Logical reduction of metarules
Many forms of inductive logic programming (ILP) use metarules , second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressi...
Uložené v:
| Vydané v: | Machine learning Ročník 109; číslo 7; s. 1323 - 1369 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2020
Springer Nature B.V Springer Verlag |
| Predmet: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Many forms of inductive logic programming (ILP) use
metarules
, second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called
derivation reduction
, which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times. |
|---|---|
| AbstractList | Many forms of inductive logic programming (ILP) use metarules, second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called derivation reduction, which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times. Many forms of inductive logic programming (ILP) use metarules , second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called derivation reduction , which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times. |
| Author | Tourret, Sophie Cropper, Andrew |
| Author_xml | – sequence: 1 givenname: Andrew orcidid: 0000-0002-4543-7199 surname: Cropper fullname: Cropper, Andrew email: andrew.cropper@cs.ox.ac.uk organization: University of Oxford – sequence: 2 givenname: Sophie surname: Tourret fullname: Tourret, Sophie organization: Max Planck Institute for Informatics |
| BackLink | https://hal.science/hal-02988003$$DView record in HAL |
| BookMark | eNp9kE9LwzAYh4NMcJt-AQ8y8OSh-uZvk-MY6oSCFz2HtE1nR9fMpJX57U2tInjYKbzheV5-72-GJq1rLUKXGG4xQHoXMCjFEsAqAS4pSw4naIp5SuMo-ARNQUqeCEz4GZqFsAUAIqSYoqvMberCNAtvy77oatcuXLXY2c74vrHhHJ1Wpgn24uedo9eH-5fVOsmeH59WyywpqEq7RAol8kIwprAhEnLAZZ6rkkhTYSxYbvPcUEMsK8vUUpFCVXEmsMUcihIUp3N0M-59M43e-3pn_Kd2ptbrZaaHPyBKSgD6gSN7PbJ77957Gzq9db1vYzxNGGGUURBppORIFd6F4G2li7ozw4GdN3WjMeihOT02p2Nz-rs5fYgq-af-Jjoq0VEKEW431v-lOmJ9AY5egPc |
| CitedBy_id | crossref_primary_10_1007_s10994_020_05934_z crossref_primary_10_1038_s41467_024_50966_x crossref_primary_10_1007_s10994_022_06274_w crossref_primary_10_3390_e25060924 crossref_primary_10_1007_s10994_021_06089_1 |
| Cites_doi | 10.1109/SFCS.1992.267755 10.3233/AIC-2010-0459 10.1016/0020-0190(87)90114-1 10.1007/s10994-011-5259-2 10.1007/s10994-014-5471-y 10.1007/BF01932293 10.2307/2269326 10.1007/978-3-642-83189-8 10.1016/0304-3975(88)90146-6 10.1145/3236024.3236034 10.1007/978-3-540-30109-7_13 10.1145/1045343.1045369 10.1613/jair.4694 10.1007/s10994-013-5358-3 10.1007/978-3-642-37651-1_7 10.1016/0004-3702(93)90069-N 10.1201/9781584888338 10.1016/0004-3702(94)90070-1 10.1007/978-94-017-1737-3_3 10.1613/jair.5714 10.1007/s10994-018-5712-6 10.1007/978-3-030-19570-0_17 10.1007/3540635149_31 10.1016/j.artint.2007.06.003 10.1016/j.artint.2004.11.002 10.1145/321958.321960 10.1007/978-3-319-21401-6_21 10.1145/502807.502810 10.1007/978-3-319-99960-9_1 10.1007/BF03037227 10.7551/mitpress/1192.001.0001 10.1145/2661829.2662022 10.1007/978-3-030-19570-0_13 10.1007/3-540-62927-0 10.1145/321250.321253 10.1007/978-3-319-66158-2_44 10.1007/978-3-662-08406-9 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | C6C AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 1XC VOOES |
| DOI | 10.1007/s10994-019-05834-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 1369 |
| ExternalDocumentID | oai:HAL:hal-02988003v1 10_1007_s10994_019_05834_x |
| GrantInformation_xml | – fundername: University of Oxford |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 1XC VOOES |
| ID | FETCH-LOGICAL-c397t-8696bc64491a280b01dbb9d28af1164bebba3a2e4dd7e3670ff5461e150cd0953 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542926900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 |
| IngestDate | Wed Nov 05 07:32:19 EST 2025 Wed Nov 05 00:25:50 EST 2025 Sat Nov 29 01:43:27 EST 2025 Tue Nov 18 21:05:56 EST 2025 Fri Feb 21 02:28:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Inductive programming Inductive logic programming Logical reduction Meta-interpretive learning Program induction |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-8696bc64491a280b01dbb9d28af1164bebba3a2e4dd7e3670ff5461e150cd0953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4543-7199 0000-0002-6070-796X |
| OpenAccessLink | https://link.springer.com/10.1007/s10994-019-05834-x |
| PQID | 2424343067 |
| PQPubID | 54194 |
| PageCount | 47 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02988003v1 proquest_journals_2424343067 crossref_citationtrail_10_1007_s10994_019_05834_x crossref_primary_10_1007_s10994_019_05834_x springer_journals_10_1007_s10994_019_05834_x |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | DantsinEEiterTGottlobGVoronkovAComplexity and expressive power of logic programmingACM Computing Surveys200133337442510.1145/502807.502810 GeneserethMRLoveNPellBGeneral game playing: Overview of the AAAI competitionAI Magazine20052626272 GareyMRJohnsonDSComputers and intractability: A guide to the theory of NP-completeness1979New YorkW. H. Freeman0411.68039 Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. In Algorithmic learning theory, first international workshop, ALT ’90, Tokyo, Japan, October 8–10, 1990, proceedings (pp. 368–381). Echenim, M., Peltier, N., & Tourret, S. (2015). Quantifier-free equational logic and prime implicate generation. In A. P. Felty & A. Middeldorp (Eds.), Automated deduction—CADE-25–25th international conference on automated deduction, Berlin, Germany, August 1–7, 2015, proceedings, volume 9195 of Lecture Notes in Computer Science (pp. 311–325). Springer. LarsonJMichalskiRSInductive inference of VL decision rulesSIGART Newsletter1977633844 LiberatorePRedundancy in logic I: CNF propositional formulaeArtificial Intelligence2005163220323221265371132.6873610.1016/j.artint.2004.11.002 MuggletonSInverse entailment and ProgolNew Generation Computing1995133&424528610.1007/BF03037227 Cropper, A., & Tourret, S. (2018). Derivation reduction of metarules in meta-interpretive learning. In Riguzzi, F., Bellodi, E., & Zese, R. (Eds.), Inductive logic programming—28th international conference, ILP 2018, Ferrara, Italy, September 2–4, 2018, proceedings, volume 11105 of Lecture Notes in Computer Science (pp. 1–21). Springer. Tourret, S., & Cropper, A. (2019). SLD-resolution reduction of second-order Horn fragments. In F. Calimeri, N. Leone & M. Manna (Eds.), Logics in artificial intelligence—16th European conference, JELIA 2019, Rende, Italy, May 7–11, 2019, proceedings, volume 11468 of Lecture Notes in Computer Science (pp. 259–276). Springer. Bienvenu, M. (2007). Prime implicates and prime implicants in modal logic. In Proceedings of the twenty-second AAAI conference on artificial intelligence, July 22–26, 2007, Vancouver, BC, Canada (pp. 379–384). AAAI Press. MuggletonSDe RaedtLPooleDBratkoIFlachPAInoueKSrinivasanAILP turns 20-biography and future challengesMachine Learning201286132328906621243.6801410.1007/s10994-011-5259-2 Lin, D., Dechter, E., Ellis, K., Tenenbaum, J. B., & Muggleton, S. (2014). Bias reformulation for one-shot function induction. In ECAI 2014—21st European conference on artificial intelligence, 18–22 August 2014, Prague, Czech Republic—including prestigious applications of intelligent systems (PAIS 2014) (pp. 525–530). CropperAMuggletonSHLearning efficient logic programsMachine Learning201910871063108339599910707361910.1007/s10994-018-5712-6 Marcinkowski, J., & Pacholski, L. (1992). Undecidability of the Horn-clause implication problem. In 33rd annual symposium on foundations of computer science, Pittsburgh, Pennsylvania, USA, 24–27 October 1992 (pp. 354–362). Cropper, A., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2015). Meta-interpretive learning of data transformation programs. In Inoue, K., Ohwada, H., & Yamamoto, A. (Eds.), Inductive logic programming—25th international conference, ILP 2015, Kyoto, Japan, August 20–22, 2015, revised selected papers, volume 9575 of Lecture Notes in Computer Science (pp. 46–59). Springer. Fonseca, N. A., Costa, V. S., Silva, F. M. A., & Camacho, R. (2004). On avoiding redundancy in inductive logic programming. In R. Camacho, R. D. King & A. Srinivasan (Eds.), Inductive logic programming, 14th international conference, ILP 2004, Porto, Portugal, September 6–8, 2004, proceedings, volume 3194 of Lecture Notes in Computer Science (pp. 132–146). Springer. ChurchAA note on the EntscheidungsproblemThe Journal of Symbolic Logic19361140410014.3850310.2307/2269326 BlumerAEhrenfeuchtAHausslerDWarmuthMKOccam’s razorInformation Processing Letters19872463773808963920653.6808410.1016/0020-0190(87)90114-1 HeuleMJärvisaloMLonsingFSeidlMBiereAClause elimination for SAT and QSATArtificial Intelligence Research20155312716833613111336.6823110.1613/jair.4694 MuggletonSHLinDTamaddoni-NezhadAMeta-interpretive learning of higher-order dyadic Datalog: Predicate invention revisitedMachine Learning20151001497333721471346.6811910.1007/s10994-014-5471-y Cropper, A., Evans, R., & Law, M. (2019). Inductive general game playing. ArXiv e-prints, arXiv:1906.09627, Jun 2019. Marquis, P. (2000). Consequence finding algorithms. In Handbook of defeasible reasoning and uncertainty management systems (pp. 41–145). Springer. Hemaspaandra, E., & Schnoor, H. (2011). Minimization for generalized boolean formulas. In T. Walsh (Ed.), IJCAI 2011, proceedings of the 22nd international joint conference on artificial intelligence, Barcelona, Catalonia, Spain, July 16–22, 2011 (pp. 566–571). IJCAI/AAAI. KaminskiTEiterTInoueKExploiting answer set programming with external sources for meta-interpretive learningTPLP2018183–4571588384188306988662 TärnlundSÅHorn clause computabilityBIT19771722152264911110359.0204210.1007/BF01932293 JoynerWHJrResolution strategies as decision proceduresJournal of the ACM19762333984174112690335.6806210.1145/321958.321960 LiberatorePRedundancy in logic II: 2CNF and Horn propositional formulaeArtificial Intelligence20081722–326529923800911182.6828210.1016/j.artint.2007.06.003 Albarghouthi, A., Koutris, P., Naik, M., & Smith, C. (2017). Constraint-based synthesis of Datalog programs. In J. C. Beck (Ed.), Principles and practice of constraint programming—23rd international conference, CP 2017, Melbourne, VIC, Australia, August 28–September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science (pp. 689–706). Springer. Hillenbrand, T., Piskac, R., Waldmann, U., & Weidenbach, C. (2013). From search to computation: Redundancy criteria and simplification at work. In A. Voronkov, & C. Weidenbach (Eds.), Programming logics - essays in memory of Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science (pp. 169–193). Springer. Kietz, J.-U., & Wrobel, S. (1992). Controlling the complexity of learning in logic through syntactic and task-oriented models. In Inductive logic programming. Citeseer. Cropper, A., & Muggleton, S. H. (2016b). Metagol system. https://github.com/metagol/metagol. Accessed 1 July 2019. CohenWWGrammatically biased learning: Learning logic programs using an explicit antecedent description languageArtificial Intelligence19946823033660942.6865610.1016/0004-3702(94)90070-1 Cropper, A., & Muggleton, S. H. (2015). Learning efficient logical robot strategies involving composable objects. In Yang, Q., & Wooldridge, M. (Eds.), Proceedings of the twenty-fourth international joint conference on artificial intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015 (pp. 3423–3429). AAAI Press. EvansRGrefenstetteELearning explanatory rules from noisy dataJournal of Artificial Intelligence Research20186116437661981426.6823510.1613/jair.5714 Gottlob, G., Leone, N., & Scarcello, F.(1997). On the complexity of some inductive logic programming problems. In N. Lavrac & S. Dzeroski (Eds.), Inductive logic programming, 7th international workshop, ILP-97, Prague, Czech Republic, September 17–20, 1997, proceedings, volume 1297 of Lecture Notes in Computer Science (pp. 17–32). Springer. NédellecCRouveirolCAdéHBergadanoFTausendBDeclarative bias in ILPAdvances in inductive logic programming19963282103 Campero, A., Pareja, A., Klinger, T., Tenenbaum, J., & Riedel, S. (2018). Logical rule induction and theory learning using neural theorem proving. ArXiv e-prints, September 2018. GottlobGFermüllerCGRemoving redundancy from a clauseArtificial Intelligence199361226328912229520779.6801510.1016/0004-3702(93)90069-N Kowalski, R. A. (1974). Predicate logic as programming language. In IFIP congress (pp. 569–574). LloydJWFoundations of logic programming19872BerlinSpringer0668.6800410.1007/978-3-642-83189-8 Wang, W. Y., Mazaitis, K., & Cohen, W. W. (2014). Structure learning via parameter learning. In Li, J., Wang, X. S., Garofalakis, M. N., Soboroff, I., Suel, T., & Wang, M. (Eds.), Proceedings of the 23rd ACM international conference on conference on information and knowledge management, CIKM 2014, Shanghai, China, November 3–7, 2014 (pp. 1199–1208). ACM. Nienhuys-ChengS-Hde WolfRFoundations of inductive logic programming1997New York, Secaucus, NJSpringer1293.6801410.1007/3-540-62927-0 BradleyARMannaZThe calculus of computation-decision procedures with applications to verification2007BerlinSpringer1126.03001 LloydJWLogic for learning2003BerlinSpringer1055.6808610.1007/978-3-662-08406-9 Cropper, A., & Muggleton, S. H. (2016a). Learning higher-order logic programs through abstraction and invention. In Kambhampati, S. (Ed.), Proceedings of the twenty-fifth international joint conference on artificial intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016 (pp. 1418–1424). IJCAI/AAAI Press. McCarthy, J. (1995). Making robots conscious of their mental states. In Machine intelligence 15, intelligent Agents [St. Catherine’s College, Oxford, July 1995] (pp. 3–17). Cropper, A., & Muggleton, S. H. (2014). Logical minimisation of meta-rules within meta-interpretive learning. In J. Davis & J. Ramon (Eds.), Inductive logic programming—24th international conference, ILP 2014, Nancy, France, September 14–16, 2014. Revised selected papers, volume 9046 of Lecture Notes in Computer Science (pp. 62–75). Springer. Flener, P. (1996). Inductive logic program synthesis with DIALOGS. In Muggleton, S. (Ed.), Inductive logic programming, 6th international workshop, ILP-96, Stockholm, Sweden, August 26–28, 1996, selected papers, volume 1314 of Lecture Notes in Computer Science (pp. 175–198). Springer. Fürnkranz, J. (1997). Dimensionality reduction in ILP: A call to arms. In Proceedings of the IJCAI-97 workshop on frontiers of inductive logic programming (pp. 81–86). Si, X., Lee, W., Zhang, R., Albarghouthi, A., Koutris, P., & Naik, M. (2018). Syntax-guided synthesis of Datalog programs. In G. T. Leavens, A. C Nédellec (5834_CR52) 1996; 32 WH Joyner Jr (5834_CR33) 1976; 23 S Muggleton (5834_CR48) 2012; 86 5834_CR10 5834_CR54 EY Shapiro (5834_CR57) 1983 5834_CR12 T Kaminski (5834_CR34) 2018; 18 5834_CR11 5834_CR58 5834_CR13 5834_CR16 5834_CR15 5834_CR18 D Skillicorn (5834_CR59) 2007 L De Raedt (5834_CR19) 1992; 8 M Schmidt-Schauß (5834_CR56) 1988; 59 MR Garey (5834_CR26) 1979 5834_CR5 S Muggleton (5834_CR47) 1995; 13 5834_CR2 5834_CR9 5834_CR8 5834_CR40 5834_CR43 AR Bradley (5834_CR4) 2007 5834_CR45 5834_CR44 5834_CR1 5834_CR46 5834_CR49 E Dantsin (5834_CR17) 2001; 33 S-H Nienhuys-Cheng (5834_CR53) 1997 SH Muggleton (5834_CR51) 2015; 100 JW Lloyd (5834_CR42) 2003 A Cropper (5834_CR14) 2019; 108 P Liberatore (5834_CR39) 2008; 172 5834_CR30 M Heule (5834_CR31) 2015; 53 5834_CR32 WW Cohen (5834_CR7) 1994; 68 5834_CR36 5834_CR35 G Gottlob (5834_CR28) 1993; 61 J Larson (5834_CR37) 1977; 63 5834_CR61 5834_CR62 5834_CR21 5834_CR20 SH Muggleton (5834_CR50) 2014; 94 5834_CR23 P Liberatore (5834_CR38) 2005; 163 5834_CR25 5834_CR24 SÅ Tärnlund (5834_CR60) 1977; 17 5834_CR29 C Weidenbach (5834_CR63) 2010; 23 A Blumer (5834_CR3) 1987; 24 JW Lloyd (5834_CR41) 1987 A Church (5834_CR6) 1936; 1 JA Robinson (5834_CR55) 1965; 12 MR Genesereth (5834_CR27) 2005; 26 R Evans (5834_CR22) 2018; 61 |
| References_xml | – reference: Hillenbrand, T., Piskac, R., Waldmann, U., & Weidenbach, C. (2013). From search to computation: Redundancy criteria and simplification at work. In A. Voronkov, & C. Weidenbach (Eds.), Programming logics - essays in memory of Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science (pp. 169–193). Springer. – reference: Lin, D., Dechter, E., Ellis, K., Tenenbaum, J. B., & Muggleton, S. (2014). Bias reformulation for one-shot function induction. In ECAI 2014—21st European conference on artificial intelligence, 18–22 August 2014, Prague, Czech Republic—including prestigious applications of intelligent systems (PAIS 2014) (pp. 525–530). – reference: BlumerAEhrenfeuchtAHausslerDWarmuthMKOccam’s razorInformation Processing Letters19872463773808963920653.6808410.1016/0020-0190(87)90114-1 – reference: Campero, A., Pareja, A., Klinger, T., Tenenbaum, J., & Riedel, S. (2018). Logical rule induction and theory learning using neural theorem proving. ArXiv e-prints, September 2018. – reference: Marcinkowski, J., & Pacholski, L. (1992). Undecidability of the Horn-clause implication problem. In 33rd annual symposium on foundations of computer science, Pittsburgh, Pennsylvania, USA, 24–27 October 1992 (pp. 354–362). – reference: Cropper, A., & Muggleton, S. H. (2014). Logical minimisation of meta-rules within meta-interpretive learning. In J. Davis & J. Ramon (Eds.), Inductive logic programming—24th international conference, ILP 2014, Nancy, France, September 14–16, 2014. Revised selected papers, volume 9046 of Lecture Notes in Computer Science (pp. 62–75). Springer. – reference: Kowalski, R. A. (1974). Predicate logic as programming language. In IFIP congress (pp. 569–574). – reference: Si, X., Lee, W., Zhang, R., Albarghouthi, A., Koutris, P., & Naik, M. (2018). Syntax-guided synthesis of Datalog programs. In G. T. Leavens, A. Garcia, & C. S. Pasareanu (Eds.), Proceedings of the 2018 ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04–09, 2018 (pp. 515–527). ACM. – reference: Schmidt-SchaußMImplication of clauses is undecidableTheoretical Computer Science1988592872969632420657.0300610.1016/0304-3975(88)90146-6 – reference: De RaedtLBruynoogheMInteractive concept-learning and constructive induction by analogyMachine Learning199281071500751.68051 – reference: SkillicornDUnderstanding complex datasets: Data mining with matrix decompositions2007New YorkChapman and Hall/CRC1270.6201510.1201/9781584888338 – reference: ChurchAA note on the EntscheidungsproblemThe Journal of Symbolic Logic19361140410014.3850310.2307/2269326 – reference: Fürnkranz, J. (1997). Dimensionality reduction in ILP: A call to arms. In Proceedings of the IJCAI-97 workshop on frontiers of inductive logic programming (pp. 81–86). – reference: CohenWWGrammatically biased learning: Learning logic programs using an explicit antecedent description languageArtificial Intelligence19946823033660942.6865610.1016/0004-3702(94)90070-1 – reference: Cropper, A., Evans, R., & Law, M. (2019). Inductive general game playing. ArXiv e-prints, arXiv:1906.09627, Jun 2019. – reference: Cropper, A., & Muggleton, S. H. (2015). Learning efficient logical robot strategies involving composable objects. In Yang, Q., & Wooldridge, M. (Eds.), Proceedings of the twenty-fourth international joint conference on artificial intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015 (pp. 3423–3429). AAAI Press. – reference: EvansRGrefenstetteELearning explanatory rules from noisy dataJournal of Artificial Intelligence Research20186116437661981426.6823510.1613/jair.5714 – reference: Flener, P. (1996). Inductive logic program synthesis with DIALOGS. In Muggleton, S. (Ed.), Inductive logic programming, 6th international workshop, ILP-96, Stockholm, Sweden, August 26–28, 1996, selected papers, volume 1314 of Lecture Notes in Computer Science (pp. 175–198). Springer. – reference: LiberatorePRedundancy in logic I: CNF propositional formulaeArtificial Intelligence2005163220323221265371132.6873610.1016/j.artint.2004.11.002 – reference: Cropper, A., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2015). Meta-interpretive learning of data transformation programs. In Inoue, K., Ohwada, H., & Yamamoto, A. (Eds.), Inductive logic programming—25th international conference, ILP 2015, Kyoto, Japan, August 20–22, 2015, revised selected papers, volume 9575 of Lecture Notes in Computer Science (pp. 46–59). Springer. – reference: GareyMRJohnsonDSComputers and intractability: A guide to the theory of NP-completeness1979New YorkW. H. Freeman0411.68039 – reference: LloydJWLogic for learning2003BerlinSpringer1055.6808610.1007/978-3-662-08406-9 – reference: Emde, W., Habel, C., & Rollinger, C.-R. (1983). The discovery of the equator or concept driven learning. In M. Alanbundy (Ed.), Proceedings of the 8th international joint conference on artificial intelligence. Karlsruhe, FRG, August 1983 (pp. 455–458). William Kaufmann. – reference: Morel, R., Cropper, A., & Ong, C.-H. Luke (2019). Typed meta-interpretive learning of logic programs. In Calimeri, F., Leone, N., & Manna, M. (Eds.), Logics in artificial intelligence—16th European conference, JELIA 2019, Rende, Italy, May 7–11, 2019, proceedings, volume 11468 of Lecture Notes in Computer Science (pp. 198–213). Springer. – reference: GottlobGFermüllerCGRemoving redundancy from a clauseArtificial Intelligence199361226328912229520779.6801510.1016/0004-3702(93)90069-N – reference: Cropper, A., & Muggleton, S. H. (2016a). Learning higher-order logic programs through abstraction and invention. In Kambhampati, S. (Ed.), Proceedings of the twenty-fifth international joint conference on artificial intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016 (pp. 1418–1424). IJCAI/AAAI Press. – reference: JoynerWHJrResolution strategies as decision proceduresJournal of the ACM19762333984174112690335.6806210.1145/321958.321960 – reference: De Raedt, L. (2012). Declarative modeling for machine learning and data mining. In Algorithmic learning theory—23rd international conference, ALT 2012, Lyon, France, October 29–31, 2012. proceedings (p. 12). – reference: CropperAMuggletonSHLearning efficient logic programsMachine Learning201910871063108339599910707361910.1007/s10994-018-5712-6 – reference: NédellecCRouveirolCAdéHBergadanoFTausendBDeclarative bias in ILPAdvances in inductive logic programming19963282103 – reference: KaminskiTEiterTInoueKExploiting answer set programming with external sources for meta-interpretive learningTPLP2018183–4571588384188306988662 – reference: Albarghouthi, A., Koutris, P., Naik, M., & Smith, C. (2017). Constraint-based synthesis of Datalog programs. In J. C. Beck (Ed.), Principles and practice of constraint programming—23rd international conference, CP 2017, Melbourne, VIC, Australia, August 28–September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science (pp. 689–706). Springer. – reference: Hemaspaandra, E., & Schnoor, H. (2011). Minimization for generalized boolean formulas. In T. Walsh (Ed.), IJCAI 2011, proceedings of the 22nd international joint conference on artificial intelligence, Barcelona, Catalonia, Spain, July 16–22, 2011 (pp. 566–571). IJCAI/AAAI. – reference: Cropper, A., & Muggleton, S. H. (2016b). Metagol system. https://github.com/metagol/metagol. Accessed 1 July 2019. – reference: WeidenbachCWischnewskiPSubterm contextual rewritingAI Communications2010232–39710926542371206.6816410.3233/AIC-2010-0459 – reference: Bienvenu, M. (2007). Prime implicates and prime implicants in modal logic. In Proceedings of the twenty-second AAAI conference on artificial intelligence, July 22–26, 2007, Vancouver, BC, Canada (pp. 379–384). AAAI Press. – reference: TärnlundSÅHorn clause computabilityBIT19771722152264911110359.0204210.1007/BF01932293 – reference: McCarthy, J. (1995). Making robots conscious of their mental states. In Machine intelligence 15, intelligent Agents [St. Catherine’s College, Oxford, July 1995] (pp. 3–17). – reference: MuggletonSHLinDTamaddoni-NezhadAMeta-interpretive learning of higher-order dyadic Datalog: Predicate invention revisitedMachine Learning20151001497333721471346.6811910.1007/s10994-014-5471-y – reference: Kietz, J.-U., & Wrobel, S. (1992). Controlling the complexity of learning in logic through syntactic and task-oriented models. In Inductive logic programming. Citeseer. – reference: Cropper, A., & Tourret, S. (2018). Derivation reduction of metarules in meta-interpretive learning. In Riguzzi, F., Bellodi, E., & Zese, R. (Eds.), Inductive logic programming—28th international conference, ILP 2018, Ferrara, Italy, September 2–4, 2018, proceedings, volume 11105 of Lecture Notes in Computer Science (pp. 1–21). Springer. – reference: DantsinEEiterTGottlobGVoronkovAComplexity and expressive power of logic programmingACM Computing Surveys200133337442510.1145/502807.502810 – reference: Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. In Algorithmic learning theory, first international workshop, ALT ’90, Tokyo, Japan, October 8–10, 1990, proceedings (pp. 368–381). – reference: RobinsonJAA machine-oriented logic based on the resolution principleJournal of the ACM196512123411704940139.1230310.1145/321250.321253 – reference: Wang, W. Y., Mazaitis, K., & Cohen, W. W. (2014). Structure learning via parameter learning. In Li, J., Wang, X. S., Garofalakis, M. N., Soboroff, I., Suel, T., & Wang, M. (Eds.), Proceedings of the 23rd ACM international conference on conference on information and knowledge management, CIKM 2014, Shanghai, China, November 3–7, 2014 (pp. 1199–1208). ACM. – reference: Cropper, A. (2017). Efficiently learning efficient programs. Ph.D. thesis, Imperial College London, UK. – reference: Fonseca, N. A., Costa, V. S., Silva, F. M. A., & Camacho, R. (2004). On avoiding redundancy in inductive logic programming. In R. Camacho, R. D. King & A. Srinivasan (Eds.), Inductive logic programming, 14th international conference, ILP 2004, Porto, Portugal, September 6–8, 2004, proceedings, volume 3194 of Lecture Notes in Computer Science (pp. 132–146). Springer. – reference: Gottlob, G., Leone, N., & Scarcello, F.(1997). On the complexity of some inductive logic programming problems. In N. Lavrac & S. Dzeroski (Eds.), Inductive logic programming, 7th international workshop, ILP-97, Prague, Czech Republic, September 17–20, 1997, proceedings, volume 1297 of Lecture Notes in Computer Science (pp. 17–32). Springer. – reference: MuggletonSDe RaedtLPooleDBratkoIFlachPAInoueKSrinivasanAILP turns 20-biography and future challengesMachine Learning201286132328906621243.6801410.1007/s10994-011-5259-2 – reference: GeneserethMRLoveNPellBGeneral game playing: Overview of the AAAI competitionAI Magazine20052626272 – reference: LloydJWFoundations of logic programming19872BerlinSpringer0668.6800410.1007/978-3-642-83189-8 – reference: LiberatorePRedundancy in logic II: 2CNF and Horn propositional formulaeArtificial Intelligence20081722–326529923800911182.6828210.1016/j.artint.2007.06.003 – reference: Plotkin, G.D. (1971). Automatic methods of inductive inference. Ph.D. thesis, Edinburgh University, August 1971. – reference: BradleyARMannaZThe calculus of computation-decision procedures with applications to verification2007BerlinSpringer1126.03001 – reference: LarsonJMichalskiRSInductive inference of VL decision rulesSIGART Newsletter1977633844 – reference: MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning2014941254931444061319.6812110.1007/s10994-013-5358-3 – reference: Echenim, M., Peltier, N., & Tourret, S. (2015). Quantifier-free equational logic and prime implicate generation. In A. P. Felty & A. Middeldorp (Eds.), Automated deduction—CADE-25–25th international conference on automated deduction, Berlin, Germany, August 1–7, 2015, proceedings, volume 9195 of Lecture Notes in Computer Science (pp. 311–325). Springer. – reference: MuggletonSInverse entailment and ProgolNew Generation Computing1995133&424528610.1007/BF03037227 – reference: Tourret, S., & Cropper, A. (2019). SLD-resolution reduction of second-order Horn fragments. In F. Calimeri, N. Leone & M. Manna (Eds.), Logics in artificial intelligence—16th European conference, JELIA 2019, Rende, Italy, May 7–11, 2019, proceedings, volume 11468 of Lecture Notes in Computer Science (pp. 259–276). Springer. – reference: HeuleMJärvisaloMLonsingFSeidlMBiereAClause elimination for SAT and QSATArtificial Intelligence Research20155312716833613111336.6823110.1613/jair.4694 – reference: Marquis, P. (2000). Consequence finding algorithms. In Handbook of defeasible reasoning and uncertainty management systems (pp. 41–145). Springer. – reference: Nienhuys-ChengS-Hde WolfRFoundations of inductive logic programming1997New York, Secaucus, NJSpringer1293.6801410.1007/3-540-62927-0 – reference: ShapiroEYAlgorithmic program debugging1983LondonMIT Press0589.68003 – ident: 5834_CR18 – ident: 5834_CR43 doi: 10.1109/SFCS.1992.267755 – volume: 23 start-page: 97 issue: 2–3 year: 2010 ident: 5834_CR63 publication-title: AI Communications doi: 10.3233/AIC-2010-0459 – volume: 24 start-page: 377 issue: 6 year: 1987 ident: 5834_CR3 publication-title: Information Processing Letters doi: 10.1016/0020-0190(87)90114-1 – ident: 5834_CR10 – ident: 5834_CR30 – volume: 86 start-page: 3 issue: 1 year: 2012 ident: 5834_CR48 publication-title: Machine Learning doi: 10.1007/s10994-011-5259-2 – volume: 100 start-page: 49 issue: 1 year: 2015 ident: 5834_CR51 publication-title: Machine Learning doi: 10.1007/s10994-014-5471-y – volume: 17 start-page: 215 issue: 2 year: 1977 ident: 5834_CR60 publication-title: BIT doi: 10.1007/BF01932293 – volume: 8 start-page: 107 year: 1992 ident: 5834_CR19 publication-title: Machine Learning – volume: 1 start-page: 40 issue: 1 year: 1936 ident: 5834_CR6 publication-title: The Journal of Symbolic Logic doi: 10.2307/2269326 – volume-title: Foundations of logic programming year: 1987 ident: 5834_CR41 doi: 10.1007/978-3-642-83189-8 – volume: 59 start-page: 287 year: 1988 ident: 5834_CR56 publication-title: Theoretical Computer Science doi: 10.1016/0304-3975(88)90146-6 – ident: 5834_CR58 doi: 10.1145/3236024.3236034 – ident: 5834_CR15 – ident: 5834_CR24 doi: 10.1007/978-3-540-30109-7_13 – ident: 5834_CR11 – volume: 63 start-page: 38 year: 1977 ident: 5834_CR37 publication-title: SIGART Newsletter doi: 10.1145/1045343.1045369 – volume: 53 start-page: 127 year: 2015 ident: 5834_CR31 publication-title: Artificial Intelligence Research doi: 10.1613/jair.4694 – ident: 5834_CR36 – volume: 94 start-page: 25 issue: 1 year: 2014 ident: 5834_CR50 publication-title: Machine Learning doi: 10.1007/s10994-013-5358-3 – ident: 5834_CR32 doi: 10.1007/978-3-642-37651-1_7 – volume: 26 start-page: 62 issue: 2 year: 2005 ident: 5834_CR27 publication-title: AI Magazine – volume: 61 start-page: 263 issue: 2 year: 1993 ident: 5834_CR28 publication-title: Artificial Intelligence doi: 10.1016/0004-3702(93)90069-N – volume-title: Understanding complex datasets: Data mining with matrix decompositions year: 2007 ident: 5834_CR59 doi: 10.1201/9781584888338 – ident: 5834_CR25 – volume: 18 start-page: 571 issue: 3–4 year: 2018 ident: 5834_CR34 publication-title: TPLP – ident: 5834_CR21 – volume-title: Computers and intractability: A guide to the theory of NP-completeness year: 1979 ident: 5834_CR26 – ident: 5834_CR45 – ident: 5834_CR35 – ident: 5834_CR12 – ident: 5834_CR8 – volume: 68 start-page: 303 issue: 2 year: 1994 ident: 5834_CR7 publication-title: Artificial Intelligence doi: 10.1016/0004-3702(94)90070-1 – ident: 5834_CR44 doi: 10.1007/978-94-017-1737-3_3 – volume: 61 start-page: 1 year: 2018 ident: 5834_CR22 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.5714 – volume: 108 start-page: 1063 issue: 7 year: 2019 ident: 5834_CR14 publication-title: Machine Learning doi: 10.1007/s10994-018-5712-6 – ident: 5834_CR61 doi: 10.1007/978-3-030-19570-0_17 – ident: 5834_CR5 – ident: 5834_CR49 – volume: 32 start-page: 82 year: 1996 ident: 5834_CR52 publication-title: Advances in inductive logic programming – ident: 5834_CR29 doi: 10.1007/3540635149_31 – volume: 172 start-page: 265 issue: 2–3 year: 2008 ident: 5834_CR39 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2007.06.003 – volume: 163 start-page: 203 issue: 2 year: 2005 ident: 5834_CR38 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2004.11.002 – volume: 23 start-page: 398 issue: 3 year: 1976 ident: 5834_CR33 publication-title: Journal of the ACM doi: 10.1145/321958.321960 – ident: 5834_CR40 – ident: 5834_CR20 doi: 10.1007/978-3-319-21401-6_21 – volume: 33 start-page: 374 issue: 3 year: 2001 ident: 5834_CR17 publication-title: ACM Computing Surveys doi: 10.1145/502807.502810 – ident: 5834_CR16 doi: 10.1007/978-3-319-99960-9_1 – ident: 5834_CR9 – volume: 13 start-page: 245 issue: 3&4 year: 1995 ident: 5834_CR47 publication-title: New Generation Computing doi: 10.1007/BF03037227 – volume-title: Algorithmic program debugging year: 1983 ident: 5834_CR57 doi: 10.7551/mitpress/1192.001.0001 – ident: 5834_CR13 – ident: 5834_CR54 – ident: 5834_CR62 doi: 10.1145/2661829.2662022 – ident: 5834_CR46 doi: 10.1007/978-3-030-19570-0_13 – volume-title: Foundations of inductive logic programming year: 1997 ident: 5834_CR53 doi: 10.1007/3-540-62927-0 – ident: 5834_CR2 – ident: 5834_CR23 – volume: 12 start-page: 23 issue: 1 year: 1965 ident: 5834_CR55 publication-title: Journal of the ACM doi: 10.1145/321250.321253 – volume-title: The calculus of computation-decision procedures with applications to verification year: 2007 ident: 5834_CR4 – ident: 5834_CR1 doi: 10.1007/978-3-319-66158-2_44 – volume-title: Logic for learning year: 2003 ident: 5834_CR42 doi: 10.1007/978-3-662-08406-9 |
| SSID | ssj0002686 |
| Score | 2.4462216 |
| Snippet | Many forms of inductive logic programming (ILP) use
metarules
, second-order Horn clauses, to define the structure of learnable programs and thus the... Many forms of inductive logic programming (ILP) use metarules, second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1323 |
| SubjectTerms | Artificial Intelligence Cognitive tasks Computer Science Control Derivation Fragments Hypotheses Learning Logic in Computer Science Logic programming Machine Learning Mechatronics Natural Language Processing (NLP) Reduction Robotics Simulation and Modeling Special Issue of the Inductive Logic Programming (ILP) 2019 |
| SummonAdditionalLinks | – databaseName: Springer Standard Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86ffDF-YnVOYr4poE1SdvkcYjDhzHEL_YW0jZBYW7SdsM_31zWblNU0Nc2_eAul_tdcvc7hM4p1zQ2HYYtFOXY-luKhQ3CcCzilDFBEsaVazYRDwZ8OBS3VVFYUWe710eSbqVeKXZzNLZQdBNyyrBFjhvW3XEwx7v7p8X6SyLX39GaT4jBf1elMt-_45M7Wn-GZMgVpPnlcNT5nF7zf3-7g7YrjOl355NiF63p8R5q1v0b_Mqc91G7P1_3_Bz4W0FD_sT4r7pU-XSkiwP02Lt-uLrBVb8EnFpUUWIeiShJLcARgSIcdjizJBEZ4coENipKdJIoqohmWRZrIG4zJmRRoC0mTDPgnTtEjfFkrI-QTw0zhAQ0yDRjlMTcWCAnYpXQjrIeLPRQUItNphWZOPS0GMklDTIIQFoBSCcA-e6hi8Uzb3MqjV9Hn1ltLAYCC_ZNty_hGrDGW5xLZ4GHWrWyZGV7hYSCF8ogFPLQZa2c5e2fP3n8t-EnaItA8O1yd1uoUeZTfYo201n5UuRtNyc_AM8M1tY priority: 102 providerName: Springer Nature |
| Title | Logical reduction of metarules |
| URI | https://link.springer.com/article/10.1007/s10994-019-05834-x https://www.proquest.com/docview/2424343067 https://hal.science/hal-02988003 |
| Volume | 109 |
| WOSCitedRecordID | wos000542926900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oePAiPmMVSWO86Ua6u6Xbk0EDIREJwUeIl6aPbTRBQFoIP9-dsgU1kYuXPbTbR2Z2Z76d3fkG4IIJyZy4yomCooIof8uIqxZhxHGdkHOXBlz4WbEJp9MR_b7b1QG3RB-rzG1iZqijUYgx8mtMY2AcAe7N-JNg1SjcXdUlNDahaFFq4Ti_d8jSEtNaVulRTSSboCfXSTM6dS4jxcUUHlswTuY_HNPmGx6L_IY5f22TZt6nWfrvf-_CjsadZn0xUPZgQw73oZTXdDD1FD-ASnthC80Jcrqi1sxRbH7I1J9MBzI5hOdm4-muRXQNBRIqpJESUXNrQahAj2v5VGDUMwoCN6LCjy21UgpkEPjMp5JHkSORzC2ObV6zpMKJYYRcdEdQGI6G8hhMFvMYhWxFknNGHRErcOc6fsCqvvJqtgFWLkAv1ATjWOdi4K2okVHonhK6lwndmxtwuXxmvKDXWNv7XOll2RGZsVv1tofXkEleYV82swwo54rw9HxMvJUWDLjKVbm6_fcnT9a_7RS2KS7As_O7ZSikk6k8g61wlr4nkwoUbxudbq-SjUrVPtCuarv2q2p7jy9fDmPkLA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB21gAQXyirKGiE4gUVjO41zQKgCqiJKxQGkiovJ4ggkaKELy0_xjcykSQtI9MaBa-I4UWZ7Y3veAOwIZYQblyRDKKoYxlvBPEzCmOu5oZQeD6Tyk2YTbqOhmk3vMgcfWS0MHavMfGLiqKN2SGvkB1TGICQB3KOnZ0Zdo2h3NWuhMVCLc_P-iilb9_DsBOW7y3n19Oq4xtKuAizE2NtjquyVgxBhgGf7XNE6YBQEXsSVH9uYOwQmCHzhcyOjyDVEbxbHjizbBpFTGBE7G86bh0kpMVlC-7l0boaen5eTzpJouA4j5JAW6aSlegkJL5UMOUpI9vYtEObv6BjmF4z7Y1s2iXbVwn_7T3Mwm-JqqzIwhHnImdYCFLKeFVbqwhZhsz7w9VaHOGtJK612bD2ant_pP5juElz_yVcuw0Sr3TIrYIlYxpzbwo6MlIK7Kkbw6rl-IEo-Rm2nCHYmMB2mBOrUx-NBj6ifScgahawTIeu3IuwNn3ka0IeMHb2NejAcSMzftUpd0zViykdsL17sIqxngtepv-nqkdSLsJ-pzuj2769cHT_bFkzXri7qun7WOF-DGU6LDclZ5XWY6HX6ZgOmwpfefbezmViCBbd_rVKfv0k9BQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLZ4CXHhjRgMqBCcINqapGt6QGgCJhDTtANIiEvoIxFIY4NtvP4avw67azdAghsHrm2aVrVjf07szwA7Qhnh27JkCEUVQ38rWIBBGPMDP5Yy4JFUYdpswm801NVV0ByD97wWhtIqc5uYGuqkE9MeeYnKGIQkgFuyWVpE87h2-PDIqIMUnbTm7TQGKnJu3l4wfOsdnB2jrHc5r51cHJ2yrMMAi9EP95mqBJUoRkgQuCFXtCeYRFGQcBVaF-OIyERRKEJuZJL4hqjOrPVkxTWIouKEmNpw3nGY9DHGpMCv6V0PvQCvpF0mcRF7jFBEVrCTle2lhLxUPuQpIdnrF6c4fkspmZ_w7rcj2tTz1eb-8z-bh9kMbzvVwQJZgDHTXoS5vJeFk5m2JdisD3yA0yUuW9JWp2Ode9MPu08t01uGyz_5yhWYaHfaZhUcYaXl3BVuYqQU3FcWQW3gh5Eoh-jNvQK4ufB0nBGrU3-Plh5RQpPANQpcpwLXrwXYGz7zMKAV-XX0NurEcCAxgp9W65quEYM-Yn7x7BagmCuBzuxQT480oAD7uRqNbv_8yrXfZ9uCadQkXT9rnK_DDKc9iDSFuQgT_e6T2YCp-Ll_1-tupovCgZu_1qgPfZtF2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Logical+reduction+of+metarules&rft.jtitle=Machine+learning&rft.au=Cropper%2C+Andrew&rft.au=Tourret%2C+Sophie&rft.date=2020-07-01&rft.pub=Springer+Verlag&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=109&rft.issue=7&rft.spage=1323&rft.epage=1369&rft_id=info:doi/10.1007%2Fs10994-019-05834-x&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02988003v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |