Dantzig–Wolfe reformulations for binary quadratic problems
The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig–Wolfe and Quadratic Convex optimization principles. We show that a few reformulations of our family yield continuous...
Uloženo v:
| Vydáno v: | Mathematical programming computation Ročník 14; číslo 1; s. 85 - 120 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2022
Springer Nature B.V Springer |
| Témata: | |
| ISSN: | 1867-2949, 1867-2957 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig–Wolfe and Quadratic Convex optimization principles. We show that a few reformulations of our family yield continuous relaxations that are strong in terms of dual bounds and computationally efficient to optimize. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We report and analyze in depth a particular reformulation providing continuous relaxations whose solutions turn out to be integer optima in all our tests. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1867-2949 1867-2957 |
| DOI: | 10.1007/s12532-021-00206-w |