Uniqueness Results of Semilinear Parabolic Equations in Infinite-Dimensional Hilbert Spaces

This paper is devoted to the uniqueness of solutions for a class of nonhomogeneous stationary partial differential equations related to Hamilton–Jacobi-type equations in infinite-dimensional Hilbert spaces. Specifically, the uniqueness of the viscosity solution is established by employing the inf/su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 13; H. 5; S. 703
Hauptverfasser: Bianca, Carlo, Dogbe, Christian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.03.2025
MDPI
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the uniqueness of solutions for a class of nonhomogeneous stationary partial differential equations related to Hamilton–Jacobi-type equations in infinite-dimensional Hilbert spaces. Specifically, the uniqueness of the viscosity solution is established by employing the inf/sup-convolution approach in a separable infinite-dimensional Hilbert space. The proof is based on the Faedo–Galerkin approximate method by assuming the existence of a Hilbert–Schmidt operator and by employing modulus continuity and Lipschitz arguments. The results are of interest regarding the stochastic optimal control problem.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math13050703