Analysis of revising multisource fusion data of high-temperature flood season weather in southern Xinjiang, China

To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data Assimilation System of the China Meteorological Administration (CLDAS) from June to August 2022, with a spatial resolution of 0.05° × 0.05°. An innova...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical and applied climatology Ročník 155; číslo 7; s. 5795 - 5806
Hlavní autoři: Zhang, Zulian, Wang, Mingquan, Meng, Fanxue, Gu, Yawen, Aidaituli, Mushajiang, Jiang, Yuanan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.07.2024
Springer
Témata:
ISSN:0177-798X, 1434-4483
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data Assimilation System of the China Meteorological Administration (CLDAS) from June to August 2022, with a spatial resolution of 0.05° × 0.05°. An innovative stepwise proximity error correction algorithm was proposed based on the distribution of automatic weather stations in southern Xinjiang. CLDAS and revised CLDAS data were obtained and analysed from time series and spatial data series, respectively. In comparative analysis, the following were considered: the root mean square error, the temperature accuracy at 1 and 2 °C, the high-temperature accuracy at 35, 37 and 40 °C, and the distribution of high temperatures. The error variation trends of the two types of multisource fusion data were determined. Our analysis proved that the use of the correction algorithm could effectively improve the accuracy and adaptability of CLDAS data in southern Xinjiang. The proposed algorithm could provide detailed locations and more accurate temperature values for high-temperature monitoring and could serve as a reference for relevant studies.
AbstractList To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data Assimilation System of the China Meteorological Administration (CLDAS) from June to August 2022, with a spatial resolution of 0.05° × 0.05°. An innovative stepwise proximity error correction algorithm was proposed based on the distribution of automatic weather stations in southern Xinjiang. CLDAS and revised CLDAS data were obtained and analysed from time series and spatial data series, respectively. In comparative analysis, the following were considered: the root mean square error, the temperature accuracy at 1 and 2 °C, the high-temperature accuracy at 35, 37 and 40 °C, and the distribution of high temperatures. The error variation trends of the two types of multisource fusion data were determined. Our analysis proved that the use of the correction algorithm could effectively improve the accuracy and adaptability of CLDAS data in southern Xinjiang. The proposed algorithm could provide detailed locations and more accurate temperature values for high-temperature monitoring and could serve as a reference for relevant studies.
To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data Assimilation System of the China Meteorological Administration (CLDAS) from June to August 2022, with a spatial resolution of 0.05° × 0.05°. An innovative stepwise proximity error correction algorithm was proposed based on the distribution of automatic weather stations in southern Xinjiang. CLDAS and revised CLDAS data were obtained and analysed from time series and spatial data series, respectively. In comparative analysis, the following were considered: the root mean square error, the temperature accuracy at 1 and 2 °C, the high-temperature accuracy at 35, 37 and 40 °C, and the distribution of high temperatures. The error variation trends of the two types of multisource fusion data were determined. Our analysis proved that the use of the correction algorithm could effectively improve the accuracy and adaptability of CLDAS data in southern Xinjiang. The proposed algorithm could provide detailed locations and more accurate temperature values for high-temperature monitoring and could serve as a reference for relevant studies.
To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data Assimilation System of the China Meteorological Administration (CLDAS) from June to August 2022, with a spatial resolution of 0.05° x 0.05°. An innovative stepwise proximity error correction algorithm was proposed based on the distribution of automatic weather stations in southern Xinjiang. CLDAS and revised CLDAS data were obtained and analysed from time series and spatial data series, respectively. In comparative analysis, the following were considered: the root mean square error, the temperature accuracy at 1 and 2 °C, the high-temperature accuracy at 35, 37 and 40 °C, and the distribution of high temperatures. The error variation trends of the two types of multisource fusion data were determined. Our analysis proved that the use of the correction algorithm could effectively improve the accuracy and adaptability of CLDAS data in southern Xinjiang. The proposed algorithm could provide detailed locations and more accurate temperature values for high-temperature monitoring and could serve as a reference for relevant studies.
Audience Academic
Author Zhang, Zulian
Jiang, Yuanan
Aidaituli, Mushajiang
Meng, Fanxue
Gu, Yawen
Wang, Mingquan
Author_xml – sequence: 1
  givenname: Zulian
  surname: Zhang
  fullname: Zhang, Zulian
  organization: Xinjiang Uygur Autonomous Region Meteorological Observatory, College of Geography and Remote Sensing Sciences, XinJiang University, Xinjiang Xingnong Net Information Center
– sequence: 2
  givenname: Mingquan
  surname: Wang
  fullname: Wang, Mingquan
  email: mingquanwang2023@hotmail.com
  organization: Xinjiang Education Management Information Center
– sequence: 3
  givenname: Fanxue
  surname: Meng
  fullname: Meng, Fanxue
  organization: Kashgar Meteorological Bureau, Xinjiang Uygur Autonomous Region
– sequence: 4
  givenname: Yawen
  surname: Gu
  fullname: Gu, Yawen
  organization: Xinjiang Xingnong Net Information Center
– sequence: 5
  givenname: Mushajiang
  surname: Aidaituli
  fullname: Aidaituli, Mushajiang
  organization: Xinjiang Xingnong Net Information Center
– sequence: 6
  givenname: Yuanan
  surname: Jiang
  fullname: Jiang, Yuanan
  organization: Xinjiang Uygur Autonomous Region Meteorological Observatory
BookMark eNp9kUtv3CAURlGVSp1M-we6YtlKdYoNtmE5GvURKVKkPqTsEMNcPIxsmABum3_fO3U26SJCvL8DiHNJLkIMQMjbml3VjPUfMzZMVKzBKlSH7QuyqgUXlRCSX5AVq_u-6pW8e0Uucz4yxpqu61fkfhPM-JB9ptHRBL989mGg0zwWn-OcLFA3Zx8D3ZtizpmDHw5VgekEyZQ54f4Y455mMBlTv8GUAyTqA0X8PAz0zoejN2H4QLcHH8xr8tKZMcObx35Nfn7-9GP7tbq5_XK93dxUlqu-VFK5XkqrjBPCgaqVsx03Ru7atu47ppRqDW9NpyQ0OwGtA5zYTvF6J0XXWb4m75ZzTynez5CLnny2MI4mQJyz5nXLe85b_J81uVqigxlB--BiScZi2cPkLf6087i-kUxwroRsEHj_BMBMgT9lMHPO-vr7t6fZZsnaFHNO4PQp-cmkB10zfZanF3ka5el_8jRDSP4HWV9MQRH4Mj8-j_IFzXhPGCDpI4pEy_k56i9ol7Du
CitedBy_id crossref_primary_10_1007_s00704_024_05306_w
Cites_doi 10.1029/2017WR022163
10.3390/w15193337
10.1016/j.atmosres.2022.106398
10.7519/j.issn.1000-0526.2023.052601
10.1002/wea.136
10.1029/2011WR011590
10.1016/j.atmosres.2024.107230
10.1016/j.atmosres.2023.107017
10.1002/esp.4136
10.1016/j.watres.2021.117286
10.1029/2020WR028126
10.13878/j.cnki.dqkxxb.20200819001
10.1016/j.atmosres.2023.106911
10.7522/j.issn.1000-0534.2021.00064
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
ISR
7S9
L.6
DOI 10.1007/s00704-024-04964-0
DatabaseName CrossRef
Gale In Context: Science
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1434-4483
EndPage 5806
ExternalDocumentID A804339482
10_1007_s00704_024_04964_0
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42030612
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: the Natural Science Foundation of Xinjiang Uygur Autonomous Region
  grantid: 2023D01A123, 2022B03027 and 2022B03021-1; 2023D01A123, 2022B03027 and 2022B03021-1
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IFM
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
XXG
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8O
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c397t-89f788c9af44fe919fc63aa8b5517609995a35a698e2b4e5fe5a6c6931b8466c3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001216617700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0177-798X
IngestDate Fri Sep 05 11:19:49 EDT 2025
Sat Nov 29 10:31:13 EST 2025
Wed Nov 26 10:47:18 EST 2025
Sat Nov 29 05:35:27 EST 2025
Tue Nov 18 22:38:18 EST 2025
Fri Feb 21 02:38:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-89f788c9af44fe919fc63aa8b5517609995a35a698e2b4e5fe5a6c6931b8466c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153733548
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_3153733548
gale_infotracacademiconefile_A804339482
gale_incontextgauss_ISR_A804339482
crossref_primary_10_1007_s00704_024_04964_0
crossref_citationtrail_10_1007_s00704_024_04964_0
springer_journals_10_1007_s00704_024_04964_0
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
PublicationTitle Theoretical and applied climatology
PublicationTitleAbbrev Theor Appl Climatol
PublicationYear 2024
Publisher Springer Vienna
Springer
Publisher_xml – name: Springer Vienna
– name: Springer
References Zheng MX, Zhang JH, Wang JW, Yang SS, Han JQ, Talha HS (2022) Reconstruction of 0.05° all-sky daily maximum air temperature across Eurasia for 2003–2018 with multi-source satellite data and machine learning models. Atmos Res 279. https://www.sciencedirect.com/science/article/abs/pii/S0169809522003842. Accessed 1 Jun 2023
Dong ZZ, Yang RW, Cao J, Wang L, Cheng JX (2023) A strong high-temperature event in late-spring 2023 in Yunnan province, Southwest China: characteristics and possible causes. Atmos Res 295:107017. https://www.sciencedirect.com/science/article/abs/pii/S0169809523004143. Accessed 1 Jan 2024
China Meteorological Administration (2022) High temperature forecast warning signal. https://www.cma.gov.cn/2011xzt/2022zt/20220330/2022033011/202204/t20220412_4750930.html. Accessed 1 Jun 2023
Zhu R, Wu XJ, Zhang W, He JQ,Yu Q, Li ZQ, Shen YP (2024) Seasonally extreme temperature events accelerate in arid northwestern China during 1979–2018. Atmos Res 300:107230. https://www.sciencedirect.com/science/article/abs/pii/S0169809524000127. Accessed 1 Mar 2024
Cho E, Jacobs JM (2020) Extreme value snow water equivalent and snowmelt for infrastructure design over the contiguous United States. Water Resour Res 56:e2020WR028126. https://doi.org/10.1029/2020WR028126
National Bureau of Statistics of China (2023) What is statistical error. January 1 2023. https://www.stats.gov.cn/zsk/snapshoot?reference=33e2b9cdb6391521c53328be6244e40b_BCEA881C5E3C309ED8DEF5D172E16CC5&siteCode=tjzsk. Accessed 1 Jun 2023
Chen Y, Shao WL, Cao M, Liu XS (2020) Variation of summer high temperature days and its affecting factors in Xinjiang. Arid Zone Res 37(1):58–66. http://azr.xjegi.com/CN/Y2020/V37/I1/58. Accessed 1 Jun 2023
JeelaniGFeddemaJJVan der VeenCJStearnsLRole of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climateWater Resour Res201248W1250810.1029/2011WR011590
PelletierJDSwetnamTLAsymmetry of weathering-limited hillslopes: the importance of diurnal covariation in solar insolation and temperatureEarth Surf Process Landf2017421408141810.1002/esp.4136
Zhang ZL, Mao WY, Zhang SQ, Wang MQ, Tang Y, Aidaituli MSJ, Tuergong YSP (2022c) Correction and verification for grid refined forecast of temperature and frost in spring in Northern Xinjiang. Meteor Mon 48(11):1460–1474. http://qxqk.nmc.cn/qx/ch/reader/view_abstract.aspx?file_no=20221109. Accessed 1 Jun 2023
Zeng XQ, Xue F, Zhao RX, Zhao SR (2019) Comparison study on several grid temperature rolling correction forecasting schemes. Meteor Mon 45(7):1009–1018. http://qxqk.nmc.cn/qx/ch/reader/view_abstract.aspx?file_no=20190711. Accessed 1 Jun 2023
LiuYShiCXWangHJHanSApplicability assessment of CLDAS temperature data in ChinaTrans Atmos Sci202144454054810.13878/j.cnki.dqkxxb.20200819001
Meteorological Center CMA (2017) CLDAS2.0 Dataset Description. 19 January 2017. Available online: http://data.cma.cn/data/detail/dataCode/NAFP_CLDAS2.0_NRT.html. Accessed 1 Jun 2023
Shang MF, Shi XY, Zhao JC, Li S, Chu QQ (2023) Spatiotemporal variation of high temperature stress in different regions of China under climate change. Acta Agron Sin 49(1):167–176. https://zwxb.chinacrops.org/CN/10.3724/SP.J.1006.2023.23007
Zhang ZL, Wang MQ, Zhang SQ et al (2023b) Test and application of multi-source data for spring frost criterion in Northern Xinjiang. Desert Oasis Meteorol 17(5):86–92. http://smylzqx.cnjournals.com/ch/reader/create_pdf.aspx?file_no=20220817001&flag=1&journal_id=smylz&year_id=2023. Accessed 1 Jan 2024
Wang H, Wang MX, Wang SL, Yu XJ (2021) Spatial-temporal variation characteristics of snow cover duration in Xinjiang from 1961 to 2017 and their relationship with meteorological factors. J Glaciol Geocryol 43(1):61–69. http://www.bcdt.ac.cn/CN/10.7522/j.issn.1000-0240.2019.1178
Guo CH, Zhu XF, Zhang SZ, Tang MX, Xu K (2022) Hazard changes assessment of future high temperature in China based on CMIP6. J Geo-information Sci 24(7):1391–1405. https://www.dqxxkx.cn/CN/10.12082/dqxxkx.2022.210491
YangFYPengFYuFEvaluation of applicability and correction for the CLDAS temperature and relative humidity products in Guizhou ProvincePlateau Meteorol202342247248210.7522/j.issn.1000-0534.2021.00064
Wang XQ, Lu XY, Ma Y, Wang X (2019) Study on snow disaster assessment method and snow disaster regionalization in Xinjiang. J Glaciol Geocryol 41(4):836–844. http://www.bcdt.ac.cn/CN/10.7522/j.issn.1000-0240.2019.0023
Zhang ZL, Mao WY, Yao YL, Zhang SQ, Gu YW (2022b) Detailed analysis of the characteristics of dry-hot wind in southern Xinjiang in 2020. Arid Zone Res 39(1):84–93. http://azr.xjegi.com/CN/10.13866/j.azr.2022.01.09
Mercado-BettínDClayerFShikhaniMMooreTNFríasMDBlakeLJSampleJLturbideMHerreraSFrenchASNorlingMDRinkeKMarcéRForecasting water temperature in lakes and reservoirs using seasonal climate predictionWater Res2021201004313541:CAS:528:DC%2BB3MXht1Cmu7zJ10.1016/j.watres.2021.117286
WangDWangJPDangCQLouPXHuangSNCaiXLApplication of CLDAS in test and correction of grid temperature forecast in Shaanxi ProvinceMeteor Mon202349894695710.7519/j.issn.1000-0526.2023.052601
Deng ZR, Zhou SW, Wang MR, Cai YH, Ma Y, Yang C, Sun Y (2023) Changes in the midsummer extreme high-temperature events over the Yangtze River Valley associated with the thermal effect of the Tibetan Plateau and Arctic Oscillation. Atmos Res 293:106911. https://www.sciencedirect.com/science/article/abs/pii/S0169809523003083. Accessed 1 Jan 2024
ZhangFGaoHCuiXFrequency of extreme high temperature days in China, 1961–2003Weather200863464910.1002/wea.136
Li MY, Deng MJ, Ling HB, Wang GY, Xu SW (2021) Evaluation of ecological water security and analysis of driving factors in the lower Tarim River, China. Arid Zone Res 38(1):39–47. http://azr.xjegi.com/CN/10.13866/j.azr.2021.01.05
Zhao XY, Shen AQ, Ma BF (2017) Adaptability of asphalt pavements to high temperature and large temperature difference in southern Xinjiang. J Jiangsu Univ (Nat Sci Ed) 38(5):608–614. https://zzs.ujs.edu.cn/xbzkb/CN/abstract/abstract1447.shtml. Accessed 1 Jun 2023
SadroSSickmanJOMelackJMSkeenKEffects of climate variability on snowmelt and implications for organic matter in a high-elevation lakeWater Resour Res201854456345781:CAS:528:DC%2BC1cXhsFGru7nO10.1029/2017WR022163
Zhang ZL, Zhang SQ, Mao WY et al (2021) Correction analysis of grid forecast products of spring minimum temperature in Northern Xinjiang Based on Average filter algorithm. Desert Oasis Meteorol 15(5):16–23. http://smylzqx.cnjournals.com/ch/reader/create_pdf.aspx?file_no=20210131001&flag=1&journal_id=smylz&year_id=2021. Accessed 1 Jan 2024
Zhang C, Liu D, Wang HZ, Ren H, Zhao B, Zhang JW, Ren BZ, Liu CH, Liu P (2022a) Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize. Sci Agric Sin 55(19):3710–3722. https://www.chinaagrisci.com/CN/10.3864/j.issn.0578-1752.2022.19.003
ZhangZMaoWWangMZhangWJiCMushajiangAAnDForecasting snowmelt season temperatures in the mountainous area of Northern Xinjiang of ChinaWater202315333710.3390/w15193337
4964_CR27
4964_CR28
4964_CR29
4964_CR8
Z Zhang (4964_CR26) 2023; 15
4964_CR5
4964_CR6
4964_CR3
4964_CR4
4964_CR1
4964_CR2
FY Yang (4964_CR19) 2023; 42
G Jeelani (4964_CR7) 2012; 48
4964_CR20
4964_CR22
4964_CR23
4964_CR24
Y Liu (4964_CR9) 2021; 44
D Mercado-Bettín (4964_CR10) 2021; 201
4964_CR25
4964_CR16
4964_CR17
JD Pelletier (4964_CR13) 2017; 42
S Sadro (4964_CR14) 2018; 54
4964_CR30
D Wang (4964_CR18) 2023; 49
4964_CR11
4964_CR12
F Zhang (4964_CR21) 2008; 63
4964_CR15
References_xml – reference: Zhu R, Wu XJ, Zhang W, He JQ,Yu Q, Li ZQ, Shen YP (2024) Seasonally extreme temperature events accelerate in arid northwestern China during 1979–2018. Atmos Res 300:107230. https://www.sciencedirect.com/science/article/abs/pii/S0169809524000127. Accessed 1 Mar 2024
– reference: LiuYShiCXWangHJHanSApplicability assessment of CLDAS temperature data in ChinaTrans Atmos Sci202144454054810.13878/j.cnki.dqkxxb.20200819001
– reference: SadroSSickmanJOMelackJMSkeenKEffects of climate variability on snowmelt and implications for organic matter in a high-elevation lakeWater Resour Res201854456345781:CAS:528:DC%2BC1cXhsFGru7nO10.1029/2017WR022163
– reference: YangFYPengFYuFEvaluation of applicability and correction for the CLDAS temperature and relative humidity products in Guizhou ProvincePlateau Meteorol202342247248210.7522/j.issn.1000-0534.2021.00064
– reference: Wang H, Wang MX, Wang SL, Yu XJ (2021) Spatial-temporal variation characteristics of snow cover duration in Xinjiang from 1961 to 2017 and their relationship with meteorological factors. J Glaciol Geocryol 43(1):61–69. http://www.bcdt.ac.cn/CN/10.7522/j.issn.1000-0240.2019.1178
– reference: PelletierJDSwetnamTLAsymmetry of weathering-limited hillslopes: the importance of diurnal covariation in solar insolation and temperatureEarth Surf Process Landf2017421408141810.1002/esp.4136
– reference: Meteorological Center CMA (2017) CLDAS2.0 Dataset Description. 19 January 2017. Available online: http://data.cma.cn/data/detail/dataCode/NAFP_CLDAS2.0_NRT.html. Accessed 1 Jun 2023
– reference: Deng ZR, Zhou SW, Wang MR, Cai YH, Ma Y, Yang C, Sun Y (2023) Changes in the midsummer extreme high-temperature events over the Yangtze River Valley associated with the thermal effect of the Tibetan Plateau and Arctic Oscillation. Atmos Res 293:106911. https://www.sciencedirect.com/science/article/abs/pii/S0169809523003083. Accessed 1 Jan 2024
– reference: ZhangFGaoHCuiXFrequency of extreme high temperature days in China, 1961–2003Weather200863464910.1002/wea.136
– reference: Mercado-BettínDClayerFShikhaniMMooreTNFríasMDBlakeLJSampleJLturbideMHerreraSFrenchASNorlingMDRinkeKMarcéRForecasting water temperature in lakes and reservoirs using seasonal climate predictionWater Res2021201004313541:CAS:528:DC%2BB3MXht1Cmu7zJ10.1016/j.watres.2021.117286
– reference: Shang MF, Shi XY, Zhao JC, Li S, Chu QQ (2023) Spatiotemporal variation of high temperature stress in different regions of China under climate change. Acta Agron Sin 49(1):167–176. https://zwxb.chinacrops.org/CN/10.3724/SP.J.1006.2023.23007
– reference: Zhang ZL, Wang MQ, Zhang SQ et al (2023b) Test and application of multi-source data for spring frost criterion in Northern Xinjiang. Desert Oasis Meteorol 17(5):86–92. http://smylzqx.cnjournals.com/ch/reader/create_pdf.aspx?file_no=20220817001&flag=1&journal_id=smylz&year_id=2023. Accessed 1 Jan 2024
– reference: ZhangZMaoWWangMZhangWJiCMushajiangAAnDForecasting snowmelt season temperatures in the mountainous area of Northern Xinjiang of ChinaWater202315333710.3390/w15193337
– reference: Zhang ZL, Mao WY, Zhang SQ, Wang MQ, Tang Y, Aidaituli MSJ, Tuergong YSP (2022c) Correction and verification for grid refined forecast of temperature and frost in spring in Northern Xinjiang. Meteor Mon 48(11):1460–1474. http://qxqk.nmc.cn/qx/ch/reader/view_abstract.aspx?file_no=20221109. Accessed 1 Jun 2023
– reference: Cho E, Jacobs JM (2020) Extreme value snow water equivalent and snowmelt for infrastructure design over the contiguous United States. Water Resour Res 56:e2020WR028126. https://doi.org/10.1029/2020WR028126
– reference: Dong ZZ, Yang RW, Cao J, Wang L, Cheng JX (2023) A strong high-temperature event in late-spring 2023 in Yunnan province, Southwest China: characteristics and possible causes. Atmos Res 295:107017. https://www.sciencedirect.com/science/article/abs/pii/S0169809523004143. Accessed 1 Jan 2024
– reference: Wang XQ, Lu XY, Ma Y, Wang X (2019) Study on snow disaster assessment method and snow disaster regionalization in Xinjiang. J Glaciol Geocryol 41(4):836–844. http://www.bcdt.ac.cn/CN/10.7522/j.issn.1000-0240.2019.0023
– reference: JeelaniGFeddemaJJVan der VeenCJStearnsLRole of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climateWater Resour Res201248W1250810.1029/2011WR011590
– reference: National Bureau of Statistics of China (2023) What is statistical error. January 1 2023. https://www.stats.gov.cn/zsk/snapshoot?reference=33e2b9cdb6391521c53328be6244e40b_BCEA881C5E3C309ED8DEF5D172E16CC5&siteCode=tjzsk. Accessed 1 Jun 2023
– reference: Zheng MX, Zhang JH, Wang JW, Yang SS, Han JQ, Talha HS (2022) Reconstruction of 0.05° all-sky daily maximum air temperature across Eurasia for 2003–2018 with multi-source satellite data and machine learning models. Atmos Res 279. https://www.sciencedirect.com/science/article/abs/pii/S0169809522003842. Accessed 1 Jun 2023
– reference: WangDWangJPDangCQLouPXHuangSNCaiXLApplication of CLDAS in test and correction of grid temperature forecast in Shaanxi ProvinceMeteor Mon202349894695710.7519/j.issn.1000-0526.2023.052601
– reference: Chen Y, Shao WL, Cao M, Liu XS (2020) Variation of summer high temperature days and its affecting factors in Xinjiang. Arid Zone Res 37(1):58–66. http://azr.xjegi.com/CN/Y2020/V37/I1/58. Accessed 1 Jun 2023
– reference: China Meteorological Administration (2022) High temperature forecast warning signal. https://www.cma.gov.cn/2011xzt/2022zt/20220330/2022033011/202204/t20220412_4750930.html. Accessed 1 Jun 2023
– reference: Zhang C, Liu D, Wang HZ, Ren H, Zhao B, Zhang JW, Ren BZ, Liu CH, Liu P (2022a) Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize. Sci Agric Sin 55(19):3710–3722. https://www.chinaagrisci.com/CN/10.3864/j.issn.0578-1752.2022.19.003
– reference: Li MY, Deng MJ, Ling HB, Wang GY, Xu SW (2021) Evaluation of ecological water security and analysis of driving factors in the lower Tarim River, China. Arid Zone Res 38(1):39–47. http://azr.xjegi.com/CN/10.13866/j.azr.2021.01.05
– reference: Zhang ZL, Mao WY, Yao YL, Zhang SQ, Gu YW (2022b) Detailed analysis of the characteristics of dry-hot wind in southern Xinjiang in 2020. Arid Zone Res 39(1):84–93. http://azr.xjegi.com/CN/10.13866/j.azr.2022.01.09
– reference: Zhao XY, Shen AQ, Ma BF (2017) Adaptability of asphalt pavements to high temperature and large temperature difference in southern Xinjiang. J Jiangsu Univ (Nat Sci Ed) 38(5):608–614. https://zzs.ujs.edu.cn/xbzkb/CN/abstract/abstract1447.shtml. Accessed 1 Jun 2023
– reference: Zeng XQ, Xue F, Zhao RX, Zhao SR (2019) Comparison study on several grid temperature rolling correction forecasting schemes. Meteor Mon 45(7):1009–1018. http://qxqk.nmc.cn/qx/ch/reader/view_abstract.aspx?file_no=20190711. Accessed 1 Jun 2023
– reference: Zhang ZL, Zhang SQ, Mao WY et al (2021) Correction analysis of grid forecast products of spring minimum temperature in Northern Xinjiang Based on Average filter algorithm. Desert Oasis Meteorol 15(5):16–23. http://smylzqx.cnjournals.com/ch/reader/create_pdf.aspx?file_no=20210131001&flag=1&journal_id=smylz&year_id=2021. Accessed 1 Jan 2024
– reference: Guo CH, Zhu XF, Zhang SZ, Tang MX, Xu K (2022) Hazard changes assessment of future high temperature in China based on CMIP6. J Geo-information Sci 24(7):1391–1405. https://www.dqxxkx.cn/CN/10.12082/dqxxkx.2022.210491
– volume: 54
  start-page: 4563
  year: 2018
  ident: 4964_CR14
  publication-title: Water Resour Res
  doi: 10.1029/2017WR022163
– volume: 15
  start-page: 3337
  year: 2023
  ident: 4964_CR26
  publication-title: Water
  doi: 10.3390/w15193337
– ident: 4964_CR29
  doi: 10.1016/j.atmosres.2022.106398
– ident: 4964_CR2
– ident: 4964_CR6
– ident: 4964_CR25
– volume: 49
  start-page: 946
  issue: 8
  year: 2023
  ident: 4964_CR18
  publication-title: Meteor Mon
  doi: 10.7519/j.issn.1000-0526.2023.052601
– ident: 4964_CR27
– ident: 4964_CR8
– ident: 4964_CR23
– volume: 63
  start-page: 46
  year: 2008
  ident: 4964_CR21
  publication-title: Weather
  doi: 10.1002/wea.136
– volume: 48
  start-page: W12508
  year: 2012
  ident: 4964_CR7
  publication-title: Water Resour Res
  doi: 10.1029/2011WR011590
– ident: 4964_CR16
– ident: 4964_CR30
  doi: 10.1016/j.atmosres.2024.107230
– ident: 4964_CR12
– ident: 4964_CR28
– ident: 4964_CR1
– ident: 4964_CR5
  doi: 10.1016/j.atmosres.2023.107017
– volume: 42
  start-page: 1408
  year: 2017
  ident: 4964_CR13
  publication-title: Earth Surf Process Landf
  doi: 10.1002/esp.4136
– volume: 201
  start-page: 0043
  year: 2021
  ident: 4964_CR10
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.117286
– ident: 4964_CR24
– ident: 4964_CR22
– ident: 4964_CR20
– ident: 4964_CR17
– ident: 4964_CR15
– ident: 4964_CR3
  doi: 10.1029/2020WR028126
– volume: 44
  start-page: 540
  issue: 4
  year: 2021
  ident: 4964_CR9
  publication-title: Trans Atmos Sci
  doi: 10.13878/j.cnki.dqkxxb.20200819001
– ident: 4964_CR11
– ident: 4964_CR4
  doi: 10.1016/j.atmosres.2023.106911
– volume: 42
  start-page: 472
  issue: 2
  year: 2023
  ident: 4964_CR19
  publication-title: Plateau Meteorol
  doi: 10.7522/j.issn.1000-0534.2021.00064
SSID ssj0002667
Score 2.3984787
Snippet To obtain a more accurate temperature distribution in areas with complex terrain, we analysed the hourly temperature product of the Land Surface Data...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5795
SubjectTerms Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
China
Climatology
Comparative analysis
Earth and Environmental Science
Earth Sciences
Floods
Geospatial data
landscapes
spatial data
temperature
time series analysis
Waste Water Technology
Water Management
Water Pollution Control
weather
Title Analysis of revising multisource fusion data of high-temperature flood season weather in southern Xinjiang, China
URI https://link.springer.com/article/10.1007/s00704-024-04964-0
https://www.proquest.com/docview/3153733548
Volume 155
WOSCitedRecordID wos001216617700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: PCBAR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: M2P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6xjQde-I2WAZNBCB6YpTVOHPuxqzbBw6poBVTxYiWuXRVNCTTr-Pe5c5xKAzQJXixZuTiJc_Z99t19Bnijc0X5leTyrxc8y1PHa7EgImSLFVx_ZLIOh00U06maz3UZk8K6Idp9cEmGmXqb7EbMNBlHm8IR1Uosd2AvJ7YZWqPPvmznXzQ5fZJ0UfBCq3lMlfl7GzfM0e-T8h_e0WB0zh783-s-hPsRZLJxrxWP4I5rHkNyjvi4XYdtdPaWTS5XCFZD7Qn8GLhJWOvZOiScN0sWgg373X3mN7StxiiglGSI5ZgTrVXkZGaeAuAZ7Tii1M8eV7JVw7o2hNA3bL5qvqEqLo9YOLL7KXw-O_00-cDjYQzcImS54kp7XC1bXfks806PtLdSVJWqEXIVknBmXom8klq5tM5c7h1WrNRiVCPEkVY8g92mbdw-MC_8QmS1ro8tOVaFtqmTmXILiU2INE9gNPwTYyNTOR2YcWm2HMuhcw12rgmda44TeL-953vP03Gr9Gv61YYIMBqKsFlWm64zH2cXZqyI0k1nKk3gXRTyLT7eVjFhAT-COLNuSL4aVMbg6CSXS9W4dtMZgQalEAKXhQkcDXpi4jTR3fKGB_8m_hzupUHVKI74BexerTfuJdy116gm60PYOzmdlheHsHOellQWMyzL_CteKScnY7qCI-gXRkMO0Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_0FPTFb7F-RhF98AK3TZomj8fhcYd3i3in7Ftos8mycqS6vdV_35k0XTiVA30pBKZtmk4yv2RmfgPw2lSa8ivJ5d_OuaxKz1sxJyJkhw3cf0jVpmIT9XSqZzPzMSeF9WO0--iSTCv1JtmNmGkkR5vCEdUqvF6Fa5LK7NAe_eTLZv1FkzMkSdc1r42e5VSZvz_jgjn6fVH-wzuajM7-7f_r7h24lUEm2x204i5c8fEeFMeIj7tVOkZnb9je2RLBamrdh-8jNwnrAlulhPO4YCnYcDjdZ2FNx2qMAkpJhliOOdFaZU5mFigAntGJI0r9HHAlW0bWdymEPrLZMn5FVVxss1Sy-wF83n9_unfAczEG7hCynHNtAu6WnWmClMGbiQlOiabRLUKuWhHOrBpRNcpoX7bSV8FjwykjJi1CHOXEQ9iKXfSPgAUR5kK2pt1x5FgVxpVeSe3nCh8hyqqAyfhPrMtM5VQw48xuOJbT4FocXJsG1-4U8G5zz7eBp-NS6Vf0qy0RYESKsFk06763hyef7K4mSjcjdVnA2ywUOny9a3LCAn4EcWZdkHw5qozF2Ukulyb6bt1bgQalFgK3hQVsj3pi8zLRX9LDx_8m_gJuHJweH9mjw-mHJ3CzTGpHMcVPYet8tfbP4Lr7gSqzep7myi8oBAuo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BQIgXxq-JwBgGIXhg0dbYcezHaaNiAqppA9Q3K3HsqmhyRtPCv8-dk1QM0CTESyRLF8exz77PvrvPAC91rii_klz-VZ2KPHNpxWsiQrZYwP2HkFW8bKKYTNR0qk9-yeKP0e6DS7LLaSCWprDcu6j93jrxjVhqRIr2JUWEK_F5HW4I3MlQUNfp2Zf1Wozmp0uYLoq00Grap838vY5Lpun3BfoPT2k0QOPN_2_6XbjTg0920GnLPbjmwn1IPiJubhbxeJ29YofncwSxsfQAvg2cJazxbBET0cOMxSDE7tSf-RUdtzEKNCUZYj9Oie6q52pmngLjGZ1EotSPDm-yeWBtE0PrA5vOw1dU0dkui1d5P4TP47efDt-l_SUNqUUos0yV9riLtrr0QninR9pbyctSVQjFCkn4My95XkqtXFYJl3uHBSs1H1UIfaTlW7ARmuAeAfPc11xUutq35HDl2mZOCuVqiVXwLE9gNIyPsT2DOV2kcW7W3Muxcw12romda_YTeLN-56Lj77hS-gUNuyFijECRN7Ny1bbm-OzUHCiietNCZQm87oV8g5-3ZZ_IgD9BXFqXJJ8P6mNw1pIrpgyuWbWGo6EpOMftYgK7g86Yfvlor2jh438Tfwa3To7G5sPx5P0TuJ1FraNQ423YWC5W7inctN9RYxY7cdr8BBUIFIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+revising+multisource+fusion+data+of+high-temperature+flood+season+weather+in+southern+Xinjiang%2C+China&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Zhang%2C+Zulian&rft.au=Wang%2C+Mingquan&rft.au=Meng%2C+Fanxue&rft.au=Gu%2C+Yawen&rft.date=2024-07-01&rft.pub=Springer&rft.issn=0177-798X&rft.volume=155&rft.issue=7&rft.spage=5795&rft_id=info:doi/10.1007%2Fs00704-024-04964-0&rft.externalDBID=ISR&rft.externalDocID=A804339482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon