0-oH_XpouKU0fOjcgEuGPGhN1becLwHhGtnIYaPVqC_8DHWflNbyc9KPlqWlIzXyN-vx-EJO7qRXj9lm-WyxGeM6wQKp1Mgk1REBaXkBkwGQC06M5hBj8UdBHLdMrM7gZDznCo0B538z9Dpsf76vYuGm-Sfb-w5hK2fdtzivmG5OslbV5VLYYXIYkCjoqjQoOgilNRL1BAJFD2204Evbx1elf9C3vbfb79kdwiS-eF0dvCc3aX0s12b22Gb9LW4y27rb_VZtXrhzYmzzzcNzSuotm9j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+Image+Processing+Algorithms+for+Unmanned+Aerial+System-Assisted+Crack+Detection+in+Concrete+Structures&rft.jtitle=Infrastructures+%28Basel%29&rft.au=Sattar+Dorafshan&rft.au=Robert+J.+Thomas&rft.au=Marc+Maguire&rft.date=2019-04-30&rft.pub=MDPI+AG&rft.eissn=2412-3811&rft.volume=4&rft.issue=2&rft.spage=19&rft_id=info:doi/10.3390%2Finfrastructures4020019&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_32f2285aed944bca928503ecbeca42e2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2412-3811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2412-3811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2412-3811&client=summon