Dantzig–Wolfe reformulations for binary quadratic problems
The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig–Wolfe and Quadratic Convex optimization principles. We show that a few reformulations of our family yield continuous...
Gespeichert in:
| Veröffentlicht in: | Mathematical programming computation Jg. 14; H. 1; S. 85 - 120 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2022
Springer Nature B.V Springer |
| Schlagworte: | |
| ISSN: | 1867-2949, 1867-2957 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig–Wolfe and Quadratic Convex optimization principles. We show that a few reformulations of our family yield continuous relaxations that are strong in terms of dual bounds and computationally efficient to optimize. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We report and analyze in depth a particular reformulation providing continuous relaxations whose solutions turn out to be integer optima in all our tests. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1867-2949 1867-2957 |
| DOI: | 10.1007/s12532-021-00206-w |