Benchmarking Image Processing Algorithms for Unmanned Aerial System-Assisted Crack Detection in Concrete Structures
This paper summarizes the results of traditional image processing algorithms for detection of defects in concrete using images taken by Unmanned Aerial Systems (UASs). Such algorithms are useful for improving the accuracy of crack detection during autonomous inspection of bridges and other structure...
Uloženo v:
| Vydáno v: | Infrastructures (Basel) Ročník 4; číslo 2; s. 19 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
30.04.2019
|
| Témata: | |
| ISSN: | 2412-3811, 2412-3811 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper summarizes the results of traditional image processing algorithms for detection of defects in concrete using images taken by Unmanned Aerial Systems (UASs). Such algorithms are useful for improving the accuracy of crack detection during autonomous inspection of bridges and other structures, and they have yet to be compared and evaluated on a dataset of concrete images taken by UAS. The authors created a generic image processing algorithm for crack detection, which included the major steps of filter design, edge detection, image enhancement, and segmentation, designed to uniformly compare different edge detectors. Edge detection was carried out by six filters in the spatial (Roberts, Prewitt, Sobel, and Laplacian of Gaussian) and frequency (Butterworth and Gaussian) domains. These algorithms were applied to fifty images each of defected and sound concrete. Performances of the six filters were compared in terms of accuracy, precision, minimum detectable crack width, computational time, and noise-to-signal ratio. In general, frequency domain techniques were slower than spatial domain methods because of the computational intensity of the Fourier and inverse Fourier transformations used to move between spatial and frequency domains. Frequency domain methods also produced noisier images than spatial domain methods. Crack detection in the spatial domain using the Laplacian of Gaussian filter proved to be the fastest, most accurate, and most precise method, and it resulted in the finest detectable crack width. The Laplacian of Gaussian filter in spatial domain is recommended for future applications of real-time crack detection using UAS. |
|---|---|
| AbstractList | This paper summarizes the results of traditional image processing algorithms for detection of defects in concrete using images taken by Unmanned Aerial Systems (UASs). Such algorithms are useful for improving the accuracy of crack detection during autonomous inspection of bridges and other structures, and they have yet to be compared and evaluated on a dataset of concrete images taken by UAS. The authors created a generic image processing algorithm for crack detection, which included the major steps of filter design, edge detection, image enhancement, and segmentation, designed to uniformly compare different edge detectors. Edge detection was carried out by six filters in the spatial (Roberts, Prewitt, Sobel, and Laplacian of Gaussian) and frequency (Butterworth and Gaussian) domains. These algorithms were applied to fifty images each of defected and sound concrete. Performances of the six filters were compared in terms of accuracy, precision, minimum detectable crack width, computational time, and noise-to-signal ratio. In general, frequency domain techniques were slower than spatial domain methods because of the computational intensity of the Fourier and inverse Fourier transformations used to move between spatial and frequency domains. Frequency domain methods also produced noisier images than spatial domain methods. Crack detection in the spatial domain using the Laplacian of Gaussian filter proved to be the fastest, most accurate, and most precise method, and it resulted in the finest detectable crack width. The Laplacian of Gaussian filter in spatial domain is recommended for future applications of real-time crack detection using UAS. |
| Author | Dorafshan, Sattar Thomas, Robert J. Maguire, Marc |
| Author_xml | – sequence: 1 givenname: Sattar surname: Dorafshan fullname: Dorafshan, Sattar – sequence: 2 givenname: Robert J. orcidid: 0000-0002-7591-2405 surname: Thomas fullname: Thomas, Robert J. – sequence: 3 givenname: Marc surname: Maguire fullname: Maguire, Marc |
| BookMark | eNqFUV1rVDEQDVLBWvsXJODz1Xzdj4Av61p1oaBQ-xxmk8k223uTmmQf-u_Nuioigk8zczjncGbmOTmLKSIhLzl7LaVmb0L0GUrNB1sPGYtigjGun5Bzobjo5MT52R_9M3JZyp6xxprGaeLnpLzDaO8WyPch7uhmgR3SLzlZLOUIrOZdyqHeLYX6lOltXCBGdHSFOcBMbx5LxaVbNXJrHF1nsPf0PVa0NaRIQ6TrFG1uAL35HfIFeephLnj5s16Q2w9XX9efuuvPHzfr1XVnpR5rBz36LXhkYhq54uOEEgY9SHQCrd4663twgJ4ptFsnQXGrrNAcwI1WD728IJuTr0uwNw85tDUfTYJgfgAp7wzkGuyMRgovxNQDOq3U1oJuA5PNFy0ogaJ5vTp5PeT07YClmn065NjiG9GrqeeDlGNjvT2xbE6lZPTGhgrHU9QMYTacmePXzL-_1uTDX_Jfof8j_A7Xk6g7 |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2022_111590 crossref_primary_10_3390_su14138117 crossref_primary_10_1016_j_aei_2021_101303 crossref_primary_10_1016_j_istruc_2025_109423 crossref_primary_10_1111_mice_12932 crossref_primary_10_1155_2020_8829715 crossref_primary_10_1007_s10706_025_03097_z crossref_primary_10_3233_JIFS_239709 crossref_primary_10_3390_infrastructures10060129 crossref_primary_10_3390_s24092736 crossref_primary_10_3390_infrastructures10070161 crossref_primary_10_3390_s20102778 crossref_primary_10_1016_j_jobe_2020_101672 crossref_primary_10_1007_s12517_024_11897_5 crossref_primary_10_1016_j_autcon_2023_104867 crossref_primary_10_1016_j_engstruct_2019_109930 crossref_primary_10_3390_buildings13030800 crossref_primary_10_1109_ACCESS_2025_3571984 crossref_primary_10_3390_electronics12183862 crossref_primary_10_3390_rs13091809 crossref_primary_10_3390_s22124469 crossref_primary_10_3390_app9132686 crossref_primary_10_3390_infrastructures4040072 crossref_primary_10_1016_j_conbuildmat_2020_120109 crossref_primary_10_1016_j_cscm_2024_e02962 crossref_primary_10_3390_s19194304 crossref_primary_10_1016_j_conbuildmat_2019_117750 crossref_primary_10_3390_agronomy11010085 crossref_primary_10_1108_ECAM_06_2023_0613 crossref_primary_10_3390_app13084981 crossref_primary_10_1016_j_conbuildmat_2025_141583 crossref_primary_10_1155_2021_8858545 crossref_primary_10_54355_tbus_5_3_2025_0085 crossref_primary_10_1016_j_autcon_2020_103133 crossref_primary_10_1088_1361_6501_ad080e crossref_primary_10_1016_j_autcon_2019_102843 crossref_primary_10_1007_s41024_023_00371_6 crossref_primary_10_3390_electronics11203357 crossref_primary_10_3390_infrastructures6080115 crossref_primary_10_1016_j_autcon_2022_104316 crossref_primary_10_3390_buildings14010151 crossref_primary_10_1007_s10064_021_02249_8 crossref_primary_10_1061__ASCE_CF_1943_5509_0001652 crossref_primary_10_1088_1361_6501_ada786 crossref_primary_10_1080_1573062X_2020_1758166 |
| Cites_doi | 10.1016/j.cemconres.2017.04.018 10.1109/TSMC.1979.4310076 10.1016/j.autcon.2009.04.003 10.1061/(ASCE)CF.1943-5509.0000465 10.1117/12.2044875 10.1117/12.2063963 10.1109/ICRA.2017.7989421 10.1109/SSRR.2018.8468642 10.1002/tee.20244 10.1061/(ASCE)CF.1943-5509.0000802 10.1061/(ASCE)1084-0702(2004)9:4(403) 10.7708/ijtte.2018.8(1).01 10.1016/j.conbuildmat.2018.02.126 10.32548/RS.2018.012 10.1061/(ASCE)BE.1943-5592.0001291 10.1016/j.proeng.2015.10.031 10.1049/SBEW008E 10.1177/1475921715624502 10.1023/A:1022508121821 10.1109/RCAR.2017.8311866 10.1016/j.autcon.2017.06.024 10.1061/(ASCE)IS.1943-555X.0000353 10.1002/stc.2321 10.17226/25397 10.1109/ICUAS.2018.8453409 10.1016/j.ijleo.2015.09.147 10.1109/ICUAS.2017.7991459 10.1007/s13349-018-0285-4 10.1109/ROBIO.2017.8324593 10.1080/15732479.2017.1330891 10.1063/1.5039097 10.1016/j.aej.2017.01.020 10.1109/ICIP.2017.8296693 10.1080/15732470500253164 10.1016/j.conbuildmat.2018.08.011 10.1016/j.conbuildmat.2019.01.150 10.1002/stc.1831 10.1061/(ASCE)0887-3801(2003)17:4(255) 10.1016/j.dib.2018.11.015 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/infrastructures4020019 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2412-3811 |
| ExternalDocumentID | oai_doaj_org_article_32f2285aed944bca928503ecbeca42e2 10_3390_infrastructures4020019 |
| GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c397t-a5efbafe028714178e3a6963ed2ec9bdcf5adaef04ecbd3a41c4c291aad7c9653 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000623629200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2412-3811 |
| IngestDate | Fri Oct 03 12:51:13 EDT 2025 Sun Nov 09 07:53:01 EST 2025 Sat Nov 29 07:17:15 EST 2025 Tue Nov 18 21:07:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-a5efbafe028714178e3a6963ed2ec9bdcf5adaef04ecbd3a41c4c291aad7c9653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7591-2405 |
| OpenAccessLink | https://doaj.org/article/32f2285aed944bca928503ecbeca42e2 |
| PQID | 2548516337 |
| PQPubID | 2055405 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_32f2285aed944bca928503ecbeca42e2 proquest_journals_2548516337 crossref_citationtrail_10_3390_infrastructures4020019 crossref_primary_10_3390_infrastructures4020019 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-30 |
| PublicationDateYYYYMMDD | 2019-04-30 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Infrastructures (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Khaloo (ref_8) 2018; 14 Dorafshan (ref_28) 2018; 186 Omar (ref_10) 2017; 83 Gopalakrishnan (ref_17) 2018; 8 ref_13 Ebrahimkhanlou (ref_22) 2016; 15 ref_18 ref_16 ref_15 Graybeal (ref_23) 2002; 21 Talab (ref_42) 2016; 127 Yang (ref_36) 2018; 1967 Vaghefi (ref_19) 2013; 29 Hoang (ref_32) 2018; 195 Dorafshan (ref_7) 2018; 23 Frangopol (ref_26) 2007; 3 Dorafshan (ref_21) 2018; 21 Dorafshan (ref_3) 2018; 8 Mohan (ref_43) 2018; 57 ref_27 Ali (ref_39) 2018; Volume 10598 Rimkus (ref_41) 2015; 122 Gucunski (ref_4) 2014; Volume 9063 Yamaguchi (ref_35) 2008; 3 Lattanzi (ref_5) 2017; 23 Phares (ref_24) 2004; 9 ref_31 Agdas (ref_25) 2015; 30 Butterworth (ref_45) 1930; 7 Abudayyeh (ref_29) 2003; 17 ref_37 Omar (ref_11) 2018; 168 Ellenberg (ref_20) 2016; 23 Otsu (ref_47) 1979; 9 Oh (ref_38) 2009; 18 Kim (ref_30) 2017; 99 Luo (ref_33) 2019; 204 ref_46 Sony (ref_12) 2019; 26 Farhidzadeh (ref_14) 2014; Volume 9064 ref_40 ref_1 Gonzalez (ref_44) 1977; Volume 13 ref_2 ref_49 ref_48 ref_9 Hoang (ref_34) 2018; 2018 ref_6 |
| References_xml | – ident: ref_9 – ident: ref_49 – volume: 99 start-page: 53 year: 2017 ident: ref_30 article-title: Comparative analysis of image binarization methods for crack identification in concrete structures publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2017.04.018 – volume: 9 start-page: 62 year: 1979 ident: ref_47 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Manand Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 18 start-page: 929 year: 2009 ident: ref_38 article-title: Bridge inspection robot system with machine vision publication-title: Autom. Constr. doi: 10.1016/j.autcon.2009.04.003 – volume: 29 start-page: 04014102 year: 2013 ident: ref_19 article-title: Combined imaging technologies for concrete bridge deck condition assessment publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000465 – ident: ref_1 – volume: Volume 9064 start-page: 90642H year: 2014 ident: ref_14 article-title: A vision-based technique for damage assessment of reinforced concrete structures publication-title: Health Monitoring of Structural and Biological Systems 2014 doi: 10.1117/12.2044875 – volume: Volume 9063 start-page: 90630N year: 2014 ident: ref_4 article-title: Nondestructive evaluation inspection of the Arlington Memorial Bridge using a robotic assisted bridge inspection tool (RABIT) publication-title: Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2014 doi: 10.1117/12.2063963 – ident: ref_6 doi: 10.1109/ICRA.2017.7989421 – ident: ref_40 doi: 10.1109/SSRR.2018.8468642 – volume: 3 start-page: 128 year: 2008 ident: ref_35 article-title: Image-based crack detection for real concrete surfaces publication-title: IEEJ. Trans. Electr. Electron. Eng. doi: 10.1002/tee.20244 – volume: 30 start-page: 04015049 year: 2015 ident: ref_25 article-title: Comparison of visual inspection and structural-health monitoring as bridge condition assessment methods publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000802 – volume: 9 start-page: 403 year: 2004 ident: ref_24 article-title: Routine highway bridge inspection condition documentation accuracy and reliability publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)1084-0702(2004)9:4(403) – ident: ref_31 – volume: 195 start-page: 3924120 year: 2018 ident: ref_32 article-title: Detection of surface crack in building structures using image processing technique with an improved Otsu method for image thresholding publication-title: Adv. Civ. Eng. – volume: 8 start-page: 1 year: 2018 ident: ref_17 article-title: Crack Damage Detection in Unmanned Aerial Vehicle Images of Civil Infrastructure Using Pre-Trained Deep Learning Model publication-title: Int. J. Traffic Transp. Eng. doi: 10.7708/ijtte.2018.8(1).01 – volume: 168 start-page: 313 year: 2018 ident: ref_11 article-title: Infrared thermography model for automated detection of delamination in RC bridge decks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.02.126 – ident: ref_13 doi: 10.32548/RS.2018.012 – volume: 23 start-page: 04018078 year: 2018 ident: ref_7 article-title: Fatigue crack detection using unmanned aerial systems in fracture critical inspection of steel bridges publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001291 – volume: 122 start-page: 239 year: 2015 ident: ref_41 article-title: Processing digital images for crack localization in reinforced concrete members publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.10.031 – ident: ref_46 doi: 10.1049/SBEW008E – volume: 15 start-page: 81 year: 2016 ident: ref_22 article-title: Multifractal analysis of crack patterns in reinforced concrete shear walls publication-title: Struct. Health Monit. doi: 10.1177/1475921715624502 – volume: 21 start-page: 67 year: 2002 ident: ref_23 article-title: Visual inspection of highway bridges publication-title: J. Nondestruct. Eval. doi: 10.1023/A:1022508121821 – ident: ref_37 doi: 10.1109/RCAR.2017.8311866 – volume: 83 start-page: 360 year: 2017 ident: ref_10 article-title: Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.06.024 – volume: 23 start-page: 04017004 year: 2017 ident: ref_5 article-title: Review of robotic infrastructure inspection systems publication-title: J. Infrastruct. Syst. doi: 10.1061/(ASCE)IS.1943-555X.0000353 – volume: 26 start-page: e2321 year: 2019 ident: ref_12 article-title: A literature review of next-generation smart sensing technology in structural health monitoring publication-title: Struct. Control. Health Monit. doi: 10.1002/stc.2321 – ident: ref_48 doi: 10.17226/25397 – ident: ref_27 doi: 10.1109/ICUAS.2018.8453409 – volume: Volume 13 start-page: 451 year: 1977 ident: ref_44 article-title: Digital image processing publication-title: Applied Mathematics and Computation 1997 – volume: Volume 10598 start-page: 105980L year: 2018 ident: ref_39 article-title: Vision-based concrete crack detection technique using cascade features publication-title: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018 – volume: 7 start-page: 536 year: 1930 ident: ref_45 article-title: On the theory of filter amplifiers publication-title: Wirel. Eng. – volume: 127 start-page: 1030 year: 2016 ident: ref_42 article-title: Detection crack in image using Otsu method and multiple filtering in image processing techniques publication-title: Opt. Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2015.09.147 – ident: ref_2 doi: 10.1109/ICUAS.2017.7991459 – volume: 8 start-page: 443 year: 2018 ident: ref_3 article-title: Bridge inspection: Human performance, unmanned aerial systems and automation publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-018-0285-4 – ident: ref_18 doi: 10.1109/ROBIO.2017.8324593 – volume: 14 start-page: 124 year: 2018 ident: ref_8 article-title: Unmanned aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D modelling publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2017.1330891 – volume: 1967 start-page: 040023 year: 2018 ident: ref_36 article-title: The crack detection algorithm of pavement image based on edge information publication-title: AIP Conf. Proc. doi: 10.1063/1.5039097 – volume: 57 start-page: 787 year: 2018 ident: ref_43 article-title: Crack detection using image processing: A critical review and analysis publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2017.01.020 – ident: ref_16 doi: 10.1109/ICIP.2017.8296693 – volume: 3 start-page: 29 year: 2007 ident: ref_26 article-title: Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost∗ publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732470500253164 – volume: 186 start-page: 1031 year: 2018 ident: ref_28 article-title: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.08.011 – ident: ref_15 – volume: 204 start-page: 244 year: 2019 ident: ref_33 article-title: A fast adaptive crack detection algorithm based on a double-edge extraction operator of FSM publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.150 – volume: 23 start-page: 1168 year: 2016 ident: ref_20 article-title: Bridge related damage quantification using unmanned aerial vehicle imagery publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1831 – volume: 17 start-page: 255 year: 2003 ident: ref_29 article-title: Analysis of edge-detection techniques for crack identification in bridges publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2003)17:4(255) – volume: 21 start-page: 1664 year: 2018 ident: ref_21 article-title: SDNET2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks publication-title: Data Brief doi: 10.1016/j.dib.2018.11.015 – volume: 2018 start-page: 7163580 year: 2018 ident: ref_34 article-title: Metaheuristic Optimized Edge Detection for Recognition of Concrete Wall Cracks: A Comparative Study on the Performances of Roberts, Prewitt, Canny, and Sobel Algorithms publication-title: Adv. Civ. Eng. |
| SSID | ssj0002087881 |
| Score | 2.344748 |
| Snippet | This paper summarizes the results of traditional image processing algorithms for detection of defects in concrete using images taken by Unmanned Aerial Systems... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 19 |
| SubjectTerms | Accuracy Algorithms Bridge inspection Bridges Computing time Concrete Concrete structures crack detection Cracks Edge detection Filter design (mathematics) Fourier transforms Frequency domain analysis Image enhancement Image filters Image processing Image segmentation Inspections noncontact methods Sensors Sound filters Standard deviation structural condition assessment unmanned aerial systems Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: ProQuest advanced technologies & aerospace journals dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIADb8RCQT5wtTZrOw-f0HahAglVlaCo4hJNxpO2ajdbNml_P2PHu1QCwYFjJnHk5BuPZ8b2N0K8BW8yR1mjsta0yuatUxV4VJRj5kriKTFWUfj2uTw4qI6P3WFKuPVpW-XGJkZD7VcYcuRTDmTYOSiMKd9d_lChalRYXU0lNG6LO4ElIZRuOMy_b3MsOqsCW_p4MNhwdD9l1NYwMrNecTgbgqdIsnNjTorU_b9Z5jjd7D_8344-Eg-Soynno2Y8FreoeyLu36AffCr6PVbR0yXEdLn8tGTTItPBgSCYX5zwe4fTZS_Zs5VH3RKCUZbzqLRy5DpXjG_QFC8Xa8Bz-Z6GuLmrk2edXKw6dkoHkl-2_-KZONr_8HXxUaUiDArZVRkU5NQ20FIWQis7KysyUPCoJa8JXeOxzcEDtZklbLwBO0OL2s0AfImuyM1zsdOtOnohJBbQBL5-U5TaNuyaevAVAEuw8lTBROQbGGpMDOWhUMZFzZFKgK_-M3wTMd22uxw5Ov7ZYi-gvH06cGxHwWp9UqchWxvdal3lQN5Z2yA4vsgMfyUhWE16InY3ClCngd_Xv9B_-ffbr8Q99r3SwtSu2OEu0mtxF6-Hs379JurxT4YtBOw priority: 102 providerName: ProQuest |
| Title | Benchmarking Image Processing Algorithms for Unmanned Aerial System-Assisted Crack Detection in Concrete Structures |
| URI | https://www.proquest.com/docview/2548516337 https://doaj.org/article/32f2285aed944bca928503ecbeca42e2 |
| Volume | 4 |
| WOSCitedRecordID | wos000623629200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2412-3811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002087881 issn: 2412-3811 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2412-3811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002087881 issn: 2412-3811 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2412-3811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002087881 issn: 2412-3811 databaseCode: P5Z dateStart: 20161201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2412-3811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002087881 issn: 2412-3811 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2412-3811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002087881 issn: 2412-3811 databaseCode: PIMPY dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QcIAD4ikGA-XAtVrXpI8ctwECCaaKl4BL5SYur61D2-D346RlmgQSFy6VajVKYzuOvyb9zNgRGOEr9HPPL0ThybBQXgJGexhqX8VIS6KronB3Eff7yf29SudKfdkzYRU9cKW4lgiKIEhCQKOkzDUouvEFauobZIAu-vqxmgNTr257LbE86dUvwYJwfYvsNYaKk_WDgKyFTY5eZ241cqT9P2KyW2hO19lanSHyTvVmG2wBy022OscbuMUmXfKt5yG479z8fEgxgdcn_q2gM3gaEeZ_Hk44paT8thyCjaa847yNVyTlHhnGmtjw3hj0Gz_GqTuVVfKXkvdGJWWTU-TXs6Fss9vTk5vemVdXT_A05RhTD0IscijQt5hItuMEBUQ03dAEqFVudBGCASx8Sco0AmRbSx2oNoCJtYpCscMWy1GJu4zrCHJLtC-iOJA55ZQGTAJAEp0YTKDBwm8tZrqmFrcVLgYZQQyr_ex37TdYa9buvSLX-LNF1xpp9rQlx3YCcpmsdpnsL5dpsOa3ibN6xk4yAsqUfEZCxHv_0cc-W6HUqt53arJFGggesGX9OX2ZjA_ZUvekn14dOqelaxo-kiw9v0wfvgDPNfvD |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDgl44D5RGOAHeIya2s7FDwh1HdOqdVUlNjSewol9sk2s6WgCiD_Fb-TYScokEDztgcc4sRTbn8_Fl-9j7CVYGWoM8yAsZBGoqNBBCtYEGJlQJ0gu0asovJ8ms1l6cqLnG-xHdxfGHavsbKI31HZp3Br5gBIZCg5iKZM3l58Dpxrldlc7CY0GFgf4_RulbNXryS6N7ysh9t4ejfeDVlUgMOR76wAiLHIoMHS5ghomKUqICYZoBRqdW1NEYAGLUKHJrQQ1NMoIPQSwidGxU4kgk7-pHNh7bHM-OZx_WK_qiDB1_OzNVWQpdTggnKyg4YL9Qgm0S9c8rc8VL-jFAn7zBd7B7d3937rmHrvThtJ81GD_PtvA8gG7fYVg8SGrdmgSni3AbwjwyYKMJ2-vRriC0cUptaM-W1ScYnd-XC7AuR0-8tOSN2zuASHYzQXLxyswn_gu1v74WsnPSz5elhR218jfrfv-ETu-llZvsV65LPEx4yaG3CkSyDgRKqfg24JNAajEpBZT6LOoG_bMtBzsTgrkIqNczMEl-zNc-mywrnfZsJD8s8aOQ9X6a8ci7guWq9OsNUqZFIUQaQRotVK5AU0PoaRWogElUPTZdge4rDVtVfYLbU_-_voFu7l_dDjNppPZwVN2iyLNdhtum_Xod_EZu2G-1ufV6nk7izj7eN3o_AmwOWgA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamgRA8MK6iYwM_wGPU1M7NDwh17SqqTVUlGJp4CSf28TaxplsTQPw1ft2OnaRMAsHTHniMk0hx_J2bL9_H2CswMlQYFkFopQ2i2KogA6MDjHWoUqSQ6FUUPh6ms1l2fKzmG-xndxbGbavsfKJ31Gap3Rx5nwoZSg4SKdO-bbdFzMeTtxeXgVOQciutnZxGA5ED_PGdyrfqzXRMY_1aiMn-h9G7oFUYCDTF4TqAGG0BFkNXN0SDNEMJCUESjUCtCqNtDAbQhhHqwkiIBjrSQg0ATKpV4hQjyP3fSqnGdNsJ5_Gn9fyOCDPH1N4cSpZShX1CzAoaVtivVEq7ws0T_FyLh1424Leo4EPdZOt__kkP2P02webDxiIesg0sH7F712gXH7Nqj0zzdAF-mYBPF-RSeXtgwjUMz0-oH_XpouKU0fOjcgEuGPGhN1becLwHhGtnIYaPVqC_8DHWflNbyc9KPlqWlIzXyN-vx-EJO7qRXj9lm-WyxGeM6wQKp1Mgk1REBaXkBkwGQC06M5hBj8UdBHLdMrM7gZDznCo0B538z9Dpsf76vYuGm-Sfb-w5hK2fdtzivmG5OslbV5VLYYXIYkCjoqjQoOgilNRL1BAJFD2204Evbx1elf9C3vbfb79kdwiS-eF0dvCc3aX0s12b22Gb9LW4y27rb_VZtXrhzYmzzzcNzSuotm9j |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+Image+Processing+Algorithms+for+Unmanned+Aerial+System-Assisted+Crack+Detection+in+Concrete+Structures&rft.jtitle=Infrastructures+%28Basel%29&rft.au=Sattar+Dorafshan&rft.au=Robert+J.+Thomas&rft.au=Marc+Maguire&rft.date=2019-04-30&rft.pub=MDPI+AG&rft.eissn=2412-3811&rft.volume=4&rft.issue=2&rft.spage=19&rft_id=info:doi/10.3390%2Finfrastructures4020019&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_32f2285aed944bca928503ecbeca42e2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2412-3811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2412-3811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2412-3811&client=summon |