Genetic algorithm for non-linear mixed integer programming problems and its applications

In this paper we propose a method for solving non-linear mixed integer programming (NMIP) problems using genetic algorithm (GAs) to get an optimal or near optimal solution. The penalty function method was used to evaluate those infeasible chromosomes generated from genetic reproduction. Also, we app...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & industrial engineering Ročník 30; číslo 4; s. 905 - 917
Hlavní autoři: Yokota, Takao, Gen, Mitsuo, Li, Yin-Xiu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.09.1996
Pergamon Press Inc
Témata:
ISSN:0360-8352, 1879-0550
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we propose a method for solving non-linear mixed integer programming (NMIP) problems using genetic algorithm (GAs) to get an optimal or near optimal solution. The penalty function method was used to evaluate those infeasible chromosomes generated from genetic reproduction. Also, we apply the method for solving several optimization problems of system reliability which belong to non-linear integer programming (NIP) or (NMIP) problems, using the proposed method. Numerical experiments and comparisons with previous works are illustrated to demonstrate the efficiency of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0360-8352
1879-0550
DOI:10.1016/0360-8352(96)00041-1