Analysis of revising multisource fusion data of high-temperature flood season weather in southern Xinjiang, China
To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data Assimilation System of the China Meteorological Administration (CLDAS) from June to August 2022, with a spatial resolution of 0.05° × 0.05°. An innova...
Uloženo v:
| Vydáno v: | Theoretical and applied climatology Ročník 155; číslo 7; s. 5795 - 5806 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Vienna
Springer Vienna
01.07.2024
Springer |
| Témata: | |
| ISSN: | 0177-798X, 1434-4483 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data Assimilation System of the China Meteorological Administration (CLDAS) from June to August 2022, with a spatial resolution of 0.05° × 0.05°. An innovative stepwise proximity error correction algorithm was proposed based on the distribution of automatic weather stations in southern Xinjiang. CLDAS and revised CLDAS data were obtained and analysed from time series and spatial data series, respectively. In comparative analysis, the following were considered: the root mean square error, the temperature accuracy at 1 and 2 °C, the high-temperature accuracy at 35, 37 and 40 °C, and the distribution of high temperatures. The error variation trends of the two types of multisource fusion data were determined. Our analysis proved that the use of the correction algorithm could effectively improve the accuracy and adaptability of CLDAS data in southern Xinjiang. The proposed algorithm could provide detailed locations and more accurate temperature values for high-temperature monitoring and could serve as a reference for relevant studies. |
|---|---|
| AbstractList | To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data Assimilation System of the China Meteorological Administration (CLDAS) from June to August 2022, with a spatial resolution of 0.05° × 0.05°. An innovative stepwise proximity error correction algorithm was proposed based on the distribution of automatic weather stations in southern Xinjiang. CLDAS and revised CLDAS data were obtained and analysed from time series and spatial data series, respectively. In comparative analysis, the following were considered: the root mean square error, the temperature accuracy at 1 and 2 °C, the high-temperature accuracy at 35, 37 and 40 °C, and the distribution of high temperatures. The error variation trends of the two types of multisource fusion data were determined. Our analysis proved that the use of the correction algorithm could effectively improve the accuracy and adaptability of CLDAS data in southern Xinjiang. The proposed algorithm could provide detailed locations and more accurate temperature values for high-temperature monitoring and could serve as a reference for relevant studies. To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data Assimilation System of the China Meteorological Administration (CLDAS) from June to August 2022, with a spatial resolution of 0.05° × 0.05°. An innovative stepwise proximity error correction algorithm was proposed based on the distribution of automatic weather stations in southern Xinjiang. CLDAS and revised CLDAS data were obtained and analysed from time series and spatial data series, respectively. In comparative analysis, the following were considered: the root mean square error, the temperature accuracy at 1 and 2 °C, the high-temperature accuracy at 35, 37 and 40 °C, and the distribution of high temperatures. The error variation trends of the two types of multisource fusion data were determined. Our analysis proved that the use of the correction algorithm could effectively improve the accuracy and adaptability of CLDAS data in southern Xinjiang. The proposed algorithm could provide detailed locations and more accurate temperature values for high-temperature monitoring and could serve as a reference for relevant studies. To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data Assimilation System of the China Meteorological Administration (CLDAS) from June to August 2022, with a spatial resolution of 0.05° x 0.05°. An innovative stepwise proximity error correction algorithm was proposed based on the distribution of automatic weather stations in southern Xinjiang. CLDAS and revised CLDAS data were obtained and analysed from time series and spatial data series, respectively. In comparative analysis, the following were considered: the root mean square error, the temperature accuracy at 1 and 2 °C, the high-temperature accuracy at 35, 37 and 40 °C, and the distribution of high temperatures. The error variation trends of the two types of multisource fusion data were determined. Our analysis proved that the use of the correction algorithm could effectively improve the accuracy and adaptability of CLDAS data in southern Xinjiang. The proposed algorithm could provide detailed locations and more accurate temperature values for high-temperature monitoring and could serve as a reference for relevant studies. |
| Audience | Academic |
| Author | Zhang, Zulian Jiang, Yuanan Aidaituli, Mushajiang Meng, Fanxue Gu, Yawen Wang, Mingquan |
| Author_xml | – sequence: 1 givenname: Zulian surname: Zhang fullname: Zhang, Zulian organization: Xinjiang Uygur Autonomous Region Meteorological Observatory, College of Geography and Remote Sensing Sciences, XinJiang University, Xinjiang Xingnong Net Information Center – sequence: 2 givenname: Mingquan surname: Wang fullname: Wang, Mingquan email: mingquanwang2023@hotmail.com organization: Xinjiang Education Management Information Center – sequence: 3 givenname: Fanxue surname: Meng fullname: Meng, Fanxue organization: Kashgar Meteorological Bureau, Xinjiang Uygur Autonomous Region – sequence: 4 givenname: Yawen surname: Gu fullname: Gu, Yawen organization: Xinjiang Xingnong Net Information Center – sequence: 5 givenname: Mushajiang surname: Aidaituli fullname: Aidaituli, Mushajiang organization: Xinjiang Xingnong Net Information Center – sequence: 6 givenname: Yuanan surname: Jiang fullname: Jiang, Yuanan organization: Xinjiang Uygur Autonomous Region Meteorological Observatory |
| BookMark | eNp9kUtv3CAURlGVSp1M-we6YtlKdYoNtmE5GvURKVKkPqTsEMNcPIxsmABum3_fO3U26SJCvL8DiHNJLkIMQMjbml3VjPUfMzZMVKzBKlSH7QuyqgUXlRCSX5AVq_u-6pW8e0Uucz4yxpqu61fkfhPM-JB9ptHRBL989mGg0zwWn-OcLFA3Zx8D3ZtizpmDHw5VgekEyZQ54f4Y455mMBlTv8GUAyTqA0X8PAz0zoejN2H4QLcHH8xr8tKZMcObx35Nfn7-9GP7tbq5_XK93dxUlqu-VFK5XkqrjBPCgaqVsx03Ru7atu47ppRqDW9NpyQ0OwGtA5zYTvF6J0XXWb4m75ZzTynez5CLnny2MI4mQJyz5nXLe85b_J81uVqigxlB--BiScZi2cPkLf6087i-kUxwroRsEHj_BMBMgT9lMHPO-vr7t6fZZsnaFHNO4PQp-cmkB10zfZanF3ka5el_8jRDSP4HWV9MQRH4Mj8-j_IFzXhPGCDpI4pEy_k56i9ol7Du |
| CitedBy_id | crossref_primary_10_1007_s00704_024_05306_w |
| Cites_doi | 10.1029/2017WR022163 10.3390/w15193337 10.1016/j.atmosres.2022.106398 10.7519/j.issn.1000-0526.2023.052601 10.1002/wea.136 10.1029/2011WR011590 10.1016/j.atmosres.2024.107230 10.1016/j.atmosres.2023.107017 10.1002/esp.4136 10.1016/j.watres.2021.117286 10.1029/2020WR028126 10.13878/j.cnki.dqkxxb.20200819001 10.1016/j.atmosres.2023.106911 10.7522/j.issn.1000-0534.2021.00064 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer |
| DBID | AAYXX CITATION ISR 7S9 L.6 |
| DOI | 10.1007/s00704-024-04964-0 |
| DatabaseName | CrossRef Gale In Context: Science AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1434-4483 |
| EndPage | 5806 |
| ExternalDocumentID | A804339482 10_1007_s00704_024_04964_0 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42030612 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: the Natural Science Foundation of Xinjiang Uygur Autonomous Region grantid: 2023D01A123, 2022B03027 and 2022B03021-1; 2023D01A123, 2022B03027 and 2022B03021-1 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDH EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IFM IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 XXG Y6R YLTOR Z45 Z5O Z7R Z7U Z7Y Z7Z Z83 Z86 Z88 Z8M Z8O Z8S Z8T Z8W Z8Z Z92 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c397t-89f788c9af44fe919fc63aa8b5517609995a35a698e2b4e5fe5a6c6931b8466c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001216617700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0177-798X |
| IngestDate | Fri Sep 05 11:19:49 EDT 2025 Sat Nov 29 10:31:13 EST 2025 Wed Nov 26 10:47:18 EST 2025 Sat Nov 29 05:35:27 EST 2025 Tue Nov 18 22:38:18 EST 2025 Fri Feb 21 02:38:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-89f788c9af44fe919fc63aa8b5517609995a35a698e2b4e5fe5a6c6931b8466c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3153733548 |
| PQPubID | 24069 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_3153733548 gale_infotracacademiconefile_A804339482 gale_incontextgauss_ISR_A804339482 crossref_primary_10_1007_s00704_024_04964_0 crossref_citationtrail_10_1007_s00704_024_04964_0 springer_journals_10_1007_s00704_024_04964_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20240700 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 7 year: 2024 text: 20240700 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna |
| PublicationTitle | Theoretical and applied climatology |
| PublicationTitleAbbrev | Theor Appl Climatol |
| PublicationYear | 2024 |
| Publisher | Springer Vienna Springer |
| Publisher_xml | – name: Springer Vienna – name: Springer |
| References | Zheng MX, Zhang JH, Wang JW, Yang SS, Han JQ, Talha HS (2022) Reconstruction of 0.05° all-sky daily maximum air temperature across Eurasia for 2003–2018 with multi-source satellite data and machine learning models. Atmos Res 279. https://www.sciencedirect.com/science/article/abs/pii/S0169809522003842. Accessed 1 Jun 2023 Dong ZZ, Yang RW, Cao J, Wang L, Cheng JX (2023) A strong high-temperature event in late-spring 2023 in Yunnan province, Southwest China: characteristics and possible causes. Atmos Res 295:107017. https://www.sciencedirect.com/science/article/abs/pii/S0169809523004143. Accessed 1 Jan 2024 China Meteorological Administration (2022) High temperature forecast warning signal. https://www.cma.gov.cn/2011xzt/2022zt/20220330/2022033011/202204/t20220412_4750930.html. Accessed 1 Jun 2023 Zhu R, Wu XJ, Zhang W, He JQ,Yu Q, Li ZQ, Shen YP (2024) Seasonally extreme temperature events accelerate in arid northwestern China during 1979–2018. Atmos Res 300:107230. https://www.sciencedirect.com/science/article/abs/pii/S0169809524000127. Accessed 1 Mar 2024 Cho E, Jacobs JM (2020) Extreme value snow water equivalent and snowmelt for infrastructure design over the contiguous United States. Water Resour Res 56:e2020WR028126. https://doi.org/10.1029/2020WR028126 National Bureau of Statistics of China (2023) What is statistical error. January 1 2023. https://www.stats.gov.cn/zsk/snapshoot?reference=33e2b9cdb6391521c53328be6244e40b_BCEA881C5E3C309ED8DEF5D172E16CC5&siteCode=tjzsk. Accessed 1 Jun 2023 Chen Y, Shao WL, Cao M, Liu XS (2020) Variation of summer high temperature days and its affecting factors in Xinjiang. Arid Zone Res 37(1):58–66. http://azr.xjegi.com/CN/Y2020/V37/I1/58. Accessed 1 Jun 2023 JeelaniGFeddemaJJVan der VeenCJStearnsLRole of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climateWater Resour Res201248W1250810.1029/2011WR011590 PelletierJDSwetnamTLAsymmetry of weathering-limited hillslopes: the importance of diurnal covariation in solar insolation and temperatureEarth Surf Process Landf2017421408141810.1002/esp.4136 Zhang ZL, Mao WY, Zhang SQ, Wang MQ, Tang Y, Aidaituli MSJ, Tuergong YSP (2022c) Correction and verification for grid refined forecast of temperature and frost in spring in Northern Xinjiang. Meteor Mon 48(11):1460–1474. http://qxqk.nmc.cn/qx/ch/reader/view_abstract.aspx?file_no=20221109. Accessed 1 Jun 2023 Zeng XQ, Xue F, Zhao RX, Zhao SR (2019) Comparison study on several grid temperature rolling correction forecasting schemes. Meteor Mon 45(7):1009–1018. http://qxqk.nmc.cn/qx/ch/reader/view_abstract.aspx?file_no=20190711. Accessed 1 Jun 2023 LiuYShiCXWangHJHanSApplicability assessment of CLDAS temperature data in ChinaTrans Atmos Sci202144454054810.13878/j.cnki.dqkxxb.20200819001 Meteorological Center CMA (2017) CLDAS2.0 Dataset Description. 19 January 2017. Available online: http://data.cma.cn/data/detail/dataCode/NAFP_CLDAS2.0_NRT.html. Accessed 1 Jun 2023 Shang MF, Shi XY, Zhao JC, Li S, Chu QQ (2023) Spatiotemporal variation of high temperature stress in different regions of China under climate change. Acta Agron Sin 49(1):167–176. https://zwxb.chinacrops.org/CN/10.3724/SP.J.1006.2023.23007 Zhang ZL, Wang MQ, Zhang SQ et al (2023b) Test and application of multi-source data for spring frost criterion in Northern Xinjiang. Desert Oasis Meteorol 17(5):86–92. http://smylzqx.cnjournals.com/ch/reader/create_pdf.aspx?file_no=20220817001&flag=1&journal_id=smylz&year_id=2023. Accessed 1 Jan 2024 Wang H, Wang MX, Wang SL, Yu XJ (2021) Spatial-temporal variation characteristics of snow cover duration in Xinjiang from 1961 to 2017 and their relationship with meteorological factors. J Glaciol Geocryol 43(1):61–69. http://www.bcdt.ac.cn/CN/10.7522/j.issn.1000-0240.2019.1178 Guo CH, Zhu XF, Zhang SZ, Tang MX, Xu K (2022) Hazard changes assessment of future high temperature in China based on CMIP6. J Geo-information Sci 24(7):1391–1405. https://www.dqxxkx.cn/CN/10.12082/dqxxkx.2022.210491 YangFYPengFYuFEvaluation of applicability and correction for the CLDAS temperature and relative humidity products in Guizhou ProvincePlateau Meteorol202342247248210.7522/j.issn.1000-0534.2021.00064 Wang XQ, Lu XY, Ma Y, Wang X (2019) Study on snow disaster assessment method and snow disaster regionalization in Xinjiang. J Glaciol Geocryol 41(4):836–844. http://www.bcdt.ac.cn/CN/10.7522/j.issn.1000-0240.2019.0023 Zhang ZL, Mao WY, Yao YL, Zhang SQ, Gu YW (2022b) Detailed analysis of the characteristics of dry-hot wind in southern Xinjiang in 2020. Arid Zone Res 39(1):84–93. http://azr.xjegi.com/CN/10.13866/j.azr.2022.01.09 Mercado-BettínDClayerFShikhaniMMooreTNFríasMDBlakeLJSampleJLturbideMHerreraSFrenchASNorlingMDRinkeKMarcéRForecasting water temperature in lakes and reservoirs using seasonal climate predictionWater Res2021201004313541:CAS:528:DC%2BB3MXht1Cmu7zJ10.1016/j.watres.2021.117286 WangDWangJPDangCQLouPXHuangSNCaiXLApplication of CLDAS in test and correction of grid temperature forecast in Shaanxi ProvinceMeteor Mon202349894695710.7519/j.issn.1000-0526.2023.052601 Deng ZR, Zhou SW, Wang MR, Cai YH, Ma Y, Yang C, Sun Y (2023) Changes in the midsummer extreme high-temperature events over the Yangtze River Valley associated with the thermal effect of the Tibetan Plateau and Arctic Oscillation. Atmos Res 293:106911. https://www.sciencedirect.com/science/article/abs/pii/S0169809523003083. Accessed 1 Jan 2024 ZhangFGaoHCuiXFrequency of extreme high temperature days in China, 1961–2003Weather200863464910.1002/wea.136 Li MY, Deng MJ, Ling HB, Wang GY, Xu SW (2021) Evaluation of ecological water security and analysis of driving factors in the lower Tarim River, China. Arid Zone Res 38(1):39–47. http://azr.xjegi.com/CN/10.13866/j.azr.2021.01.05 Zhao XY, Shen AQ, Ma BF (2017) Adaptability of asphalt pavements to high temperature and large temperature difference in southern Xinjiang. J Jiangsu Univ (Nat Sci Ed) 38(5):608–614. https://zzs.ujs.edu.cn/xbzkb/CN/abstract/abstract1447.shtml. Accessed 1 Jun 2023 SadroSSickmanJOMelackJMSkeenKEffects of climate variability on snowmelt and implications for organic matter in a high-elevation lakeWater Resour Res201854456345781:CAS:528:DC%2BC1cXhsFGru7nO10.1029/2017WR022163 Zhang ZL, Zhang SQ, Mao WY et al (2021) Correction analysis of grid forecast products of spring minimum temperature in Northern Xinjiang Based on Average filter algorithm. Desert Oasis Meteorol 15(5):16–23. http://smylzqx.cnjournals.com/ch/reader/create_pdf.aspx?file_no=20210131001&flag=1&journal_id=smylz&year_id=2021. Accessed 1 Jan 2024 Zhang C, Liu D, Wang HZ, Ren H, Zhao B, Zhang JW, Ren BZ, Liu CH, Liu P (2022a) Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize. Sci Agric Sin 55(19):3710–3722. https://www.chinaagrisci.com/CN/10.3864/j.issn.0578-1752.2022.19.003 ZhangZMaoWWangMZhangWJiCMushajiangAAnDForecasting snowmelt season temperatures in the mountainous area of Northern Xinjiang of ChinaWater202315333710.3390/w15193337 4964_CR27 4964_CR28 4964_CR29 4964_CR8 Z Zhang (4964_CR26) 2023; 15 4964_CR5 4964_CR6 4964_CR3 4964_CR4 4964_CR1 4964_CR2 FY Yang (4964_CR19) 2023; 42 G Jeelani (4964_CR7) 2012; 48 4964_CR20 4964_CR22 4964_CR23 4964_CR24 Y Liu (4964_CR9) 2021; 44 D Mercado-Bettín (4964_CR10) 2021; 201 4964_CR25 4964_CR16 4964_CR17 JD Pelletier (4964_CR13) 2017; 42 S Sadro (4964_CR14) 2018; 54 4964_CR30 D Wang (4964_CR18) 2023; 49 4964_CR11 4964_CR12 F Zhang (4964_CR21) 2008; 63 4964_CR15 |
| References_xml | – reference: Zhu R, Wu XJ, Zhang W, He JQ,Yu Q, Li ZQ, Shen YP (2024) Seasonally extreme temperature events accelerate in arid northwestern China during 1979–2018. Atmos Res 300:107230. https://www.sciencedirect.com/science/article/abs/pii/S0169809524000127. Accessed 1 Mar 2024 – reference: LiuYShiCXWangHJHanSApplicability assessment of CLDAS temperature data in ChinaTrans Atmos Sci202144454054810.13878/j.cnki.dqkxxb.20200819001 – reference: SadroSSickmanJOMelackJMSkeenKEffects of climate variability on snowmelt and implications for organic matter in a high-elevation lakeWater Resour Res201854456345781:CAS:528:DC%2BC1cXhsFGru7nO10.1029/2017WR022163 – reference: YangFYPengFYuFEvaluation of applicability and correction for the CLDAS temperature and relative humidity products in Guizhou ProvincePlateau Meteorol202342247248210.7522/j.issn.1000-0534.2021.00064 – reference: Wang H, Wang MX, Wang SL, Yu XJ (2021) Spatial-temporal variation characteristics of snow cover duration in Xinjiang from 1961 to 2017 and their relationship with meteorological factors. J Glaciol Geocryol 43(1):61–69. http://www.bcdt.ac.cn/CN/10.7522/j.issn.1000-0240.2019.1178 – reference: PelletierJDSwetnamTLAsymmetry of weathering-limited hillslopes: the importance of diurnal covariation in solar insolation and temperatureEarth Surf Process Landf2017421408141810.1002/esp.4136 – reference: Meteorological Center CMA (2017) CLDAS2.0 Dataset Description. 19 January 2017. Available online: http://data.cma.cn/data/detail/dataCode/NAFP_CLDAS2.0_NRT.html. Accessed 1 Jun 2023 – reference: Deng ZR, Zhou SW, Wang MR, Cai YH, Ma Y, Yang C, Sun Y (2023) Changes in the midsummer extreme high-temperature events over the Yangtze River Valley associated with the thermal effect of the Tibetan Plateau and Arctic Oscillation. Atmos Res 293:106911. https://www.sciencedirect.com/science/article/abs/pii/S0169809523003083. Accessed 1 Jan 2024 – reference: ZhangFGaoHCuiXFrequency of extreme high temperature days in China, 1961–2003Weather200863464910.1002/wea.136 – reference: Mercado-BettínDClayerFShikhaniMMooreTNFríasMDBlakeLJSampleJLturbideMHerreraSFrenchASNorlingMDRinkeKMarcéRForecasting water temperature in lakes and reservoirs using seasonal climate predictionWater Res2021201004313541:CAS:528:DC%2BB3MXht1Cmu7zJ10.1016/j.watres.2021.117286 – reference: Shang MF, Shi XY, Zhao JC, Li S, Chu QQ (2023) Spatiotemporal variation of high temperature stress in different regions of China under climate change. Acta Agron Sin 49(1):167–176. https://zwxb.chinacrops.org/CN/10.3724/SP.J.1006.2023.23007 – reference: Zhang ZL, Wang MQ, Zhang SQ et al (2023b) Test and application of multi-source data for spring frost criterion in Northern Xinjiang. Desert Oasis Meteorol 17(5):86–92. http://smylzqx.cnjournals.com/ch/reader/create_pdf.aspx?file_no=20220817001&flag=1&journal_id=smylz&year_id=2023. Accessed 1 Jan 2024 – reference: ZhangZMaoWWangMZhangWJiCMushajiangAAnDForecasting snowmelt season temperatures in the mountainous area of Northern Xinjiang of ChinaWater202315333710.3390/w15193337 – reference: Zhang ZL, Mao WY, Zhang SQ, Wang MQ, Tang Y, Aidaituli MSJ, Tuergong YSP (2022c) Correction and verification for grid refined forecast of temperature and frost in spring in Northern Xinjiang. Meteor Mon 48(11):1460–1474. http://qxqk.nmc.cn/qx/ch/reader/view_abstract.aspx?file_no=20221109. Accessed 1 Jun 2023 – reference: Cho E, Jacobs JM (2020) Extreme value snow water equivalent and snowmelt for infrastructure design over the contiguous United States. Water Resour Res 56:e2020WR028126. https://doi.org/10.1029/2020WR028126 – reference: Dong ZZ, Yang RW, Cao J, Wang L, Cheng JX (2023) A strong high-temperature event in late-spring 2023 in Yunnan province, Southwest China: characteristics and possible causes. Atmos Res 295:107017. https://www.sciencedirect.com/science/article/abs/pii/S0169809523004143. Accessed 1 Jan 2024 – reference: Wang XQ, Lu XY, Ma Y, Wang X (2019) Study on snow disaster assessment method and snow disaster regionalization in Xinjiang. J Glaciol Geocryol 41(4):836–844. http://www.bcdt.ac.cn/CN/10.7522/j.issn.1000-0240.2019.0023 – reference: JeelaniGFeddemaJJVan der VeenCJStearnsLRole of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climateWater Resour Res201248W1250810.1029/2011WR011590 – reference: National Bureau of Statistics of China (2023) What is statistical error. January 1 2023. https://www.stats.gov.cn/zsk/snapshoot?reference=33e2b9cdb6391521c53328be6244e40b_BCEA881C5E3C309ED8DEF5D172E16CC5&siteCode=tjzsk. Accessed 1 Jun 2023 – reference: Zheng MX, Zhang JH, Wang JW, Yang SS, Han JQ, Talha HS (2022) Reconstruction of 0.05° all-sky daily maximum air temperature across Eurasia for 2003–2018 with multi-source satellite data and machine learning models. Atmos Res 279. https://www.sciencedirect.com/science/article/abs/pii/S0169809522003842. Accessed 1 Jun 2023 – reference: WangDWangJPDangCQLouPXHuangSNCaiXLApplication of CLDAS in test and correction of grid temperature forecast in Shaanxi ProvinceMeteor Mon202349894695710.7519/j.issn.1000-0526.2023.052601 – reference: Chen Y, Shao WL, Cao M, Liu XS (2020) Variation of summer high temperature days and its affecting factors in Xinjiang. Arid Zone Res 37(1):58–66. http://azr.xjegi.com/CN/Y2020/V37/I1/58. Accessed 1 Jun 2023 – reference: China Meteorological Administration (2022) High temperature forecast warning signal. https://www.cma.gov.cn/2011xzt/2022zt/20220330/2022033011/202204/t20220412_4750930.html. Accessed 1 Jun 2023 – reference: Zhang C, Liu D, Wang HZ, Ren H, Zhao B, Zhang JW, Ren BZ, Liu CH, Liu P (2022a) Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize. Sci Agric Sin 55(19):3710–3722. https://www.chinaagrisci.com/CN/10.3864/j.issn.0578-1752.2022.19.003 – reference: Li MY, Deng MJ, Ling HB, Wang GY, Xu SW (2021) Evaluation of ecological water security and analysis of driving factors in the lower Tarim River, China. Arid Zone Res 38(1):39–47. http://azr.xjegi.com/CN/10.13866/j.azr.2021.01.05 – reference: Zhang ZL, Mao WY, Yao YL, Zhang SQ, Gu YW (2022b) Detailed analysis of the characteristics of dry-hot wind in southern Xinjiang in 2020. Arid Zone Res 39(1):84–93. http://azr.xjegi.com/CN/10.13866/j.azr.2022.01.09 – reference: Zhao XY, Shen AQ, Ma BF (2017) Adaptability of asphalt pavements to high temperature and large temperature difference in southern Xinjiang. J Jiangsu Univ (Nat Sci Ed) 38(5):608–614. https://zzs.ujs.edu.cn/xbzkb/CN/abstract/abstract1447.shtml. Accessed 1 Jun 2023 – reference: Zeng XQ, Xue F, Zhao RX, Zhao SR (2019) Comparison study on several grid temperature rolling correction forecasting schemes. Meteor Mon 45(7):1009–1018. http://qxqk.nmc.cn/qx/ch/reader/view_abstract.aspx?file_no=20190711. Accessed 1 Jun 2023 – reference: Zhang ZL, Zhang SQ, Mao WY et al (2021) Correction analysis of grid forecast products of spring minimum temperature in Northern Xinjiang Based on Average filter algorithm. Desert Oasis Meteorol 15(5):16–23. http://smylzqx.cnjournals.com/ch/reader/create_pdf.aspx?file_no=20210131001&flag=1&journal_id=smylz&year_id=2021. Accessed 1 Jan 2024 – reference: Guo CH, Zhu XF, Zhang SZ, Tang MX, Xu K (2022) Hazard changes assessment of future high temperature in China based on CMIP6. J Geo-information Sci 24(7):1391–1405. https://www.dqxxkx.cn/CN/10.12082/dqxxkx.2022.210491 – volume: 54 start-page: 4563 year: 2018 ident: 4964_CR14 publication-title: Water Resour Res doi: 10.1029/2017WR022163 – volume: 15 start-page: 3337 year: 2023 ident: 4964_CR26 publication-title: Water doi: 10.3390/w15193337 – ident: 4964_CR29 doi: 10.1016/j.atmosres.2022.106398 – ident: 4964_CR2 – ident: 4964_CR6 – ident: 4964_CR25 – volume: 49 start-page: 946 issue: 8 year: 2023 ident: 4964_CR18 publication-title: Meteor Mon doi: 10.7519/j.issn.1000-0526.2023.052601 – ident: 4964_CR27 – ident: 4964_CR8 – ident: 4964_CR23 – volume: 63 start-page: 46 year: 2008 ident: 4964_CR21 publication-title: Weather doi: 10.1002/wea.136 – volume: 48 start-page: W12508 year: 2012 ident: 4964_CR7 publication-title: Water Resour Res doi: 10.1029/2011WR011590 – ident: 4964_CR16 – ident: 4964_CR30 doi: 10.1016/j.atmosres.2024.107230 – ident: 4964_CR12 – ident: 4964_CR28 – ident: 4964_CR1 – ident: 4964_CR5 doi: 10.1016/j.atmosres.2023.107017 – volume: 42 start-page: 1408 year: 2017 ident: 4964_CR13 publication-title: Earth Surf Process Landf doi: 10.1002/esp.4136 – volume: 201 start-page: 0043 year: 2021 ident: 4964_CR10 publication-title: Water Res doi: 10.1016/j.watres.2021.117286 – ident: 4964_CR24 – ident: 4964_CR22 – ident: 4964_CR20 – ident: 4964_CR17 – ident: 4964_CR15 – ident: 4964_CR3 doi: 10.1029/2020WR028126 – volume: 44 start-page: 540 issue: 4 year: 2021 ident: 4964_CR9 publication-title: Trans Atmos Sci doi: 10.13878/j.cnki.dqkxxb.20200819001 – ident: 4964_CR11 – ident: 4964_CR4 doi: 10.1016/j.atmosres.2023.106911 – volume: 42 start-page: 472 issue: 2 year: 2023 ident: 4964_CR19 publication-title: Plateau Meteorol doi: 10.7522/j.issn.1000-0534.2021.00064 |
| SSID | ssj0002667 |
| Score | 2.3984787 |
| Snippet | To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5795 |
| SubjectTerms | Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences China Climatology Comparative analysis Earth and Environmental Science Earth Sciences Floods Geospatial data landscapes spatial data temperature time series analysis Waste Water Technology Water Management Water Pollution Control weather |
| Title | Analysis of revising multisource fusion data of high-temperature flood season weather in southern Xinjiang, China |
| URI | https://link.springer.com/article/10.1007/s00704-024-04964-0 https://www.proquest.com/docview/3153733548 |
| Volume | 155 |
| WOSCitedRecordID | wos001216617700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1434-4483 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1434-4483 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: PCBAR dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1434-4483 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1434-4483 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1434-4483 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: M2P dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1434-4483 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6xjQde-I2WAZNBCB6YpTVOHPuxqzbBw6poBVTxYiWuXRVNCTTr-Pe5c5xKAzQJXixZuTiJc_Z99t19Bnijc0X5leTyrxc8y1PHa7EgImSLFVx_ZLIOh00U06maz3UZk8K6Idp9cEmGmXqb7EbMNBlHm8IR1Uosd2AvJ7YZWqPPvmznXzQ5fZJ0UfBCq3lMlfl7GzfM0e-T8h_e0WB0zh783-s-hPsRZLJxrxWP4I5rHkNyjvi4XYdtdPaWTS5XCFZD7Qn8GLhJWOvZOiScN0sWgg373X3mN7StxiiglGSI5ZgTrVXkZGaeAuAZ7Tii1M8eV7JVw7o2hNA3bL5qvqEqLo9YOLL7KXw-O_00-cDjYQzcImS54kp7XC1bXfks806PtLdSVJWqEXIVknBmXom8klq5tM5c7h1WrNRiVCPEkVY8g92mbdw-MC_8QmS1ro8tOVaFtqmTmXILiU2INE9gNPwTYyNTOR2YcWm2HMuhcw12rgmda44TeL-953vP03Gr9Gv61YYIMBqKsFlWm64zH2cXZqyI0k1nKk3gXRTyLT7eVjFhAT-COLNuSL4aVMbg6CSXS9W4dtMZgQalEAKXhQkcDXpi4jTR3fKGB_8m_hzupUHVKI74BexerTfuJdy116gm60PYOzmdlheHsHOellQWMyzL_CteKScnY7qCI-gXRkMO0Q |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_0FPTFb7F-RhF98AK3TZomj8fhcYd3i3in7Ftos8mycqS6vdV_35k0XTiVA30pBKZtmk4yv2RmfgPw2lSa8ivJ5d_OuaxKz1sxJyJkhw3cf0jVpmIT9XSqZzPzMSeF9WO0--iSTCv1JtmNmGkkR5vCEdUqvF6Fa5LK7NAe_eTLZv1FkzMkSdc1r42e5VSZvz_jgjn6fVH-wzuajM7-7f_r7h24lUEm2x204i5c8fEeFMeIj7tVOkZnb9je2RLBamrdh-8jNwnrAlulhPO4YCnYcDjdZ2FNx2qMAkpJhliOOdFaZU5mFigAntGJI0r9HHAlW0bWdymEPrLZMn5FVVxss1Sy-wF83n9_unfAczEG7hCynHNtAu6WnWmClMGbiQlOiabRLUKuWhHOrBpRNcpoX7bSV8FjwykjJi1CHOXEQ9iKXfSPgAUR5kK2pt1x5FgVxpVeSe3nCh8hyqqAyfhPrMtM5VQw48xuOJbT4FocXJsG1-4U8G5zz7eBp-NS6Vf0qy0RYESKsFk06763hyef7K4mSjcjdVnA2ywUOny9a3LCAn4EcWZdkHw5qozF2Ukulyb6bt1bgQalFgK3hQVsj3pi8zLRX9LDx_8m_gJuHJweH9mjw-mHJ3CzTGpHMcVPYet8tfbP4Lr7gSqzep7myi8oBAuo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BQIgXxq-JwBgGIXhg0dbYcezHaaNiAqppA9Q3K3HsqmhyRtPCv8-dk1QM0CTESyRLF8exz77PvrvPAC91rii_klz-VZ2KPHNpxWsiQrZYwP2HkFW8bKKYTNR0qk9-yeKP0e6DS7LLaSCWprDcu6j93jrxjVhqRIr2JUWEK_F5HW4I3MlQUNfp2Zf1Wozmp0uYLoq00Grap838vY5Lpun3BfoPT2k0QOPN_2_6XbjTg0920GnLPbjmwn1IPiJubhbxeJ29YofncwSxsfQAvg2cJazxbBET0cOMxSDE7tSf-RUdtzEKNCUZYj9Oie6q52pmngLjGZ1EotSPDm-yeWBtE0PrA5vOw1dU0dkui1d5P4TP47efDt-l_SUNqUUos0yV9riLtrr0QninR9pbyctSVQjFCkn4My95XkqtXFYJl3uHBSs1H1UIfaTlW7ARmuAeAfPc11xUutq35HDl2mZOCuVqiVXwLE9gNIyPsT2DOV2kcW7W3Muxcw12romda_YTeLN-56Lj77hS-gUNuyFijECRN7Ny1bbm-OzUHCiietNCZQm87oV8g5-3ZZ_IgD9BXFqXJJ8P6mNw1pIrpgyuWbWGo6EpOMftYgK7g86Yfvlor2jh438Tfwa3To7G5sPx5P0TuJ1FraNQ423YWC5W7inctN9RYxY7cdr8BBUIFIw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+revising+multisource+fusion+data+of+high-temperature+flood+season+weather+in+southern+Xinjiang%2C+China&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Zhang%2C+Zulian&rft.au=Wang%2C+Mingquan&rft.au=Meng%2C+Fanxue&rft.au=Gu%2C+Yawen&rft.date=2024-07-01&rft.pub=Springer&rft.issn=0177-798X&rft.volume=155&rft.issue=7&rft.spage=5795&rft_id=info:doi/10.1007%2Fs00704-024-04964-0&rft.externalDBID=ISR&rft.externalDocID=A804339482 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon |