SMSG: Profiling-Free Parallelism Modeling for Distributed Training of DNN

The increasing size of deep neural networks (DNNs) raises a high demand for distributed training. An expert could find good hybrid parallelism strategies, but designing suitable strategies is time and labor-consuming. Therefore, automating parallelism strategy generation is crucial and desirable for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of parallel programming Ročník 51; číslo 2-3; s. 109 - 127
Hlavní autoři: Wang, Haoran, Tachon, Thibaut, Li, Chong, Robert, Sophie, Limet, Sébastien
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2023
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0885-7458, 1573-7640
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The increasing size of deep neural networks (DNNs) raises a high demand for distributed training. An expert could find good hybrid parallelism strategies, but designing suitable strategies is time and labor-consuming. Therefore, automating parallelism strategy generation is crucial and desirable for DNN designers. Some automatic searching approaches have recently been studied to free the experts from the heavy parallel strategy conception. However, these approaches all rely on a numerical cost model, which requires heavy profiling results that lack portability. These profiling-based approaches cannot lighten the strategy generation work due to the non-reusable profiling value. Our intuition is that there is no need to estimate the actual execution time of the distributed training but to compare the relative cost of different strategies. We propose SMSG (Symbolic Modeling for Strategy Generation), which analyses the cost based on the communication and computation semantics. With SMSG, the parallel cost analyses are decoupled from hardware characteristics. SMSG defines cost functions for each kind of operator to quantitatively evaluate the amount of data for computation and communication, which eliminates the heavy profiling tasks. Besides, SMSG introduces how to apply functional transformation by using the Third Homomorphism theorem to control the high searching complexity. Our experiments show that SMSG can find good hybrid parallelism strategies to generate an efficient training performance similar to the state of the art. Moreover, SMSG covers a wide variety of DNN models with good scalability. SMSG provides good portability when changing training configurations that a profiling-based approach cannot.
AbstractList Abstract The increasing size of deep neural networks (DNNs) raises a high demand for distributed training. An expert could find good hybrid parallelism strategies, but designing suitable strategies is time and labor-consuming. Therefore, automating parallelism strategy generation is crucial and desirable for DNN designers. Some automatic searching approaches have recently been studied to free the experts from the heavy parallel strategy conception. However, these approaches all rely on a numerical cost model, which requires heavy profiling results that lack portability. These profiling-based approaches cannot lighten the strategy generation work due to the non-reusable profiling value. Our intuition is that there is no need to estimate the actual execution time of the distributed training but to compare the relative cost of different strategies. We propose SMSG (Symbolic Modeling for Strategy Generation), which analyses the cost based on the communication and computation semantics. With SMSG, the parallel cost analyses are decoupled from hardware characteristics. SMSG defines cost functions for each kind of operator to quantitatively evaluate the amount of data for computation and communication, which eliminates the heavy profiling tasks. Besides, SMSG introduces how to apply functional transformation by using the Third Homomorphism theorem to control the high searching complexity. Our experiments show that SMSG can find good hybrid parallelism strategies to generate an efficient training performance similar to the state of the art. Moreover, SMSG covers a wide variety of DNN models with good scalability. SMSG provides good portability when changing training configurations that a profiling-based approach cannot.
The increasing size of deep neural networks (DNNs) raises a high demand for distributed training. An expert could find good hybrid parallelism strategies, but designing suitable strategies is time and labor-consuming. Therefore, automating parallelism strategy generation is crucial and desirable for DNN designers. Some automatic searching approaches have recently been studied to free the experts from the heavy parallel strategy conception. However, these approaches all rely on a numerical cost model, which requires heavy profiling results that lack portability. These profiling-based approaches cannot lighten the strategy generation work due to the non-reusable profiling value. Our intuition is that there is no need to estimate the actual execution time of the distributed training but to compare the relative cost of different strategies. We propose SMSG (Symbolic Modeling for Strategy Generation), which analyses the cost based on the communication and computation semantics. With SMSG, the parallel cost analyses are decoupled from hardware characteristics. SMSG defines cost functions for each kind of operator to quantitatively evaluate the amount of data for computation and communication, which eliminates the heavy profiling tasks. Besides, SMSG introduces how to apply functional transformation by using the Third Homomorphism theorem to control the high searching complexity. Our experiments show that SMSG can find good hybrid parallelism strategies to generate an efficient training performance similar to the state of the art. Moreover, SMSG covers a wide variety of DNN models with good scalability. SMSG provides good portability when changing training configurations that a profiling-based approach cannot.
The increasing size of deep neural networks (DNNs) raises a high demand for distributed training. An expert could find good hybrid parallelism strategies, but designing suitable strategies is time and labor-consuming. Therefore, automating parallelism strategy generation is crucial and desirable for DNN designers. Some automatic searching approaches have recently been studied to free the experts from the heavy parallel strategy conception. However, these approaches all rely on a numerical cost model, which requires heavy profiling results that lack portability. These profiling-based approaches cannot lighten the strategy generation work due to the non-reusable profiling value. Our intuition is that there is no need to estimate the actual execution time of the distributed training but to compare the relative cost of different strategies. We propose SMSG (Symbolic Modeling for Strategy Generation), which analyses the cost based on the communication and computation semantics. With SMSG, the parallel cost analyses are decoupled from hardware characteristics. SMSG defines cost functions for each kind of operator to quantitatively evaluate the amount of data for computation and communication, which eliminates the heavy profiling tasks. Besides, SMSG introduces how to apply functional transformation by using the Third Homomorphism theorem to control the high searching complexity. Our experiments show that SMSG can find good hybrid parallelism strategies to generate an efficient training performance similar to the state of the art. Moreover, SMSG covers a wide variety of DNN models with good scalability. SMSG provides good portability when changing training configurations that a profiling-based approach cannot.
Author Li, Chong
Wang, Haoran
Robert, Sophie
Tachon, Thibaut
Limet, Sébastien
Author_xml – sequence: 1
  givenname: Haoran
  surname: Wang
  fullname: Wang, Haoran
  organization: Huawei Technologies France S.A.S.U., LIFO, Bat. 3IA, Université d’Orléans
– sequence: 2
  givenname: Thibaut
  surname: Tachon
  fullname: Tachon, Thibaut
  organization: Huawei Technologies France S.A.S.U
– sequence: 3
  givenname: Chong
  surname: Li
  fullname: Li, Chong
  email: ch.l@huawei.com
  organization: Huawei Technologies France S.A.S.U
– sequence: 4
  givenname: Sophie
  surname: Robert
  fullname: Robert, Sophie
  organization: LIFO, Bat. 3IA, Université d’Orléans
– sequence: 5
  givenname: Sébastien
  surname: Limet
  fullname: Limet, Sébastien
  organization: LIFO, Bat. 3IA, Université d’Orléans
BackLink https://univ-orleans.hal.science/hal-04551101$$DView record in HAL
BookMark eNp9kE1LxDAURYMoOKP-AVcFVy6iL0nzUXfi-AUzKqjrkLaJRjqNJh3Bf2_GKoILVyF554T77hRt9qG3CO0TOCIA8jgRkEJgoBTna0mw2EATwiXDUpSwiSagFMey5GobTVN6AYBKKjVB1_eL-8uT4i4G5zvfP-GLaG1xZ6LpOtv5tCwWobXrSeFCLGY-DdHXq8G2xUM0vl8PgitmNze7aMuZLtm973MHPV6cP5xd4fnt5fXZ6Rw3rJIDrkhLGC9rUVfWypa6umIgpKOlEi0IxoSTvHFGGtYSUzFpbSuZBOIq47g1bAcdjv8-m06_Rr808UMH4_XV6Vyv36DknBAg7ySzByP7GsPbyqZBv4RV7HM8TWVFJVXAaabUSDUxpBSt040fzOBDP-QVO01Ar0vWY8k6l6y_StYiq_SP-pPoX4mNUspw_2Tjb6p_rE_MdI6n
CitedBy_id crossref_primary_10_1109_TPDS_2024_3476390
Cites_doi 10.1017/S0956796897002864
10.1145/1594834.1480905
10.1016/j.jcss.2010.06.012
10.1109/TPDS.2021.3132413
10.1017/S0956796800001908
10.1007/978-3-030-85665-6_13
10.1145/3437801.3441593
10.1145/2988450.2988454
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
1XC
DOI 10.1007/s10766-022-00741-6
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7640
EndPage 127
ExternalDocumentID oai:HAL:hal-04551101v1
10_1007_s10766_022_00741_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
E.L
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
MS~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
1XC
ID FETCH-LOGICAL-c397t-91d1354b6b9ee7d2fb93067f2486d06336f75cfa7a3d1a937eed73701f9af5ea3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000897136200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7458
IngestDate Tue Oct 14 20:45:38 EDT 2025
Wed Nov 05 02:40:36 EST 2025
Tue Nov 18 22:38:59 EST 2025
Sat Nov 29 01:59:46 EST 2025
Fri Feb 21 02:43:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2-3
Keywords Parallel modeling
Distributed training
Deep network networks
Performance analysis
Functional transformation
Symbolic cost model
Distributed training ; Deep network networks; Parallel modeling; Symbolic cost model; Functional transformation; Performance analysis
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-91d1354b6b9ee7d2fb93067f2486d06336f75cfa7a3d1a937eed73701f9af5ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10766-022-00741-6
PQID 2792728052
PQPubID 48389
PageCount 19
ParticipantIDs hal_primary_oai_HAL_hal_04551101v1
proquest_journals_2792728052
crossref_citationtrail_10_1007_s10766_022_00741_6
crossref_primary_10_1007_s10766_022_00741_6
springer_journals_10_1007_s10766_022_00741_6
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of parallel programming
PublicationTitleAbbrev Int J Parallel Prog
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References CR19
CR18
CR16
CR14
CR12
CR11
CR10
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (CR17) 2019; 32
Gibbons (CR22) 1996; 6
Valiant (CR20) 2011; 77
Morihata, Matsuzaki, Hu, Takeichi (CR21) 2009; 44
Huang, Cheng, Bapna, Firat, Chen, Chen, Lee, Ngiam, Le, Wu, Chen (CR6) 2019
CR2
Cai, Yan, Ma, Wu, Huang, Cheng, Su, Yu (CR8) 2022; 33
CR3
Brown, Mann, Ryder (CR1) 2020; 33
CR5
CR7
CR29
CR28
CR9
CR27
CR26
CR25
CR24
Raffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li, Liu (CR15) 2020; 21
Krizhevsky, Sutskever, Hinton (CR4) 2012; 60
Wang, Huang, Li (CR13) 2019
Huet (CR23) 1997; 7
741_CR24
741_CR25
741_CR26
741_CR27
T Brown (741_CR1) 2020; 33
741_CR3
741_CR2
741_CR5
741_CR7
LG Valiant (741_CR20) 2011; 77
741_CR9
C Raffel (741_CR15) 2020; 21
M Wang (741_CR13) 2019
G Huet (741_CR23) 1997; 7
741_CR18
741_CR19
741_CR14
741_CR16
741_CR10
741_CR11
741_CR12
A Morihata (741_CR21) 2009; 44
A Krizhevsky (741_CR4) 2012; 60
Z Cai (741_CR8) 2022; 33
741_CR28
Y Huang (741_CR6) 2019
741_CR29
A Paszke (741_CR17) 2019; 32
J Gibbons (741_CR22) 1996; 6
References_xml – volume: 7
  start-page: 549
  issue: 5
  year: 1997
  end-page: 554
  ident: CR23
  article-title: The zipper.
  publication-title: J. Funct. Program.
  doi: 10.1017/S0956796897002864
– ident: CR18
– volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  ident: CR1
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR12
– volume: 44
  start-page: 177
  issue: 1
  year: 2009
  end-page: 185
  ident: CR21
  article-title: The third homomorphism theorem on trees: downward & upward lead to divide-and-conquer
  publication-title: SIGPLAN Not.
  doi: 10.1145/1594834.1480905
– ident: CR10
– ident: CR29
– volume: 77
  start-page: 154
  issue: 1
  year: 2011
  end-page: 166
  ident: CR20
  article-title: A bridging model for multi-core computing
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2010.06.012
– volume: 33
  start-page: 1967
  issue: 8
  year: 2022
  end-page: 1981
  ident: CR8
  article-title: Tensoropt: exploring the tradeoffs in distributed DNN training with auto-parallelism
  publication-title: IEEE Trans. Parallel. Distrib. Syst.
  doi: 10.1109/TPDS.2021.3132413
– ident: CR25
– ident: CR27
– ident: CR19
– volume: 21
  start-page: 1
  issue: 140
  year: 2020
  end-page: 67
  ident: CR15
  article-title: Exploring the limits of transfer learning with a unified text-to-text transformer
  publication-title: J. Mach. Learn. Res.
– ident: CR3
– year: 2019
  ident: CR6
  publication-title: GPipe: Efficient training of giant neural networks using pipeline parallelism
– volume: 6
  start-page: 657
  issue: 4
  year: 1996
  end-page: 665
  ident: CR22
  article-title: Functional pearls: the third homomorphism theorem
  publication-title: J. Funct. Program.
  doi: 10.1017/S0956796800001908
– ident: CR11
– ident: CR9
– year: 2019
  ident: CR13
  publication-title: Supporting Very Large Models using Automatic Dataflow Graph Partitioning. EuroSys ’19
– volume: 60
  start-page: 1097
  issue: 6
  year: 2012
  end-page: 1105
  ident: CR4
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR5
– ident: CR7
– volume: 32
  start-page: 8026
  year: 2019
  end-page: 8037
  ident: CR17
  article-title: Pytorch: an imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR28
– ident: CR26
– ident: CR24
– volume: 21
  start-page: 1
  issue: 140
  year: 2020
  ident: 741_CR15
  publication-title: J. Mach. Learn. Res.
– ident: 741_CR26
– volume: 32
  start-page: 8026
  year: 2019
  ident: 741_CR17
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 741_CR28
– volume: 33
  start-page: 1967
  issue: 8
  year: 2022
  ident: 741_CR8
  publication-title: IEEE Trans. Parallel. Distrib. Syst.
  doi: 10.1109/TPDS.2021.3132413
– ident: 741_CR11
– ident: 741_CR19
  doi: 10.1007/978-3-030-85665-6_13
– volume: 6
  start-page: 657
  issue: 4
  year: 1996
  ident: 741_CR22
  publication-title: J. Funct. Program.
  doi: 10.1017/S0956796800001908
– ident: 741_CR24
– ident: 741_CR9
  doi: 10.1145/3437801.3441593
– volume: 77
  start-page: 154
  issue: 1
  year: 2011
  ident: 741_CR20
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2010.06.012
– ident: 741_CR29
– ident: 741_CR27
– volume: 7
  start-page: 549
  issue: 5
  year: 1997
  ident: 741_CR23
  publication-title: J. Funct. Program.
  doi: 10.1017/S0956796897002864
– ident: 741_CR14
– ident: 741_CR12
– ident: 741_CR10
– volume-title: Supporting Very Large Models using Automatic Dataflow Graph Partitioning. EuroSys ’19
  year: 2019
  ident: 741_CR13
– ident: 741_CR18
– ident: 741_CR3
  doi: 10.1145/2988450.2988454
– volume: 44
  start-page: 177
  issue: 1
  year: 2009
  ident: 741_CR21
  publication-title: SIGPLAN Not.
  doi: 10.1145/1594834.1480905
– ident: 741_CR16
– ident: 741_CR2
  doi: 10.1109/CVPR.2016.90
– volume-title: GPipe: Efficient training of giant neural networks using pipeline parallelism
  year: 2019
  ident: 741_CR6
– ident: 741_CR7
– ident: 741_CR5
– ident: 741_CR25
– volume: 60
  start-page: 1097
  issue: 6
  year: 2012
  ident: 741_CR4
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 1877
  year: 2020
  ident: 741_CR1
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0009788
Score 2.2974896
Snippet The increasing size of deep neural networks (DNNs) raises a high demand for distributed training. An expert could find good hybrid parallelism strategies, but...
Abstract The increasing size of deep neural networks (DNNs) raises a high demand for distributed training. An expert could find good hybrid parallelism...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms Artificial neural networks
Communication
Computation
Computer Science
Cost analysis
Cost function
Homomorphisms
Mathematical analysis
Parallel processing
Portability
Processor Architectures
Searching
Semantics
Software Engineering/Programming and Operating Systems
Special Issue on High-Level Parallel Programming and Applications (HLPP 2022)
Theory of Computation
Training
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL2isIe9ANuYVj4ma-JtWMRxEje8IETXMQmqShSpb9FNbGtI0EJb-P3cmzoUJsHLXmPnQzm277F9fQ7AfqUrj2lJcxMTJTJBjRIxU5Kiq68wdp3cYm02Yfr9zmiUD8KC2yykVTZjYj1Q20nFa-SHLHTHVkppfHx3L9k1indXg4VGC9aY2XBK30V0uhTdNbXvJHWkVJok7YRDM-HonMk4_TaWdVSV2avA1PrLaZEvOOc_26R19Olt_O93b8J64J3iZNFQPsGKG3-GjcbTQYQu_gX-XF5c_j4Sg9rKmz5F9qbOiQFO2XPl5np2K9g9jUsE0V3RZd1dtsxyVgyD24SYeNHt97fgqvdreHomg92CrIiUzGnYs0qnSZmVuXPGxr7MeT7h46STWWIyOvMmJWQNaquQaA2FV6NNpHyOPnWov8LqeDJ230B4pcqMaLu2Nkkqk-QlloiRdo6mM4i-Dar510UVtMjZEuOmWKooMz4F4VPU-BRZG34-33O3UOJ4t_YPgvC5Ioton52cF3yNSCyxzEg9qjbsNpgVoevOiiVgbThoUF8Wv_3K7feftgMf2ap-kWa2C6vz6YPbgw_V4_x6Nv1eN9wnvrLwag
  priority: 102
  providerName: ProQuest
Title SMSG: Profiling-Free Parallelism Modeling for Distributed Training of DNN
URI https://link.springer.com/article/10.1007/s10766-022-00741-6
https://www.proquest.com/docview/2792728052
https://univ-orleans.hal.science/hal-04551101
Volume 51
WOSCitedRecordID wos000897136200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB11oQcu0BYQ29KVVfVWLMVxEie9UWBL1ZJGLN-XaJLYAgmWanfL7-9MNmEpAiS4WErsfGjG9jzL4_cAPpe6dBgWtDYxXiAD1CgRIyUpuroSfRsnFdZiEyZN45OTJGsOhY3bbPd2S7Keqe8cdjMRJ8z6so6DMurAPIW7mAUb9gdHM6pdU6tN0vAJpQnCuDkq8_A7_gtHnXNOhryDNO9tjtYxp7_0sr99A4sNxhSb007xFl7Z4TtYavUbRDOcl-HHYG_w_avIatluernsj6wVGY5YX-XyYnwlWCmNawRBW7HNHLssj2UrcdAoS4hrJ7bTdAUO-zsHW7uykVaQJQGQCU1xldJhUERFYq2pfFckvHZwfhBHFaEWHTkTkhcN6kohQRgKpUYbT7kEXWhRr8Lc8Hpo10A4pYqIILquqiAoTZAUWCB62lpauiC6LqjWwnnZ8I6z_MVlPmNMZlvlZKu8tlUedeHL7TN_pqwbT7b-RI67bciE2bubv3K-R4CVEKWnblQX1lu_5s0wHefMnsj6XKHfhY3Wj7Pqxz_5_nnNP8ACy9RPU8zWYW4y-ms_wuvyZnIxHvWgY45PezD_bSfN9unqp5FU7nlbXPq_qczCs17dyf8BtKHswg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED5tAwleGOOHKAywJngCizp24gQJoYmua9UuqrQi7c04sS0mjXa0ZdP-Kf5G7tJk3ZDY2x54jRNHjr-77xyf7wN4U8oy2LjAtYluK66stNzaRHBk11DayKeZs5XYhM7z9OgoG63B7-YsDKVVNj6xctRuWtI_8g9U6I6klOLo8-lPTqpRtLvaSGgsYTHwF-e4ZJt_6ndwft9GUXdv_KXHa1UBXiL3LtC6nZCxKpIi8167KBQZhc0hUmnikLBlEnSMA9BWOmGRvZFFtNRtETIbYm8l9rsOd5RMNdnVQPNVkV9d6Vyi4cZcqzitD-nUR_V0Qum-Ea9YnCfXiHD9O6VhXolx_9qWrdiuu_m_faeH8KCOq9nu0hC2YM1PHsFmo1nBahf2GPqHB4f7H9mokirHofPuzHs2sjPSlDk5nv9gpA5HLQzDedahusIkCeYdG9dqGmwaWCfPn8DXWxnQU9iYTCf-GbAgRJHgskQ6p1SpVVbYwtq29B6Xa9aGFohmbk1Z11onyY8Ts6oSTXgwiAdT4cEkLXh3-czpstLIjXfvIGQub6Qi4b3doaFrGKRjFN0WZ6IF2w1GTO2a5mYFkBa8b1C2av73K5_f3NtruNcbHwzNsJ8PXsD9CIPBZUrdNmwsZr_8S7hbni2O57NXldEw-Hbb6PsD2BdN2A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD4CNk28wK5agW3WtD1tFnWcxM0kNKGVjgoWRYJJaC_GiW2BBC20BcRf26_jnNShbNJ442GvsePI9ndu8fH5AD5UsvImKTE2Ue2Yx0YabkwqOFpXX5nIdTJrarIJleedg4OsmIPfzV0YSqtsdGKtqO2won_k61TojqiUkmjdh7SIotv7enbOiUGKTlobOo0pRHbc9RWGb-ONfhf3-mMU9bb2v23zwDDAK7TDE5R0K2QSl2mZOads5MuMXGgfxZ3UovGWqVcJTkYZaYVBS44WRUnVFj4zPnFG4rjz8EhhjEnphEXya1bwV9WclyjECVdx0gkXdsK1PZVS6m_Ea4vO0z-M4vwRpWTe8Xf_OqKtLV9v-X9es6ewFPxttjkVkGcw5wbPYbnhsmBBtb2A_t6Pve9fWFFTmOMy8N7IOVaYEXHNnByPTxmxxlELQzefdaneMFGFOcv2A8sGG3rWzfOX8PNBJvQKFgbDgXsNzAtRphiuSGvjuFJxVprSmLZ0DsM4Y3wLRLPPugo12IkK5ETPqkcTNjRiQ9fY0GkLPt2-czatQHJv7_cIn9uOVDx8e3NX0zN03tG7botL0YK1Bi86qKyxnoGlBZ8bxM2a__3JlftHewdPEHR6t5_vrMJihD7iNNNuDRYmowv3Bh5Xl5Pj8ehtLT8MDh8afDe-UVb8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SMSG%3A+Profiling-Free+Parallelism+Modeling+for+Distributed+Training+of+DNN&rft.jtitle=International+journal+of+parallel+programming&rft.au=Wang%2C+Haoran&rft.au=Tachon%2C+Thibaut&rft.au=Li%2C+Chong&rft.au=Robert%2C+Sophie&rft.date=2023-06-01&rft.pub=Springer+US&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=51&rft.issue=2-3&rft.spage=109&rft.epage=127&rft_id=info:doi/10.1007%2Fs10766-022-00741-6&rft.externalDocID=10_1007_s10766_022_00741_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon