Logical reduction of metarules

Many forms of inductive logic programming (ILP) use metarules , second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Machine learning Ročník 109; číslo 7; s. 1323 - 1369
Hlavní autori: Cropper, Andrew, Tourret, Sophie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.07.2020
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0885-6125, 1573-0565
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many forms of inductive logic programming (ILP) use metarules , second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called derivation reduction , which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times.
AbstractList Many forms of inductive logic programming (ILP) use metarules, second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called derivation reduction, which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times.
Many forms of inductive logic programming (ILP) use metarules , second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called derivation reduction , which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times.
Author Tourret, Sophie
Cropper, Andrew
Author_xml – sequence: 1
  givenname: Andrew
  orcidid: 0000-0002-4543-7199
  surname: Cropper
  fullname: Cropper, Andrew
  email: andrew.cropper@cs.ox.ac.uk
  organization: University of Oxford
– sequence: 2
  givenname: Sophie
  surname: Tourret
  fullname: Tourret, Sophie
  organization: Max Planck Institute for Informatics
BackLink https://hal.science/hal-02988003$$DView record in HAL
BookMark eNp9kE9LwzAYh4NMcJt-AQ8y8OSh-uZvk-MY6oSCFz2HtE1nR9fMpJX57U2tInjYKbzheV5-72-GJq1rLUKXGG4xQHoXMCjFEsAqAS4pSw4naIp5SuMo-ARNQUqeCEz4GZqFsAUAIqSYoqvMberCNAtvy77oatcuXLXY2c74vrHhHJ1Wpgn24uedo9eH-5fVOsmeH59WyywpqEq7RAol8kIwprAhEnLAZZ6rkkhTYSxYbvPcUEMsK8vUUpFCVXEmsMUcihIUp3N0M-59M43e-3pn_Kd2ptbrZaaHPyBKSgD6gSN7PbJ77957Gzq9db1vYzxNGGGUURBppORIFd6F4G2li7ozw4GdN3WjMeihOT02p2Nz-rs5fYgq-af-Jjoq0VEKEW431v-lOmJ9AY5egPc
CitedBy_id crossref_primary_10_1007_s10994_020_05934_z
crossref_primary_10_1038_s41467_024_50966_x
crossref_primary_10_1007_s10994_022_06274_w
crossref_primary_10_3390_e25060924
crossref_primary_10_1007_s10994_021_06089_1
Cites_doi 10.1109/SFCS.1992.267755
10.3233/AIC-2010-0459
10.1016/0020-0190(87)90114-1
10.1007/s10994-011-5259-2
10.1007/s10994-014-5471-y
10.1007/BF01932293
10.2307/2269326
10.1007/978-3-642-83189-8
10.1016/0304-3975(88)90146-6
10.1145/3236024.3236034
10.1007/978-3-540-30109-7_13
10.1145/1045343.1045369
10.1613/jair.4694
10.1007/s10994-013-5358-3
10.1007/978-3-642-37651-1_7
10.1016/0004-3702(93)90069-N
10.1201/9781584888338
10.1016/0004-3702(94)90070-1
10.1007/978-94-017-1737-3_3
10.1613/jair.5714
10.1007/s10994-018-5712-6
10.1007/978-3-030-19570-0_17
10.1007/3540635149_31
10.1016/j.artint.2007.06.003
10.1016/j.artint.2004.11.002
10.1145/321958.321960
10.1007/978-3-319-21401-6_21
10.1145/502807.502810
10.1007/978-3-319-99960-9_1
10.1007/BF03037227
10.7551/mitpress/1192.001.0001
10.1145/2661829.2662022
10.1007/978-3-030-19570-0_13
10.1007/3-540-62927-0
10.1145/321250.321253
10.1007/978-3-319-66158-2_44
10.1007/978-3-662-08406-9
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
1XC
VOOES
DOI 10.1007/s10994-019-05834-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 1369
ExternalDocumentID oai:HAL:hal-02988003v1
10_1007_s10994_019_05834_x
GrantInformation_xml – fundername: University of Oxford
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c397t-8696bc64491a280b01dbb9d28af1164bebba3a2e4dd7e3670ff5461e150cd0953
IEDL.DBID K7-
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542926900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Wed Nov 05 07:32:19 EST 2025
Wed Nov 05 00:25:50 EST 2025
Sat Nov 29 01:43:27 EST 2025
Tue Nov 18 21:05:56 EST 2025
Fri Feb 21 02:28:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Inductive programming
Inductive logic programming
Logical reduction
Meta-interpretive learning
Program induction
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-8696bc64491a280b01dbb9d28af1164bebba3a2e4dd7e3670ff5461e150cd0953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4543-7199
0000-0002-6070-796X
OpenAccessLink https://link.springer.com/10.1007/s10994-019-05834-x
PQID 2424343067
PQPubID 54194
PageCount 47
ParticipantIDs hal_primary_oai_HAL_hal_02988003v1
proquest_journals_2424343067
crossref_citationtrail_10_1007_s10994_019_05834_x
crossref_primary_10_1007_s10994_019_05834_x
springer_journals_10_1007_s10994_019_05834_x
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References DantsinEEiterTGottlobGVoronkovAComplexity and expressive power of logic programmingACM Computing Surveys200133337442510.1145/502807.502810
GeneserethMRLoveNPellBGeneral game playing: Overview of the AAAI competitionAI Magazine20052626272
GareyMRJohnsonDSComputers and intractability: A guide to the theory of NP-completeness1979New YorkW. H. Freeman0411.68039
Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. In Algorithmic learning theory, first international workshop, ALT ’90, Tokyo, Japan, October 8–10, 1990, proceedings (pp. 368–381).
Echenim, M., Peltier, N., & Tourret, S. (2015). Quantifier-free equational logic and prime implicate generation. In A. P. Felty & A. Middeldorp (Eds.), Automated deduction—CADE-25–25th international conference on automated deduction, Berlin, Germany, August 1–7, 2015, proceedings, volume 9195 of Lecture Notes in Computer Science (pp. 311–325). Springer.
LarsonJMichalskiRSInductive inference of VL decision rulesSIGART Newsletter1977633844
LiberatorePRedundancy in logic I: CNF propositional formulaeArtificial Intelligence2005163220323221265371132.6873610.1016/j.artint.2004.11.002
MuggletonSInverse entailment and ProgolNew Generation Computing1995133&424528610.1007/BF03037227
Cropper, A., & Tourret, S. (2018). Derivation reduction of metarules in meta-interpretive learning. In Riguzzi, F., Bellodi, E., & Zese, R. (Eds.), Inductive logic programming—28th international conference, ILP 2018, Ferrara, Italy, September 2–4, 2018, proceedings, volume 11105 of Lecture Notes in Computer Science (pp. 1–21). Springer.
Tourret, S., & Cropper, A. (2019). SLD-resolution reduction of second-order Horn fragments. In F. Calimeri, N. Leone & M. Manna (Eds.), Logics in artificial intelligence—16th European conference, JELIA 2019, Rende, Italy, May 7–11, 2019, proceedings, volume 11468 of Lecture Notes in Computer Science (pp. 259–276). Springer.
Bienvenu, M. (2007). Prime implicates and prime implicants in modal logic. In Proceedings of the twenty-second AAAI conference on artificial intelligence, July 22–26, 2007, Vancouver, BC, Canada (pp. 379–384). AAAI Press.
MuggletonSDe RaedtLPooleDBratkoIFlachPAInoueKSrinivasanAILP turns 20-biography and future challengesMachine Learning201286132328906621243.6801410.1007/s10994-011-5259-2
Lin, D., Dechter, E., Ellis, K., Tenenbaum, J. B., & Muggleton, S. (2014). Bias reformulation for one-shot function induction. In ECAI 2014—21st European conference on artificial intelligence, 18–22 August 2014, Prague, Czech Republic—including prestigious applications of intelligent systems (PAIS 2014) (pp. 525–530).
CropperAMuggletonSHLearning efficient logic programsMachine Learning201910871063108339599910707361910.1007/s10994-018-5712-6
Marcinkowski, J., & Pacholski, L. (1992). Undecidability of the Horn-clause implication problem. In 33rd annual symposium on foundations of computer science, Pittsburgh, Pennsylvania, USA, 24–27 October 1992 (pp. 354–362).
Cropper, A., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2015). Meta-interpretive learning of data transformation programs. In Inoue, K., Ohwada, H., & Yamamoto, A. (Eds.), Inductive logic programming—25th international conference, ILP 2015, Kyoto, Japan, August 20–22, 2015, revised selected papers, volume 9575 of Lecture Notes in Computer Science (pp. 46–59). Springer.
Fonseca, N. A., Costa, V. S., Silva, F. M. A., & Camacho, R. (2004). On avoiding redundancy in inductive logic programming. In R. Camacho, R. D. King & A. Srinivasan (Eds.), Inductive logic programming, 14th international conference, ILP 2004, Porto, Portugal, September 6–8, 2004, proceedings, volume 3194 of Lecture Notes in Computer Science (pp. 132–146). Springer.
ChurchAA note on the EntscheidungsproblemThe Journal of Symbolic Logic19361140410014.3850310.2307/2269326
BlumerAEhrenfeuchtAHausslerDWarmuthMKOccam’s razorInformation Processing Letters19872463773808963920653.6808410.1016/0020-0190(87)90114-1
HeuleMJärvisaloMLonsingFSeidlMBiereAClause elimination for SAT and QSATArtificial Intelligence Research20155312716833613111336.6823110.1613/jair.4694
MuggletonSHLinDTamaddoni-NezhadAMeta-interpretive learning of higher-order dyadic Datalog: Predicate invention revisitedMachine Learning20151001497333721471346.6811910.1007/s10994-014-5471-y
Cropper, A., Evans, R., & Law, M. (2019). Inductive general game playing. ArXiv e-prints, arXiv:1906.09627, Jun 2019.
Marquis, P. (2000). Consequence finding algorithms. In Handbook of defeasible reasoning and uncertainty management systems (pp. 41–145). Springer.
Hemaspaandra, E., & Schnoor, H. (2011). Minimization for generalized boolean formulas. In T. Walsh (Ed.), IJCAI 2011, proceedings of the 22nd international joint conference on artificial intelligence, Barcelona, Catalonia, Spain, July 16–22, 2011 (pp. 566–571). IJCAI/AAAI.
KaminskiTEiterTInoueKExploiting answer set programming with external sources for meta-interpretive learningTPLP2018183–4571588384188306988662
TärnlundSÅHorn clause computabilityBIT19771722152264911110359.0204210.1007/BF01932293
JoynerWHJrResolution strategies as decision proceduresJournal of the ACM19762333984174112690335.6806210.1145/321958.321960
LiberatorePRedundancy in logic II: 2CNF and Horn propositional formulaeArtificial Intelligence20081722–326529923800911182.6828210.1016/j.artint.2007.06.003
Albarghouthi, A., Koutris, P., Naik, M., & Smith, C. (2017). Constraint-based synthesis of Datalog programs. In J. C. Beck (Ed.), Principles and practice of constraint programming—23rd international conference, CP 2017, Melbourne, VIC, Australia, August 28–September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science (pp. 689–706). Springer.
Hillenbrand, T., Piskac, R., Waldmann, U., & Weidenbach, C. (2013). From search to computation: Redundancy criteria and simplification at work. In A. Voronkov, & C. Weidenbach (Eds.), Programming logics - essays in memory of Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science (pp. 169–193). Springer.
Kietz, J.-U., & Wrobel, S. (1992). Controlling the complexity of learning in logic through syntactic and task-oriented models. In Inductive logic programming. Citeseer.
Cropper, A., & Muggleton, S. H. (2016b). Metagol system. https://github.com/metagol/metagol. Accessed 1 July 2019.
CohenWWGrammatically biased learning: Learning logic programs using an explicit antecedent description languageArtificial Intelligence19946823033660942.6865610.1016/0004-3702(94)90070-1
Cropper, A., & Muggleton, S. H. (2015). Learning efficient logical robot strategies involving composable objects. In Yang, Q., & Wooldridge, M. (Eds.), Proceedings of the twenty-fourth international joint conference on artificial intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015 (pp. 3423–3429). AAAI Press.
EvansRGrefenstetteELearning explanatory rules from noisy dataJournal of Artificial Intelligence Research20186116437661981426.6823510.1613/jair.5714
Gottlob, G., Leone, N., & Scarcello, F.(1997). On the complexity of some inductive logic programming problems. In N. Lavrac & S. Dzeroski (Eds.), Inductive logic programming, 7th international workshop, ILP-97, Prague, Czech Republic, September 17–20, 1997, proceedings, volume 1297 of Lecture Notes in Computer Science (pp. 17–32). Springer.
NédellecCRouveirolCAdéHBergadanoFTausendBDeclarative bias in ILPAdvances in inductive logic programming19963282103
Campero, A., Pareja, A., Klinger, T., Tenenbaum, J., & Riedel, S. (2018). Logical rule induction and theory learning using neural theorem proving. ArXiv e-prints, September 2018.
GottlobGFermüllerCGRemoving redundancy from a clauseArtificial Intelligence199361226328912229520779.6801510.1016/0004-3702(93)90069-N
Kowalski, R. A. (1974). Predicate logic as programming language. In IFIP congress (pp. 569–574).
LloydJWFoundations of logic programming19872BerlinSpringer0668.6800410.1007/978-3-642-83189-8
Wang, W. Y., Mazaitis, K., & Cohen, W. W. (2014). Structure learning via parameter learning. In Li, J., Wang, X. S., Garofalakis, M. N., Soboroff, I., Suel, T., & Wang, M. (Eds.), Proceedings of the 23rd ACM international conference on conference on information and knowledge management, CIKM 2014, Shanghai, China, November 3–7, 2014 (pp. 1199–1208). ACM.
Nienhuys-ChengS-Hde WolfRFoundations of inductive logic programming1997New York, Secaucus, NJSpringer1293.6801410.1007/3-540-62927-0
BradleyARMannaZThe calculus of computation-decision procedures with applications to verification2007BerlinSpringer1126.03001
LloydJWLogic for learning2003BerlinSpringer1055.6808610.1007/978-3-662-08406-9
Cropper, A., & Muggleton, S. H. (2016a). Learning higher-order logic programs through abstraction and invention. In Kambhampati, S. (Ed.), Proceedings of the twenty-fifth international joint conference on artificial intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016 (pp. 1418–1424). IJCAI/AAAI Press.
McCarthy, J. (1995). Making robots conscious of their mental states. In Machine intelligence 15, intelligent Agents [St. Catherine’s College, Oxford, July 1995] (pp. 3–17).
Cropper, A., & Muggleton, S. H. (2014). Logical minimisation of meta-rules within meta-interpretive learning. In J. Davis & J. Ramon (Eds.), Inductive logic programming—24th international conference, ILP 2014, Nancy, France, September 14–16, 2014. Revised selected papers, volume 9046 of Lecture Notes in Computer Science (pp. 62–75). Springer.
Flener, P. (1996). Inductive logic program synthesis with DIALOGS. In Muggleton, S. (Ed.), Inductive logic programming, 6th international workshop, ILP-96, Stockholm, Sweden, August 26–28, 1996, selected papers, volume 1314 of Lecture Notes in Computer Science (pp. 175–198). Springer.
Fürnkranz, J. (1997). Dimensionality reduction in ILP: A call to arms. In Proceedings of the IJCAI-97 workshop on frontiers of inductive logic programming (pp. 81–86).
Si, X., Lee, W., Zhang, R., Albarghouthi, A., Koutris, P., & Naik, M. (2018). Syntax-guided synthesis of Datalog programs. In G. T. Leavens, A.
C Nédellec (5834_CR52) 1996; 32
WH Joyner Jr (5834_CR33) 1976; 23
S Muggleton (5834_CR48) 2012; 86
5834_CR10
5834_CR54
EY Shapiro (5834_CR57) 1983
5834_CR12
T Kaminski (5834_CR34) 2018; 18
5834_CR11
5834_CR58
5834_CR13
5834_CR16
5834_CR15
5834_CR18
D Skillicorn (5834_CR59) 2007
L De Raedt (5834_CR19) 1992; 8
M Schmidt-Schauß (5834_CR56) 1988; 59
MR Garey (5834_CR26) 1979
5834_CR5
S Muggleton (5834_CR47) 1995; 13
5834_CR2
5834_CR9
5834_CR8
5834_CR40
5834_CR43
AR Bradley (5834_CR4) 2007
5834_CR45
5834_CR44
5834_CR1
5834_CR46
5834_CR49
E Dantsin (5834_CR17) 2001; 33
S-H Nienhuys-Cheng (5834_CR53) 1997
SH Muggleton (5834_CR51) 2015; 100
JW Lloyd (5834_CR42) 2003
A Cropper (5834_CR14) 2019; 108
P Liberatore (5834_CR39) 2008; 172
5834_CR30
M Heule (5834_CR31) 2015; 53
5834_CR32
WW Cohen (5834_CR7) 1994; 68
5834_CR36
5834_CR35
G Gottlob (5834_CR28) 1993; 61
J Larson (5834_CR37) 1977; 63
5834_CR61
5834_CR62
5834_CR21
5834_CR20
SH Muggleton (5834_CR50) 2014; 94
5834_CR23
P Liberatore (5834_CR38) 2005; 163
5834_CR25
5834_CR24
SÅ Tärnlund (5834_CR60) 1977; 17
5834_CR29
C Weidenbach (5834_CR63) 2010; 23
A Blumer (5834_CR3) 1987; 24
JW Lloyd (5834_CR41) 1987
A Church (5834_CR6) 1936; 1
JA Robinson (5834_CR55) 1965; 12
MR Genesereth (5834_CR27) 2005; 26
R Evans (5834_CR22) 2018; 61
References_xml – reference: Hillenbrand, T., Piskac, R., Waldmann, U., & Weidenbach, C. (2013). From search to computation: Redundancy criteria and simplification at work. In A. Voronkov, & C. Weidenbach (Eds.), Programming logics - essays in memory of Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science (pp. 169–193). Springer.
– reference: Lin, D., Dechter, E., Ellis, K., Tenenbaum, J. B., & Muggleton, S. (2014). Bias reformulation for one-shot function induction. In ECAI 2014—21st European conference on artificial intelligence, 18–22 August 2014, Prague, Czech Republic—including prestigious applications of intelligent systems (PAIS 2014) (pp. 525–530).
– reference: BlumerAEhrenfeuchtAHausslerDWarmuthMKOccam’s razorInformation Processing Letters19872463773808963920653.6808410.1016/0020-0190(87)90114-1
– reference: Campero, A., Pareja, A., Klinger, T., Tenenbaum, J., & Riedel, S. (2018). Logical rule induction and theory learning using neural theorem proving. ArXiv e-prints, September 2018.
– reference: Marcinkowski, J., & Pacholski, L. (1992). Undecidability of the Horn-clause implication problem. In 33rd annual symposium on foundations of computer science, Pittsburgh, Pennsylvania, USA, 24–27 October 1992 (pp. 354–362).
– reference: Cropper, A., & Muggleton, S. H. (2014). Logical minimisation of meta-rules within meta-interpretive learning. In J. Davis & J. Ramon (Eds.), Inductive logic programming—24th international conference, ILP 2014, Nancy, France, September 14–16, 2014. Revised selected papers, volume 9046 of Lecture Notes in Computer Science (pp. 62–75). Springer.
– reference: Kowalski, R. A. (1974). Predicate logic as programming language. In IFIP congress (pp. 569–574).
– reference: Si, X., Lee, W., Zhang, R., Albarghouthi, A., Koutris, P., & Naik, M. (2018). Syntax-guided synthesis of Datalog programs. In G. T. Leavens, A. Garcia, & C. S. Pasareanu (Eds.), Proceedings of the 2018 ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04–09, 2018 (pp. 515–527). ACM.
– reference: Schmidt-SchaußMImplication of clauses is undecidableTheoretical Computer Science1988592872969632420657.0300610.1016/0304-3975(88)90146-6
– reference: De RaedtLBruynoogheMInteractive concept-learning and constructive induction by analogyMachine Learning199281071500751.68051
– reference: SkillicornDUnderstanding complex datasets: Data mining with matrix decompositions2007New YorkChapman and Hall/CRC1270.6201510.1201/9781584888338
– reference: ChurchAA note on the EntscheidungsproblemThe Journal of Symbolic Logic19361140410014.3850310.2307/2269326
– reference: Fürnkranz, J. (1997). Dimensionality reduction in ILP: A call to arms. In Proceedings of the IJCAI-97 workshop on frontiers of inductive logic programming (pp. 81–86).
– reference: CohenWWGrammatically biased learning: Learning logic programs using an explicit antecedent description languageArtificial Intelligence19946823033660942.6865610.1016/0004-3702(94)90070-1
– reference: Cropper, A., Evans, R., & Law, M. (2019). Inductive general game playing. ArXiv e-prints, arXiv:1906.09627, Jun 2019.
– reference: Cropper, A., & Muggleton, S. H. (2015). Learning efficient logical robot strategies involving composable objects. In Yang, Q., & Wooldridge, M. (Eds.), Proceedings of the twenty-fourth international joint conference on artificial intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015 (pp. 3423–3429). AAAI Press.
– reference: EvansRGrefenstetteELearning explanatory rules from noisy dataJournal of Artificial Intelligence Research20186116437661981426.6823510.1613/jair.5714
– reference: Flener, P. (1996). Inductive logic program synthesis with DIALOGS. In Muggleton, S. (Ed.), Inductive logic programming, 6th international workshop, ILP-96, Stockholm, Sweden, August 26–28, 1996, selected papers, volume 1314 of Lecture Notes in Computer Science (pp. 175–198). Springer.
– reference: LiberatorePRedundancy in logic I: CNF propositional formulaeArtificial Intelligence2005163220323221265371132.6873610.1016/j.artint.2004.11.002
– reference: Cropper, A., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2015). Meta-interpretive learning of data transformation programs. In Inoue, K., Ohwada, H., & Yamamoto, A. (Eds.), Inductive logic programming—25th international conference, ILP 2015, Kyoto, Japan, August 20–22, 2015, revised selected papers, volume 9575 of Lecture Notes in Computer Science (pp. 46–59). Springer.
– reference: GareyMRJohnsonDSComputers and intractability: A guide to the theory of NP-completeness1979New YorkW. H. Freeman0411.68039
– reference: LloydJWLogic for learning2003BerlinSpringer1055.6808610.1007/978-3-662-08406-9
– reference: Emde, W., Habel, C., & Rollinger, C.-R. (1983). The discovery of the equator or concept driven learning. In M. Alanbundy (Ed.), Proceedings of the 8th international joint conference on artificial intelligence. Karlsruhe, FRG, August 1983 (pp. 455–458). William Kaufmann.
– reference: Morel, R., Cropper, A., & Ong, C.-H. Luke (2019). Typed meta-interpretive learning of logic programs. In Calimeri, F., Leone, N., & Manna, M. (Eds.), Logics in artificial intelligence—16th European conference, JELIA 2019, Rende, Italy, May 7–11, 2019, proceedings, volume 11468 of Lecture Notes in Computer Science (pp. 198–213). Springer.
– reference: GottlobGFermüllerCGRemoving redundancy from a clauseArtificial Intelligence199361226328912229520779.6801510.1016/0004-3702(93)90069-N
– reference: Cropper, A., & Muggleton, S. H. (2016a). Learning higher-order logic programs through abstraction and invention. In Kambhampati, S. (Ed.), Proceedings of the twenty-fifth international joint conference on artificial intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016 (pp. 1418–1424). IJCAI/AAAI Press.
– reference: JoynerWHJrResolution strategies as decision proceduresJournal of the ACM19762333984174112690335.6806210.1145/321958.321960
– reference: De Raedt, L. (2012). Declarative modeling for machine learning and data mining. In Algorithmic learning theory—23rd international conference, ALT 2012, Lyon, France, October 29–31, 2012. proceedings (p. 12).
– reference: CropperAMuggletonSHLearning efficient logic programsMachine Learning201910871063108339599910707361910.1007/s10994-018-5712-6
– reference: NédellecCRouveirolCAdéHBergadanoFTausendBDeclarative bias in ILPAdvances in inductive logic programming19963282103
– reference: KaminskiTEiterTInoueKExploiting answer set programming with external sources for meta-interpretive learningTPLP2018183–4571588384188306988662
– reference: Albarghouthi, A., Koutris, P., Naik, M., & Smith, C. (2017). Constraint-based synthesis of Datalog programs. In J. C. Beck (Ed.), Principles and practice of constraint programming—23rd international conference, CP 2017, Melbourne, VIC, Australia, August 28–September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science (pp. 689–706). Springer.
– reference: Hemaspaandra, E., & Schnoor, H. (2011). Minimization for generalized boolean formulas. In T. Walsh (Ed.), IJCAI 2011, proceedings of the 22nd international joint conference on artificial intelligence, Barcelona, Catalonia, Spain, July 16–22, 2011 (pp. 566–571). IJCAI/AAAI.
– reference: Cropper, A., & Muggleton, S. H. (2016b). Metagol system. https://github.com/metagol/metagol. Accessed 1 July 2019.
– reference: WeidenbachCWischnewskiPSubterm contextual rewritingAI Communications2010232–39710926542371206.6816410.3233/AIC-2010-0459
– reference: Bienvenu, M. (2007). Prime implicates and prime implicants in modal logic. In Proceedings of the twenty-second AAAI conference on artificial intelligence, July 22–26, 2007, Vancouver, BC, Canada (pp. 379–384). AAAI Press.
– reference: TärnlundSÅHorn clause computabilityBIT19771722152264911110359.0204210.1007/BF01932293
– reference: McCarthy, J. (1995). Making robots conscious of their mental states. In Machine intelligence 15, intelligent Agents [St. Catherine’s College, Oxford, July 1995] (pp. 3–17).
– reference: MuggletonSHLinDTamaddoni-NezhadAMeta-interpretive learning of higher-order dyadic Datalog: Predicate invention revisitedMachine Learning20151001497333721471346.6811910.1007/s10994-014-5471-y
– reference: Kietz, J.-U., & Wrobel, S. (1992). Controlling the complexity of learning in logic through syntactic and task-oriented models. In Inductive logic programming. Citeseer.
– reference: Cropper, A., & Tourret, S. (2018). Derivation reduction of metarules in meta-interpretive learning. In Riguzzi, F., Bellodi, E., & Zese, R. (Eds.), Inductive logic programming—28th international conference, ILP 2018, Ferrara, Italy, September 2–4, 2018, proceedings, volume 11105 of Lecture Notes in Computer Science (pp. 1–21). Springer.
– reference: DantsinEEiterTGottlobGVoronkovAComplexity and expressive power of logic programmingACM Computing Surveys200133337442510.1145/502807.502810
– reference: Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. In Algorithmic learning theory, first international workshop, ALT ’90, Tokyo, Japan, October 8–10, 1990, proceedings (pp. 368–381).
– reference: RobinsonJAA machine-oriented logic based on the resolution principleJournal of the ACM196512123411704940139.1230310.1145/321250.321253
– reference: Wang, W. Y., Mazaitis, K., & Cohen, W. W. (2014). Structure learning via parameter learning. In Li, J., Wang, X. S., Garofalakis, M. N., Soboroff, I., Suel, T., & Wang, M. (Eds.), Proceedings of the 23rd ACM international conference on conference on information and knowledge management, CIKM 2014, Shanghai, China, November 3–7, 2014 (pp. 1199–1208). ACM.
– reference: Cropper, A. (2017). Efficiently learning efficient programs. Ph.D. thesis, Imperial College London, UK.
– reference: Fonseca, N. A., Costa, V. S., Silva, F. M. A., & Camacho, R. (2004). On avoiding redundancy in inductive logic programming. In R. Camacho, R. D. King & A. Srinivasan (Eds.), Inductive logic programming, 14th international conference, ILP 2004, Porto, Portugal, September 6–8, 2004, proceedings, volume 3194 of Lecture Notes in Computer Science (pp. 132–146). Springer.
– reference: Gottlob, G., Leone, N., & Scarcello, F.(1997). On the complexity of some inductive logic programming problems. In N. Lavrac & S. Dzeroski (Eds.), Inductive logic programming, 7th international workshop, ILP-97, Prague, Czech Republic, September 17–20, 1997, proceedings, volume 1297 of Lecture Notes in Computer Science (pp. 17–32). Springer.
– reference: MuggletonSDe RaedtLPooleDBratkoIFlachPAInoueKSrinivasanAILP turns 20-biography and future challengesMachine Learning201286132328906621243.6801410.1007/s10994-011-5259-2
– reference: GeneserethMRLoveNPellBGeneral game playing: Overview of the AAAI competitionAI Magazine20052626272
– reference: LloydJWFoundations of logic programming19872BerlinSpringer0668.6800410.1007/978-3-642-83189-8
– reference: LiberatorePRedundancy in logic II: 2CNF and Horn propositional formulaeArtificial Intelligence20081722–326529923800911182.6828210.1016/j.artint.2007.06.003
– reference: Plotkin, G.D. (1971). Automatic methods of inductive inference. Ph.D. thesis, Edinburgh University, August 1971.
– reference: BradleyARMannaZThe calculus of computation-decision procedures with applications to verification2007BerlinSpringer1126.03001
– reference: LarsonJMichalskiRSInductive inference of VL decision rulesSIGART Newsletter1977633844
– reference: MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning2014941254931444061319.6812110.1007/s10994-013-5358-3
– reference: Echenim, M., Peltier, N., & Tourret, S. (2015). Quantifier-free equational logic and prime implicate generation. In A. P. Felty & A. Middeldorp (Eds.), Automated deduction—CADE-25–25th international conference on automated deduction, Berlin, Germany, August 1–7, 2015, proceedings, volume 9195 of Lecture Notes in Computer Science (pp. 311–325). Springer.
– reference: MuggletonSInverse entailment and ProgolNew Generation Computing1995133&424528610.1007/BF03037227
– reference: Tourret, S., & Cropper, A. (2019). SLD-resolution reduction of second-order Horn fragments. In F. Calimeri, N. Leone & M. Manna (Eds.), Logics in artificial intelligence—16th European conference, JELIA 2019, Rende, Italy, May 7–11, 2019, proceedings, volume 11468 of Lecture Notes in Computer Science (pp. 259–276). Springer.
– reference: HeuleMJärvisaloMLonsingFSeidlMBiereAClause elimination for SAT and QSATArtificial Intelligence Research20155312716833613111336.6823110.1613/jair.4694
– reference: Marquis, P. (2000). Consequence finding algorithms. In Handbook of defeasible reasoning and uncertainty management systems (pp. 41–145). Springer.
– reference: Nienhuys-ChengS-Hde WolfRFoundations of inductive logic programming1997New York, Secaucus, NJSpringer1293.6801410.1007/3-540-62927-0
– reference: ShapiroEYAlgorithmic program debugging1983LondonMIT Press0589.68003
– ident: 5834_CR18
– ident: 5834_CR43
  doi: 10.1109/SFCS.1992.267755
– volume: 23
  start-page: 97
  issue: 2–3
  year: 2010
  ident: 5834_CR63
  publication-title: AI Communications
  doi: 10.3233/AIC-2010-0459
– volume: 24
  start-page: 377
  issue: 6
  year: 1987
  ident: 5834_CR3
  publication-title: Information Processing Letters
  doi: 10.1016/0020-0190(87)90114-1
– ident: 5834_CR10
– ident: 5834_CR30
– volume: 86
  start-page: 3
  issue: 1
  year: 2012
  ident: 5834_CR48
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5259-2
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  ident: 5834_CR51
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5471-y
– volume: 17
  start-page: 215
  issue: 2
  year: 1977
  ident: 5834_CR60
  publication-title: BIT
  doi: 10.1007/BF01932293
– volume: 8
  start-page: 107
  year: 1992
  ident: 5834_CR19
  publication-title: Machine Learning
– volume: 1
  start-page: 40
  issue: 1
  year: 1936
  ident: 5834_CR6
  publication-title: The Journal of Symbolic Logic
  doi: 10.2307/2269326
– volume-title: Foundations of logic programming
  year: 1987
  ident: 5834_CR41
  doi: 10.1007/978-3-642-83189-8
– volume: 59
  start-page: 287
  year: 1988
  ident: 5834_CR56
  publication-title: Theoretical Computer Science
  doi: 10.1016/0304-3975(88)90146-6
– ident: 5834_CR58
  doi: 10.1145/3236024.3236034
– ident: 5834_CR15
– ident: 5834_CR24
  doi: 10.1007/978-3-540-30109-7_13
– ident: 5834_CR11
– volume: 63
  start-page: 38
  year: 1977
  ident: 5834_CR37
  publication-title: SIGART Newsletter
  doi: 10.1145/1045343.1045369
– volume: 53
  start-page: 127
  year: 2015
  ident: 5834_CR31
  publication-title: Artificial Intelligence Research
  doi: 10.1613/jair.4694
– ident: 5834_CR36
– volume: 94
  start-page: 25
  issue: 1
  year: 2014
  ident: 5834_CR50
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5358-3
– ident: 5834_CR32
  doi: 10.1007/978-3-642-37651-1_7
– volume: 26
  start-page: 62
  issue: 2
  year: 2005
  ident: 5834_CR27
  publication-title: AI Magazine
– volume: 61
  start-page: 263
  issue: 2
  year: 1993
  ident: 5834_CR28
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(93)90069-N
– volume-title: Understanding complex datasets: Data mining with matrix decompositions
  year: 2007
  ident: 5834_CR59
  doi: 10.1201/9781584888338
– ident: 5834_CR25
– volume: 18
  start-page: 571
  issue: 3–4
  year: 2018
  ident: 5834_CR34
  publication-title: TPLP
– ident: 5834_CR21
– volume-title: Computers and intractability: A guide to the theory of NP-completeness
  year: 1979
  ident: 5834_CR26
– ident: 5834_CR45
– ident: 5834_CR35
– ident: 5834_CR12
– ident: 5834_CR8
– volume: 68
  start-page: 303
  issue: 2
  year: 1994
  ident: 5834_CR7
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(94)90070-1
– ident: 5834_CR44
  doi: 10.1007/978-94-017-1737-3_3
– volume: 61
  start-page: 1
  year: 2018
  ident: 5834_CR22
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.5714
– volume: 108
  start-page: 1063
  issue: 7
  year: 2019
  ident: 5834_CR14
  publication-title: Machine Learning
  doi: 10.1007/s10994-018-5712-6
– ident: 5834_CR61
  doi: 10.1007/978-3-030-19570-0_17
– ident: 5834_CR5
– ident: 5834_CR49
– volume: 32
  start-page: 82
  year: 1996
  ident: 5834_CR52
  publication-title: Advances in inductive logic programming
– ident: 5834_CR29
  doi: 10.1007/3540635149_31
– volume: 172
  start-page: 265
  issue: 2–3
  year: 2008
  ident: 5834_CR39
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2007.06.003
– volume: 163
  start-page: 203
  issue: 2
  year: 2005
  ident: 5834_CR38
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2004.11.002
– volume: 23
  start-page: 398
  issue: 3
  year: 1976
  ident: 5834_CR33
  publication-title: Journal of the ACM
  doi: 10.1145/321958.321960
– ident: 5834_CR40
– ident: 5834_CR20
  doi: 10.1007/978-3-319-21401-6_21
– volume: 33
  start-page: 374
  issue: 3
  year: 2001
  ident: 5834_CR17
  publication-title: ACM Computing Surveys
  doi: 10.1145/502807.502810
– ident: 5834_CR16
  doi: 10.1007/978-3-319-99960-9_1
– ident: 5834_CR9
– volume: 13
  start-page: 245
  issue: 3&4
  year: 1995
  ident: 5834_CR47
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– volume-title: Algorithmic program debugging
  year: 1983
  ident: 5834_CR57
  doi: 10.7551/mitpress/1192.001.0001
– ident: 5834_CR13
– ident: 5834_CR54
– ident: 5834_CR62
  doi: 10.1145/2661829.2662022
– ident: 5834_CR46
  doi: 10.1007/978-3-030-19570-0_13
– volume-title: Foundations of inductive logic programming
  year: 1997
  ident: 5834_CR53
  doi: 10.1007/3-540-62927-0
– ident: 5834_CR2
– ident: 5834_CR23
– volume: 12
  start-page: 23
  issue: 1
  year: 1965
  ident: 5834_CR55
  publication-title: Journal of the ACM
  doi: 10.1145/321250.321253
– volume-title: The calculus of computation-decision procedures with applications to verification
  year: 2007
  ident: 5834_CR4
– ident: 5834_CR1
  doi: 10.1007/978-3-319-66158-2_44
– volume-title: Logic for learning
  year: 2003
  ident: 5834_CR42
  doi: 10.1007/978-3-662-08406-9
SSID ssj0002686
Score 2.4462216
Snippet Many forms of inductive logic programming (ILP) use metarules , second-order Horn clauses, to define the structure of learnable programs and thus the...
Many forms of inductive logic programming (ILP) use metarules, second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1323
SubjectTerms Artificial Intelligence
Cognitive tasks
Computer Science
Control
Derivation
Fragments
Hypotheses
Learning
Logic in Computer Science
Logic programming
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Reduction
Robotics
Simulation and Modeling
Special Issue of the Inductive Logic Programming (ILP) 2019
SummonAdditionalLinks – databaseName: Springer Standard Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86ffDF-YnVOYr4poE1SdvkcYjDhzHEL_YW0jZBYW7SdsM_31zWblNU0Nc2_eAul_tdcvc7hM4p1zQ2HYYtFOXY-luKhQ3CcCzilDFBEsaVazYRDwZ8OBS3VVFYUWe710eSbqVeKXZzNLZQdBNyyrBFjhvW3XEwx7v7p8X6SyLX39GaT4jBf1elMt-_45M7Wn-GZMgVpPnlcNT5nF7zf3-7g7YrjOl355NiF63p8R5q1v0b_Mqc91G7P1_3_Bz4W0FD_sT4r7pU-XSkiwP02Lt-uLrBVb8EnFpUUWIeiShJLcARgSIcdjizJBEZ4coENipKdJIoqohmWRZrIG4zJmRRoC0mTDPgnTtEjfFkrI-QTw0zhAQ0yDRjlMTcWCAnYpXQjrIeLPRQUItNphWZOPS0GMklDTIIQFoBSCcA-e6hi8Uzb3MqjV9Hn1ltLAYCC_ZNty_hGrDGW5xLZ4GHWrWyZGV7hYSCF8ogFPLQZa2c5e2fP3n8t-EnaItA8O1yd1uoUeZTfYo201n5UuRtNyc_AM8M1tY
  priority: 102
  providerName: Springer Nature
Title Logical reduction of metarules
URI https://link.springer.com/article/10.1007/s10994-019-05834-x
https://www.proquest.com/docview/2424343067
https://hal.science/hal-02988003
Volume 109
WOSCitedRecordID wos000542926900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oePAiPmMVSWO86Ua6u6Xbk0EDIREJwUeIl6aPbTRBQFoIP9-dsgU1kYuXPbTbR2Z2Z76d3fkG4IIJyZy4yomCooIof8uIqxZhxHGdkHOXBlz4WbEJp9MR_b7b1QG3RB-rzG1iZqijUYgx8mtMY2AcAe7N-JNg1SjcXdUlNDahaFFq4Ti_d8jSEtNaVulRTSSboCfXSTM6dS4jxcUUHlswTuY_HNPmGx6L_IY5f22TZt6nWfrvf-_CjsadZn0xUPZgQw73oZTXdDD1FD-ASnthC80Jcrqi1sxRbH7I1J9MBzI5hOdm4-muRXQNBRIqpJESUXNrQahAj2v5VGDUMwoCN6LCjy21UgpkEPjMp5JHkSORzC2ObV6zpMKJYYRcdEdQGI6G8hhMFvMYhWxFknNGHRErcOc6fsCqvvJqtgFWLkAv1ATjWOdi4K2okVHonhK6lwndmxtwuXxmvKDXWNv7XOll2RGZsVv1tofXkEleYV82swwo54rw9HxMvJUWDLjKVbm6_fcnT9a_7RS2KS7As_O7ZSikk6k8g61wlr4nkwoUbxudbq-SjUrVPtCuarv2q2p7jy9fDmPkLA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB21gAQXyirKGiE4gUVjO41zQKgCqiJKxQGkiovJ4ggkaKELy0_xjcykSQtI9MaBa-I4UWZ7Y3veAOwIZYQblyRDKKoYxlvBPEzCmOu5oZQeD6Tyk2YTbqOhmk3vMgcfWS0MHavMfGLiqKN2SGvkB1TGICQB3KOnZ0Zdo2h3NWuhMVCLc_P-iilb9_DsBOW7y3n19Oq4xtKuAizE2NtjquyVgxBhgGf7XNE6YBQEXsSVH9uYOwQmCHzhcyOjyDVEbxbHjizbBpFTGBE7G86bh0kpMVlC-7l0boaen5eTzpJouA4j5JAW6aSlegkJL5UMOUpI9vYtEObv6BjmF4z7Y1s2iXbVwn_7T3Mwm-JqqzIwhHnImdYCFLKeFVbqwhZhsz7w9VaHOGtJK612bD2ant_pP5juElz_yVcuw0Sr3TIrYIlYxpzbwo6MlIK7Kkbw6rl-IEo-Rm2nCHYmMB2mBOrUx-NBj6ifScgahawTIeu3IuwNn3ka0IeMHb2NejAcSMzftUpd0zViykdsL17sIqxngtepv-nqkdSLsJ-pzuj2769cHT_bFkzXri7qun7WOF-DGU6LDclZ5XWY6HX6ZgOmwpfefbezmViCBbd_rVKfv0k9BQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLZ4CXHhjRgMqBCcINqapGt6QGgCJhDTtANIiEvoIxFIY4NtvP4avw67azdAghsHrm2aVrVjf07szwA7Qhnh27JkCEUVQ38rWIBBGPMDP5Yy4JFUYdpswm801NVV0ByD97wWhtIqc5uYGuqkE9MeeYnKGIQkgFuyWVpE87h2-PDIqIMUnbTm7TQGKnJu3l4wfOsdnB2jrHc5r51cHJ2yrMMAi9EP95mqBJUoRkgQuCFXtCeYRFGQcBVaF-OIyERRKEJuZJL4hqjOrPVkxTWIouKEmNpw3nGY9DHGpMCv6V0PvQCvpF0mcRF7jFBEVrCTle2lhLxUPuQpIdnrF6c4fkspmZ_w7rcj2tTz1eb-8z-bh9kMbzvVwQJZgDHTXoS5vJeFk5m2JdisD3yA0yUuW9JWp2Ode9MPu08t01uGyz_5yhWYaHfaZhUcYaXl3BVuYqQU3FcWQW3gh5Eoh-jNvQK4ufB0nBGrU3-Plh5RQpPANQpcpwLXrwXYGz7zMKAV-XX0NurEcCAxgp9W65quEYM-Yn7x7BagmCuBzuxQT480oAD7uRqNbv_8yrXfZ9uCadQkXT9rnK_DDKc9iDSFuQgT_e6T2YCp-Ll_1-tupovCgZu_1qgPfZtF2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Logical+reduction+of+metarules&rft.jtitle=Machine+learning&rft.au=Cropper%2C+Andrew&rft.au=Tourret%2C+Sophie&rft.date=2020-07-01&rft.pub=Springer+Verlag&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=109&rft.issue=7&rft.spage=1323&rft.epage=1369&rft_id=info:doi/10.1007%2Fs10994-019-05834-x&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02988003v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon