Bounds for Polynomials on Algebraic Numbers and Application to Curve Topology

Let P ∈ Z [ X , Y ] be a given square-free polynomial of total degree d with integer coefficients of bitsize less than  τ , and let V R ( P ) : = { ( x , y ) ∈ R 2 ∣ P ( x , y ) = 0 } be the real planar algebraic curve implicitly defined as the vanishing set of  P . We give a deterministic algorithm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete & computational geometry Ročník 67; číslo 3; s. 631 - 697
Hlavní autori: Diatta, Daouda Niang, Diatta, Sény, Rouillier, Fabrice, Roy, Marie-Françoise, Sagraloff, Michael
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2022
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0179-5376, 1432-0444
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Let P ∈ Z [ X , Y ] be a given square-free polynomial of total degree d with integer coefficients of bitsize less than  τ , and let V R ( P ) : = { ( x , y ) ∈ R 2 ∣ P ( x , y ) = 0 } be the real planar algebraic curve implicitly defined as the vanishing set of  P . We give a deterministic algorithm to compute the topology of V R ( P ) in terms of a simple straight-line planar graph G that is isotopic to V R ( P ) . The upper bound on the bit complexity of our algorithm is in O ~ ( d 5 τ + d 6 ) (The expression “the complexity is in O ~ ( f ( d , τ ) ) ” with f a polynomial in d , τ is an abbreviation for the expression “there exists a positive integer c such that the complexity is in O ( ( log d log τ ) c f ( d , τ ) ) ”); which matches the current record bound for the problem of computing the topology of a planar algebraic curve. However, compared to existing algorithms with comparable complexity, our method does not consider any change of coordinates, and more importantly the returned simple planar graph G yields the cylindrical algebraic decomposition information of the curve in the original coordinates. Our result is based on two main ingredients: First, we derive amortized quantitative bounds on the roots of polynomials with algebraic coefficients as well as adaptive methods for computing the roots of bivariate polynomial systems that actually exploit this amortization. The results we obtain are more general that the previous literature. Our second ingredient is a novel approach for the computation of the local topology of the curve in a neighborhood of all singular points.
AbstractList Let $P \in \mathbb{Z} [X, Y]$ be a given square-free polynomial of total degree $d$ with integer coefficients of bitsize less than $\tau$, and let $V_{\mathbb{R}} (P) := \{ (x,y) \in \mathbb{R}^2, P (x,y) = 0 \}$ be the real planar algebraic curve implicitly defined as the vanishing set of $P$. We give a deterministic and certified algorithm to compute the topology of $V_{\mathbb{R}} (P)$ in terms of a straight-line planar graph $\mathcal{G}$ that is isotopic to $V_{\mathbb{R}} (P)$. Our analysis yields the upper bound $\tilde O (d^5 \tau + d^6)$ on the bit complexity of our algorithm, which matches the current record bound for the problem of computing the topology of a planar algebraic curve However, compared to existing algorithms with comparable complexity, our method does not consider any change of coordinates, and the returned graph $\mathcal{G}$ yields the cylindrical algebraic decomposition information of the curve. Our result is based on two main ingredients: First, we derive amortized quantitative bounds on the the roots of polynomials with algebraic coefficients as well as adaptive methods for computing the roots of such polynomials that actually exploit this amortization. Our second ingredient is a novel approach for the computation of the local topology of the curve in a neighborhood of all critical points.
Let P∈Z[X,Y] be a given square-free polynomial of total degree d with integer coefficients of bitsize less than τ, and let VR(P):={(x,y)∈R2∣P(x,y)=0} be the real planar algebraic curve implicitly defined as the vanishing set of P. We give a deterministic algorithm to compute the topology of VR(P) in terms of a simple straight-line planar graph G that is isotopic to VR(P). The upper bound on the bit complexity of our algorithm is in O~(d5τ+d6)(The expression “the complexity is in O~(f(d,τ))” with f a polynomial in d,τ is an abbreviation for the expression “there exists a positive integer c such that the complexity is in O((logdlogτ)cf(d,τ))”); which matches the current record bound for the problem of computing the topology of a planar algebraic curve. However, compared to existing algorithms with comparable complexity, our method does not consider any change of coordinates, and more importantly the returned simple planar graph G yields the cylindrical algebraic decomposition information of the curve in the original coordinates. Our result is based on two main ingredients: First, we derive amortized quantitative bounds on the roots of polynomials with algebraic coefficients as well as adaptive methods for computing the roots of bivariate polynomial systems that actually exploit this amortization. The results we obtain are more general that the previous literature. Our second ingredient is a novel approach for the computation of the local topology of the curve in a neighborhood of all singular points.
Let P ∈ Z [ X , Y ] be a given square-free polynomial of total degree d with integer coefficients of bitsize less than  τ , and let V R ( P ) : = { ( x , y ) ∈ R 2 ∣ P ( x , y ) = 0 } be the real planar algebraic curve implicitly defined as the vanishing set of  P . We give a deterministic algorithm to compute the topology of V R ( P ) in terms of a simple straight-line planar graph G that is isotopic to V R ( P ) . The upper bound on the bit complexity of our algorithm is in O ~ ( d 5 τ + d 6 ) (The expression “the complexity is in O ~ ( f ( d , τ ) ) ” with f a polynomial in d , τ is an abbreviation for the expression “there exists a positive integer c such that the complexity is in O ( ( log d log τ ) c f ( d , τ ) ) ”); which matches the current record bound for the problem of computing the topology of a planar algebraic curve. However, compared to existing algorithms with comparable complexity, our method does not consider any change of coordinates, and more importantly the returned simple planar graph G yields the cylindrical algebraic decomposition information of the curve in the original coordinates. Our result is based on two main ingredients: First, we derive amortized quantitative bounds on the roots of polynomials with algebraic coefficients as well as adaptive methods for computing the roots of bivariate polynomial systems that actually exploit this amortization. The results we obtain are more general that the previous literature. Our second ingredient is a novel approach for the computation of the local topology of the curve in a neighborhood of all singular points.
Author Diatta, Daouda Niang
Sagraloff, Michael
Diatta, Sény
Roy, Marie-Françoise
Rouillier, Fabrice
Author_xml – sequence: 1
  givenname: Daouda Niang
  surname: Diatta
  fullname: Diatta, Daouda Niang
  organization: Université Assane Seck de Ziguinchor
– sequence: 2
  givenname: Sény
  surname: Diatta
  fullname: Diatta, Sény
  organization: Université Assane Seck de Ziguinchor
– sequence: 3
  givenname: Fabrice
  surname: Rouillier
  fullname: Rouillier, Fabrice
  organization: Sorbonne Université and Université de Paris, CNRS, INRIA, IMJ-PRG
– sequence: 4
  givenname: Marie-Françoise
  orcidid: 0000-0002-6955-6491
  surname: Roy
  fullname: Roy, Marie-Françoise
  email: marie-francoise.roy@univ-rennes1.fr
  organization: IRMAR, Université de Rennes I
– sequence: 5
  givenname: Michael
  surname: Sagraloff
  fullname: Sagraloff, Michael
  organization: HAW Landshut
BackLink https://inria.hal.science/hal-01891417$$DView record in HAL
BookMark eNp9kE1PwyAch4mZiXP6BTyRePJQ_VNoaY9zUWcyXw7zTCiF2aUrFVrNvr1s1Zh42ImEPA_58ZyiUWMbjdAFgWsCwG88AEtYBDGJAGhCo68jNCaMxhEwxkZoDITnUUJ5eoJOvV9D4HPIxujp1vZN6bGxDr_aetvYTSVrj22Dp_VKF05WCj_3m0I7j2VT4mnb1pWSXRWIzuJZ7z41XtrW1na1PUPHJtj6_OecoLf7u-VsHi1eHh5n00WkaM67KDNlGWulpCGGlUSlClKlTKpjRaXMCohpaYrE0DQhiuWFoZzwVOYpUJPEKqMTdDW8-y5r0bpqI91WWFmJ-XQhdndAspwwwj9JYC8HtnX2o9e-E2vbuybME3FKM8Ip5RCobKCUs947bYSquv0vu5CgFgTELrQYQosQWuxDi6-gxv_U30UHJTpIPsDNSru_VQesb4Pbksk
CitedBy_id crossref_primary_10_1016_j_cagd_2023_102189
crossref_primary_10_1007_s10013_023_00652_0
crossref_primary_10_1016_j_jsc_2022_08_012
Cites_doi 10.1007/3-540-33099-2
10.1145/2465506.2465523
10.1145/1390768.1390778
10.1016/j.jsc.2017.12.001
10.1016/j.cagd.2008.06.009
10.1016/j.jsc.2015.03.004
10.1007/978-3-540-73843-5_1
10.1145/1277548.1277570
10.1016/j.tcs.2013.04.014
10.1109/SYNASC.2011.17
10.1145/2465506.2465938
10.1006/jsco.2002.0531
10.1016/j.jsc.2017.03.009
10.1016/j.cam.2014.11.031
10.1007/s11786-010-0044-3
10.1109/PG.2007.18
10.1006/jcom.1996.0032
10.1016/S0167-8396(02)00167-X
10.1145/1390768.1390783
10.1109/PG.2007.32
10.1016/j.jco.2014.08.002
10.1016/j.jco.2016.07.002
10.1016/j.jsc.2014.02.001
10.1016/j.jsc.2011.11.001
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
VOOES
DOI 10.1007/s00454-021-00353-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library (ProQuest)
Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1432-0444
EndPage 697
ExternalDocumentID oai:HAL:hal-01891417v1
10_1007_s00454_021_00353_w
GroupedDBID -52
-5D
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.4S
.86
.DC
06D
0R~
0VY
199
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
88I
8AO
8FE
8FG
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C1A
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KQ8
L6V
LAS
LLZTM
LO0
M0N
M2O
M2P
M4Y
M7S
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P62
P9R
PADUT
PF0
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YIN
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c397t-8fdd2eccaf1f4d1c6c06ccf6e2c3aa8b023dfb5f3651c49bf37176a9603f52c83
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755417400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0179-5376
IngestDate Wed Nov 05 07:37:30 EST 2025
Thu Nov 27 13:42:26 EST 2025
Sat Nov 29 02:58:49 EST 2025
Tue Nov 18 21:52:30 EST 2025
Fri Feb 21 02:47:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Exact topology computation
68W30
68Q25
Amortized bound on algebraic numbers
Real algebraic curves
13P15
14Q05
14P25
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-8fdd2eccaf1f4d1c6c06ccf6e2c3aa8b023dfb5f3651c49bf37176a9603f52c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6955-6491
0009-0004-2972-822X
OpenAccessLink https://inria.hal.science/hal-01891417
PQID 2638173370
PQPubID 31658
PageCount 67
ParticipantIDs hal_primary_oai_HAL_hal_01891417v1
proquest_journals_2638173370
crossref_citationtrail_10_1007_s00454_021_00353_w
crossref_primary_10_1007_s00454_021_00353_w
springer_journals_10_1007_s00454_021_00353_w
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Discrete & computational geometry
PublicationTitleAbbrev Discrete Comput Geom
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References KerberMSagraloffMA worst-case bound for topology computation of algebraic curvesJ. Symb. Comput.2012473239258286931910.1016/j.jsc.2011.11.001
AlbertiLMourrainBWintzJTopology and arrangement computation of semi-algebraic planar curvesComput. Aided Geom. Design2008258631651246337610.1016/j.cagd.2008.06.009
Burr, M., Choi, S.W., Galehouse, B., Yap, Ch.K.: Complete subdivision algorithms. II. Isotopic meshing of singular algebraic curves. In: 21st International Symposium on Symbolic and Algebraic Computation (Linz/Hagenberg 2008), pp. 87–94. ACM, New York (2008)
Bodrato, M., Zanoni, A.: Long integers and polynomial evaluation with Estrin’s scheme. In: 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (Timişoara 2011), pp. 39–46. IEEE, Los Alamitos (2011)
SagraloffMMehlhornKComputing real roots of real polynomialsJ. Symb. Comput.2016734686338595110.1016/j.jsc.2015.03.004
PanVYUnivariate polynomials: nearly optimal algorithms for numerical factorization and root-findingJ. Symb. Comput.2002335701733191991110.1006/jsco.2002.0531
BouzidiYLazardSMorozGPougetMRouillierFSagraloffMSolving bivariate systems using rational univariate representationsJ. Complexity2016373475355036510.1016/j.jco.2016.07.002
KerberMSagraloffMRoot refinement for real polynomials using quadratic interval refinementJ. Comput. Appl. Math.2015280377395329606710.1016/j.cam.2014.11.031
Alberti, L., Mourrain, B.: Visualisation of implicit algebraic curves. In: 15th Pacific Conference on Computer Graphics and Applications (Maui 2007), pp. 303–312. IEEE, Los Alamitos (2007)
Alberti, L., Mourrain, B.: Regularity criteria for the topology of algebraic curves and surfaces. In: Mathematics of Surfaces XII (Sheffield 2007). Lecture Notes in Computer Science, vol. 4647, pp. 1–28. Springer, Berlin–Heidelberg (2007)
Pan, V.Y., Tsigaridas, E.P.: On the Boolean complexity of real root refinement. In: 38th International Symposium on Symbolic and Algebraic Computation (Boston 2013), pp. 299–306. ACM, New York (2013)
ChengJLazardSPeñarandaLPougetMRouillierFTsigaridasEOn the topology of real algebraic plane curvesMath. Comput. Sci.201041113137273930710.1007/s11786-010-0044-3
Mehlhorn, K., Sagraloff, M., Wang, P.: From approximate factorization to root isolation. In: 38th International Symposium on Symbolic and Algebraic Computation (Boston 2013), pp. 283–290. ACM, New York (2013)
Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 10. Springer, Berlin (2006). Revised version at http://perso.univ-rennes1.fr/marie-francoise.roy
BeckerRSagraloffMSharmaVYapCA near-optimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iterationJ. Symb. Comput.2018865196372521410.1016/j.jsc.2017.03.009
Wintz, J., Mourrain, B.: A subdivision arrangement algorithm for semi-algebraic curves: an overview. In: 15th Pacific Conference on Computer Graphics and Applications (Maui 2007), pp. 449–452. IEEE, Los Alamitos (2007)
Gonzalez-VegaLNeculaIEfficient topology determination of implicitly defined algebraic plane curvesComput. Aided Geom. Design2002199719743194025910.1016/S0167-8396(02)00167-X
Eigenwillig, A., Kerber, M., Wolpert, N.: Fast and exact geometric analysis of real algebraic plane curves. In: 20th International Symposium on Symbolic and Algebraic Computation (Waterloo 2007), pp. 151–158. ACM, New York (2007)
MehlhornKSagraloffMWangPFrom approximate factorization to root isolation with application to cylindrical algebraic decompositionJ. Symb. Comput.2015663469322991910.1016/j.jsc.2014.02.001
Diatta, D.N., Mourrain, B., Ruatta, O.: On the computation of the topology of a non-reduced implicit space curve. In: 21st International Symposium on Symbolic and Algebraic Computation (Linz/Hagenberg 2008), pp. 47–54. ACM, New York (2008)
González-VegaLEl KahouiMAn improved upper complexity bound for the topology computation of a real algebraic plane curveJ. Complexity1996124527544142272510.1006/jcom.1996.0032
von zur GathenJGerhardJModern Computer Algebra1999New YorkCambridge University Press0936.11069
Kerber, M.: Geometric Algorithms for Algebraic Curves and Surfaces. PhD thesis, Universität des Saarlandes (2009). https://d-nb.info/1002267331/34
KobelASagraloffMOn the complexity of computing with planar algebraic curvesJ. Complexity2015312206236330599310.1016/j.jco.2014.08.002
BerberichEEmeliyanenkoPKobelASagraloffMExact symbolic-numeric computation of planar algebraic curvesTheoret. Comput. Sci.2013491132306278310.1016/j.tcs.2013.04.014
StrzebonskiATsigaridasEUnivariate real root isolation in an extension field and applicationsJ. Symb. Comput.2019923151390734610.1016/j.jsc.2017.12.001
Y Bouzidi (353_CR8) 2016; 37
353_CR26
E Berberich (353_CR6) 2013; 491
R Becker (353_CR5) 2018; 86
J von zur Gathen (353_CR13) 1999
A Strzebonski (353_CR25) 2019; 92
VY Pan (353_CR22) 2002; 33
M Kerber (353_CR18) 2015; 280
353_CR12
353_CR11
M Kerber (353_CR17) 2012; 47
353_CR16
L González-Vega (353_CR14) 1996; 12
L Alberti (353_CR3) 2008; 25
353_CR7
M Sagraloff (353_CR24) 2016; 73
353_CR9
353_CR23
A Kobel (353_CR19) 2015; 31
353_CR2
353_CR20
353_CR1
353_CR4
L Gonzalez-Vega (353_CR15) 2002; 19
J Cheng (353_CR10) 2010; 4
K Mehlhorn (353_CR21) 2015; 66
References_xml – reference: SagraloffMMehlhornKComputing real roots of real polynomialsJ. Symb. Comput.2016734686338595110.1016/j.jsc.2015.03.004
– reference: Mehlhorn, K., Sagraloff, M., Wang, P.: From approximate factorization to root isolation. In: 38th International Symposium on Symbolic and Algebraic Computation (Boston 2013), pp. 283–290. ACM, New York (2013)
– reference: Bodrato, M., Zanoni, A.: Long integers and polynomial evaluation with Estrin’s scheme. In: 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (Timişoara 2011), pp. 39–46. IEEE, Los Alamitos (2011)
– reference: StrzebonskiATsigaridasEUnivariate real root isolation in an extension field and applicationsJ. Symb. Comput.2019923151390734610.1016/j.jsc.2017.12.001
– reference: Alberti, L., Mourrain, B.: Regularity criteria for the topology of algebraic curves and surfaces. In: Mathematics of Surfaces XII (Sheffield 2007). Lecture Notes in Computer Science, vol. 4647, pp. 1–28. Springer, Berlin–Heidelberg (2007)
– reference: BeckerRSagraloffMSharmaVYapCA near-optimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iterationJ. Symb. Comput.2018865196372521410.1016/j.jsc.2017.03.009
– reference: Alberti, L., Mourrain, B.: Visualisation of implicit algebraic curves. In: 15th Pacific Conference on Computer Graphics and Applications (Maui 2007), pp. 303–312. IEEE, Los Alamitos (2007)
– reference: PanVYUnivariate polynomials: nearly optimal algorithms for numerical factorization and root-findingJ. Symb. Comput.2002335701733191991110.1006/jsco.2002.0531
– reference: BerberichEEmeliyanenkoPKobelASagraloffMExact symbolic-numeric computation of planar algebraic curvesTheoret. Comput. Sci.2013491132306278310.1016/j.tcs.2013.04.014
– reference: MehlhornKSagraloffMWangPFrom approximate factorization to root isolation with application to cylindrical algebraic decompositionJ. Symb. Comput.2015663469322991910.1016/j.jsc.2014.02.001
– reference: KobelASagraloffMOn the complexity of computing with planar algebraic curvesJ. Complexity2015312206236330599310.1016/j.jco.2014.08.002
– reference: Burr, M., Choi, S.W., Galehouse, B., Yap, Ch.K.: Complete subdivision algorithms. II. Isotopic meshing of singular algebraic curves. In: 21st International Symposium on Symbolic and Algebraic Computation (Linz/Hagenberg 2008), pp. 87–94. ACM, New York (2008)
– reference: Diatta, D.N., Mourrain, B., Ruatta, O.: On the computation of the topology of a non-reduced implicit space curve. In: 21st International Symposium on Symbolic and Algebraic Computation (Linz/Hagenberg 2008), pp. 47–54. ACM, New York (2008)
– reference: von zur GathenJGerhardJModern Computer Algebra1999New YorkCambridge University Press0936.11069
– reference: Wintz, J., Mourrain, B.: A subdivision arrangement algorithm for semi-algebraic curves: an overview. In: 15th Pacific Conference on Computer Graphics and Applications (Maui 2007), pp. 449–452. IEEE, Los Alamitos (2007)
– reference: ChengJLazardSPeñarandaLPougetMRouillierFTsigaridasEOn the topology of real algebraic plane curvesMath. Comput. Sci.201041113137273930710.1007/s11786-010-0044-3
– reference: KerberMSagraloffMRoot refinement for real polynomials using quadratic interval refinementJ. Comput. Appl. Math.2015280377395329606710.1016/j.cam.2014.11.031
– reference: Kerber, M.: Geometric Algorithms for Algebraic Curves and Surfaces. PhD thesis, Universität des Saarlandes (2009). https://d-nb.info/1002267331/34
– reference: AlbertiLMourrainBWintzJTopology and arrangement computation of semi-algebraic planar curvesComput. Aided Geom. Design2008258631651246337610.1016/j.cagd.2008.06.009
– reference: KerberMSagraloffMA worst-case bound for topology computation of algebraic curvesJ. Symb. Comput.2012473239258286931910.1016/j.jsc.2011.11.001
– reference: Gonzalez-VegaLNeculaIEfficient topology determination of implicitly defined algebraic plane curvesComput. Aided Geom. Design2002199719743194025910.1016/S0167-8396(02)00167-X
– reference: Pan, V.Y., Tsigaridas, E.P.: On the Boolean complexity of real root refinement. In: 38th International Symposium on Symbolic and Algebraic Computation (Boston 2013), pp. 299–306. ACM, New York (2013)
– reference: Eigenwillig, A., Kerber, M., Wolpert, N.: Fast and exact geometric analysis of real algebraic plane curves. In: 20th International Symposium on Symbolic and Algebraic Computation (Waterloo 2007), pp. 151–158. ACM, New York (2007)
– reference: BouzidiYLazardSMorozGPougetMRouillierFSagraloffMSolving bivariate systems using rational univariate representationsJ. Complexity2016373475355036510.1016/j.jco.2016.07.002
– reference: González-VegaLEl KahouiMAn improved upper complexity bound for the topology computation of a real algebraic plane curveJ. Complexity1996124527544142272510.1006/jcom.1996.0032
– reference: Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 10. Springer, Berlin (2006). Revised version at http://perso.univ-rennes1.fr/marie-francoise.roy/
– ident: 353_CR4
  doi: 10.1007/3-540-33099-2
– volume-title: Modern Computer Algebra
  year: 1999
  ident: 353_CR13
– ident: 353_CR20
  doi: 10.1145/2465506.2465523
– ident: 353_CR11
  doi: 10.1145/1390768.1390778
– volume: 92
  start-page: 31
  year: 2019
  ident: 353_CR25
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2017.12.001
– volume: 25
  start-page: 631
  issue: 8
  year: 2008
  ident: 353_CR3
  publication-title: Comput. Aided Geom. Design
  doi: 10.1016/j.cagd.2008.06.009
– volume: 73
  start-page: 46
  year: 2016
  ident: 353_CR24
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2015.03.004
– ident: 353_CR1
  doi: 10.1007/978-3-540-73843-5_1
– ident: 353_CR12
  doi: 10.1145/1277548.1277570
– ident: 353_CR16
– volume: 491
  start-page: 1
  year: 2013
  ident: 353_CR6
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2013.04.014
– ident: 353_CR7
  doi: 10.1109/SYNASC.2011.17
– ident: 353_CR23
  doi: 10.1145/2465506.2465938
– volume: 33
  start-page: 701
  issue: 5
  year: 2002
  ident: 353_CR22
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.2002.0531
– volume: 86
  start-page: 51
  year: 2018
  ident: 353_CR5
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2017.03.009
– volume: 280
  start-page: 377
  year: 2015
  ident: 353_CR18
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.11.031
– volume: 4
  start-page: 113
  issue: 1
  year: 2010
  ident: 353_CR10
  publication-title: Math. Comput. Sci.
  doi: 10.1007/s11786-010-0044-3
– ident: 353_CR26
  doi: 10.1109/PG.2007.18
– volume: 12
  start-page: 527
  issue: 4
  year: 1996
  ident: 353_CR14
  publication-title: J. Complexity
  doi: 10.1006/jcom.1996.0032
– volume: 19
  start-page: 719
  issue: 9
  year: 2002
  ident: 353_CR15
  publication-title: Comput. Aided Geom. Design
  doi: 10.1016/S0167-8396(02)00167-X
– ident: 353_CR9
  doi: 10.1145/1390768.1390783
– ident: 353_CR2
  doi: 10.1109/PG.2007.32
– volume: 31
  start-page: 206
  issue: 2
  year: 2015
  ident: 353_CR19
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2014.08.002
– volume: 37
  start-page: 34
  year: 2016
  ident: 353_CR8
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2016.07.002
– volume: 66
  start-page: 34
  year: 2015
  ident: 353_CR21
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2014.02.001
– volume: 47
  start-page: 239
  issue: 3
  year: 2012
  ident: 353_CR17
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2011.11.001
SSID ssj0004908
Score 2.3571298
Snippet Let P ∈ Z [ X , Y ] be a given square-free polynomial of total degree d with integer coefficients of bitsize less than  τ , and let V R ( P ) : = { ( x , y ) ∈...
Let P∈Z[X,Y] be a given square-free polynomial of total degree d with integer coefficients of bitsize less than τ, and let VR(P):={(x,y)∈R2∣P(x,y)=0} be the...
Let $P \in \mathbb{Z} [X, Y]$ be a given square-free polynomial of total degree $d$ with integer coefficients of bitsize less than $\tau$, and let...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 631
SubjectTerms Algebra
Algorithms
Bivariate analysis
Combinatorics
Complexity
Computation
Computational Mathematics and Numerical Analysis
Computer Science
Integers
Mathematical analysis
Mathematics
Mathematics and Statistics
Polynomials
Symbolic Computation
Topology
Upper bounds
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFH4abAd2gMFAKwNkTbttFnHsJM4JdQjEgVY9gMQtcuwYKlUJNKWIf4-f67TbJLhwTWwn8nv2e_Z77_sAfiojhEhUTqXOEipyrqjKlaaZMw6SsVTKyrOWXGbDoby5yUfhwq0NaZXdnug3atNovCM_jlPEkuM8i07uHyiyRmF0NVBorMFH59kwTOkaxKNVXWTuGelQ6SjCloSiGV8657HnKCYoYDCN06d_DNPaHaZF_uVz_hcm9dbnfOu9__0FNoPfSfoLRdmGD1W9A1sdpwMJS3wHPg-WOK7tVxj8QdalljjPloyayTPWMDt9JU1N-pNbjDmPNRl6UpGWqNqQ_ioeTmYNOX2czitytSBieN6F6_Ozq9MLGggYqHZuyoxKa0yMMrbMCsN0qqNUa5tWseZKydLZe2PLxPI0YVrkpeXucJgqdyjiNom15HuwXjd19Q2I62w4t5EqEy2yypbaDaKyyCROlWMuesC62S90QCdHkoxJscRV9hIrnMQKL7HiqQe_ln3uF9gcb7b-4YS6bIiw2hf9ywKfRUzmTLBsznpw0EmxCIu5LVYi7MHvTg9Wr1__5P7bo32HjRiLKXwe0AGsz6aP1SF80vPZuJ0eeVV-AYBv-J4
  priority: 102
  providerName: ProQuest
Title Bounds for Polynomials on Algebraic Numbers and Application to Curve Topology
URI https://link.springer.com/article/10.1007/s00454-021-00353-w
https://www.proquest.com/docview/2638173370
https://inria.hal.science/hal-01891417
Volume 67
WOSCitedRecordID wos000755417400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5RuoftYQzYtDJWWYg3sBTHTuw8thWoErRE_BLiJXKcmCFVKWpKEf_9bDdJx8SQxosfEjuJ7s65s-7u-wD2ZcYYC2SEheIBZhGVWEZSYW6cgyAkFCJ3rCWnfDwWNzdRXDWFlXW1e52SdH_qptnNocVhW1Jg018UP7WgbdydsIQN5xfXq27IyPHQWVPDFqykapV5_Rkv3FHrly2G_CPS_Cs56nzO8cb7vvYLfK5iTNRbGsUmrOXFFmzU_A2o2s5b8GnUYLaW2zDqW4alEpkoFsXTybPtVza2iaYF6k3ubH75XqGxIxApkSwy1FvlvtF8igaPs0WOLpekC89f4er46HIwxBXZAlYmJJljobPMt_rURLOMqFB5oVI6zH1FpRSp8e2ZTgNNw4AoFqWamoNgKM0BiOrAV4J-g_ViWuTfAZnFGaXak2mgGM91qsxDJPeywJitT1kHSC3zRFVI5JYQY5I0GMpOeomRXuKklzx14KBZ87DE4Xhz9p5RZTPRQmgPe6eJveYRERFG-IJ0YLfWdFJt3DLxQwtZSCn3OnBYa3Z1-9-v3Pm_6T_go28bKVwN0C6sz2eP-U_4oBbz-3LWhXb_aByfd6F1wrEZR_6ZG2M78gszxsFt15n9b1fG9Yc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BQk4tFBAhBZYITjBCu_DrwNCoVClahLlEKTezHrX21aK7BKnifKn-I3sbOwEkOitB662d_3Yb3Z2PTPfB_BGGSllqFKa6DikMhWKqlRpGjvnkDAWJUnhVUv68XCYnJ2loy342dbCYFplOyf6idpUGv-Rf-ARcskJEQefrn5QVI3C6GorobGCxWmxXLgtW_3x5Isb37ecH38dH_VooypAtfO9M5pYYzg-uGVWGqYjHURa26jgWiiV5M6JGZuHVkQh0zLNrXA7nki5lb6wIdeJcP1uwx2JzGKYKshHmzrM1CvgIcgp0qQ0RTq-VM9z3VFMiMDgnaCLPxzh9gWmYf62xv0rLOu93fHe__adHsJus64m3ZUhPIKtotyHvVazgjRT2D48GKx5auvHMPiMqlI1cSt3MqomS6zRdvZIqpJ0J-cYU7_UZOhFU2qiSkO6m3g_mVXk6Ho6L8h4JTSxfALfbuUVn8JOWZXFMyCusRHCBioPtYwLm2vXiYoDEzpT5UJ2gLWjnemGfR1FQCbZmjfaIyRzCMk8QrJFB96t21ytuEduvPq1A9H6QqQN73X7GR4LWJIyyeI568Bhi5qsmazqbAOZDrxvcbc5_e9bPr-5t1dwrzce9LP-yfD0AO5zLBzxOU-HsDObXhcv4K6ezy7r6UtvRgS-3zYefwEzaFik
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH61DYTgsMEAURhgITiBtTh2EucwTd1GtWld1cOQJi6ZY8cwqUpG07XqX-PX4ddNWkBitx24JrajxM_74bwfD8B7ZYQQkUqp1ElERcoVVanSNHHGQTIWS1l41pJ-MhjIi4t0uAY_21oYTKtsdaJX1KbS-I98N4yxlxznSbBrm7SI4VFv__oHRQYpjLS2dBoLiJwW85k7vtV7J0durz-EYe_z-eExbRgGqHZ2eEKlNSbEl7DMCsN0rINYaxsXoeZKydwZNGPzyPI4YlqkueXu9BMr5_VzG4VacrfuOtxL3BkT0wmH0ddVTWbq2fAQ8BRbpjQFO75sz_e9o5gcgYE8Tmd_GMX175iS-Zu_-1eI1lu-3tb__M0ew2bjb5PuQkCewFpRbsNWy2VBGtW2DY_Olv1r66dwdoBsUzVxHj0ZVqM51m47OSVVSbqjbxhrv9Jk4MlUaqJKQ7qrPAAyqcjhzXhakPMFAcX8GXy5k1d8DhtlVRYvgLjJhnMbqDzSIilsrt0iKglM5EQ45KIDrN35TDdd2ZEcZJQt-0l7tGQOLZlHSzbrwMflnOtFT5JbR79zgFoOxHbix91-htcCJlMmWDJlHdhpEZQ1SqzOVvDpwKcWg6vb_37ky9tXewsPHAyz_sng9BU8DLGexKdC7cDGZHxTvIb7ejq5qsdvvEQRuLxrOP4CR4BhkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bounds+for+Polynomials+on+Algebraic+Numbers+and+Application+to+Curve+Topology&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Diatta%2C+Daouda+Niang&rft.au=Diatta%2C+S%C3%A9ny&rft.au=Rouillier%2C+Fabrice&rft.au=Roy%2C+Marie-Fran%C3%A7oise&rft.date=2022-04-01&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=67&rft.issue=3&rft.spage=631&rft.epage=697&rft_id=info:doi/10.1007%2Fs00454-021-00353-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00454_021_00353_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon