Dantzig–Wolfe reformulations for binary quadratic problems

The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig–Wolfe and Quadratic Convex optimization principles. We show that a few reformulations of our family yield continuous...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming computation Ročník 14; číslo 1; s. 85 - 120
Hlavní autori: Ceselli, Alberto, Létocart, Lucas, Traversi, Emiliano
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Springer Nature B.V
Springer
Predmet:
ISSN:1867-2949, 1867-2957
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig–Wolfe and Quadratic Convex optimization principles. We show that a few reformulations of our family yield continuous relaxations that are strong in terms of dual bounds and computationally efficient to optimize. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We report and analyze in depth a particular reformulation providing continuous relaxations whose solutions turn out to be integer optima in all our tests.
AbstractList The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig–Wolfe and Quadratic Convex optimization principles. We show that a few reformulations of our family yield continuous relaxations that are strong in terms of dual bounds and computationally efficient to optimize. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We report and analyze in depth a particular reformulation providing continuous relaxations whose solutions turn out to be integer optima in all our tests.
Author Ceselli, Alberto
Traversi, Emiliano
Létocart, Lucas
Author_xml – sequence: 1
  givenname: Alberto
  surname: Ceselli
  fullname: Ceselli, Alberto
  email: alberto.ceselli@unimi.it
  organization: Dipartimento di Informatica, Università degli Studi di Milano
– sequence: 2
  givenname: Lucas
  surname: Létocart
  fullname: Létocart, Lucas
  organization: LIPN, CNRS, (UMR 7030), Université Sorbonne Paris Nord
– sequence: 3
  givenname: Emiliano
  surname: Traversi
  fullname: Traversi, Emiliano
  organization: LIPN, CNRS, (UMR 7030), Université Sorbonne Paris Nord
BackLink https://hal.science/hal-03554329$$DView record in HAL
BookMark eNp9kL1OwzAUhS1UJErpCzBFYmIIXNtJHEssVfkpUiUWEKPluE5xlcatnVDBxDvwhjwJboNAYqgHX_vqfNfH5xj1altrhE4xXGAAdukxSSmJgeAYgEAWbw5QH-cZiwlPWe_3nPAjNPR-AWFRwnLK--jqWtbNu5l_fXw-26rUkdOldcu2ko2xtY_CJSpMLd1btG7lzIW2ilbOFpVe-hN0WMrK6-FPHaCn25vH8SSePtzdj0fTWFHOmjhTWhaSzhQOBbTCGZQJo6B5yQsFVOmCS1aSQs5YSkGqjJV5wkExTQpGKR2g827ui6zEypllsCOsNGIymoptD2iaJpTwVxy0Z502mFy32jdiYVtXB3uCZJSljIctqEinUs56H_78OxaD2IYqulBFCFXsQhWbAOX_IGWaXU6Nk6baj9IO9eGdeq7dn6s91DdtuY87
CitedBy_id crossref_primary_10_1038_s41598_023_32232_0
crossref_primary_10_3390_app15105732
crossref_primary_10_1080_00207543_2023_2180307
Cites_doi 10.1007/BF02241754
10.1287/ijoc.11.2.125
10.1145/3005345
10.1090/qam/135625
10.1007/s10288-006-0011-7
10.1007/PL00011429
10.1007/s10479-018-3067-9
10.1287/opre.28.5.1130
10.1007/s10107-008-0235-8
10.1590/S0101-74382014000100005
10.1007/s10479-011-0969-1
10.1016/j.dam.2006.08.007
10.1287/mnsc.32.10.1274
10.1007/s10107-010-0381-7
10.1007/s10288-007-0044-6
10.1016/j.dam.2007.12.007
10.1007/s10898-012-9874-7
10.1007/s10107-012-0534-y
10.1109/59.574929
10.1007/s10288-006-0015-3
10.1287/opre.8.1.101
10.1016/S0377-2217(03)00244-3
10.1007/978-3-642-13193-6_21
10.1016/S0167-6377(99)00059-0
10.1007/s10479-005-3973-5
10.1287/ijoc.1050.0172
10.1007/s10107-014-0761-5
10.1287/mnsc.22.4.455
10.1016/j.disopt.2004.03.006
10.1016/j.orl.2005.05.009
10.1007/978-0-387-74759-0_380
10.1007/978-3-319-45587-7_15
10.13130/RD_UNIMI/3QA23K
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
JQ2
1XC
DOI 10.1007/s12532-021-00206-w
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1867-2957
EndPage 120
ExternalDocumentID oai:HAL:hal-03554329v1
10_1007_s12532_021_00206_w
GroupedDBID -5D
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
203
29M
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
6NX
8UJ
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BAPOH
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OK1
P9R
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z83
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
1XC
ID FETCH-LOGICAL-c397t-6ceaba3dc1aba0ec160f4730e9f9bc03ceb9a7f2bad7530ac67f8490c7e2b7333
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000737090900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1867-2949
IngestDate Wed Dec 10 12:33:07 EST 2025
Sun Nov 09 06:26:10 EST 2025
Tue Nov 18 21:42:22 EST 2025
Sat Nov 29 06:19:09 EST 2025
Fri Feb 21 02:47:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Column generation
90C11 Mixed integer programming
90C20 Quadratic programming
Decomposition methods
90C27 Combinatorial optimization
Binary quadratic programming
Quadratic convex reformulation
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-6ceaba3dc1aba0ec160f4730e9f9bc03ceb9a7f2bad7530ac67f8490c7e2b7333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://hdl.handle.net/2434/946738
PQID 2637579375
PQPubID 2044128
PageCount 36
ParticipantIDs hal_primary_oai_HAL_hal_03554329v1
proquest_journals_2637579375
crossref_primary_10_1007_s12532_021_00206_w
crossref_citationtrail_10_1007_s12532_021_00206_w
springer_journals_10_1007_s12532_021_00206_w
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming computation
PublicationTitleAbbrev Math. Prog. Comp
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
References Glover (CR20) 1975; 22
Gueye, Michelon (CR21) 2005; 140
Billionnet, Soutif (CR9) 2004; 157
Dantzig, Wolfe (CR14) 1960; 8
Krislock, Malick, Roupin (CR26) 2017; 43
Lawphongpanich (CR27) 2000; 26
Buchheim, Wiegele (CR10) 2013; 141
Ceselli, Létocart, Traversi (CR12) 2017; 5923
Faye, Roupin (CR17) 2007; 5
Fortet (CR18) 1960; 4
Pisinger (CR34) 2007; 155
CR38
CR13
Lemaréchal, Renaud (CR29) 2001; 90
Basso, Ceselli, Tettamanzi (CR5) 2020; 284
Pisinger, Rasmussen, Sandvik (CR35) 2007; 19
CR31
Létocart, Plateau, Plateau (CR30) 2014; 34
Misener, Floudas (CR33) 2013; 57
Caprara, Pisinger, Toth (CR11) 1999; 11
Billionnet, Elloumi, Lambert (CR7) 2012; 131
Fayard, Plateau (CR16) 1982; 28
Gamrath, Lübbecke, Festa (CR19) 2010
Vanderbeck, Savelsbergh (CR40) 2006; 34
Jünger, Liebling, Naddef, Nemhauser, Pulleyblank, Reinelt, Rinaldi, Wolsey (CR25) 2009
CR28
Plateau (CR36) 2008; 6
CR24
CR23
Ahlatçioglu, Bussieck, Esen, Guignard, Jagla, Meeraus (CR3) 2012; 199
CR22
Balas, Zemel (CR4) 1980; 28
Bergner, Caprara, Ceselli, Furini, Lübbecke, Malaguti, Traversi (CR6) 2015; 149
Adams, Forrester, Glover (CR1) 2004; 1
Desaulniers, Desrosiers, Solomon (CR15) 2006
Aganagic, Mokhtari (CR2) 1997; 12
Sherali, Adams (CR39) 1986; 32
Wolfe (CR41) 1961; 19
Rendl, Rinaldi, Wiegele (CR37) 2010; 121
Billionnet, Elloumi, Plateau (CR8) 2009; 157
Liberti (CR32) 2007; 5
A Billionnet (206_CR9) 2004; 157
(206_CR25) 2009
G Gamrath (206_CR19) 2010
MC Plateau (206_CR36) 2008; 6
M Aganagic (206_CR2) 1997; 12
A Caprara (206_CR11) 1999; 11
D Fayard (206_CR16) 1982; 28
S Basso (206_CR5) 2020; 284
A Faye (206_CR17) 2007; 5
R Misener (206_CR33) 2013; 57
206_CR31
F Glover (206_CR20) 1975; 22
C Lemaréchal (206_CR29) 2001; 90
W Adams (206_CR1) 2004; 1
F Rendl (206_CR37) 2010; 121
206_CR13
L Létocart (206_CR30) 2014; 34
206_CR38
F Vanderbeck (206_CR40) 2006; 34
M Bergner (206_CR6) 2015; 149
G Dantzig (206_CR14) 1960; 8
S Gueye (206_CR21) 2005; 140
D Pisinger (206_CR34) 2007; 155
E Balas (206_CR4) 1980; 28
N Krislock (206_CR26) 2017; 43
P Wolfe (206_CR41) 1961; 19
A Ahlatçioglu (206_CR3) 2012; 199
C Buchheim (206_CR10) 2013; 141
H Sherali (206_CR39) 1986; 32
S Lawphongpanich (206_CR27) 2000; 26
206_CR23
206_CR22
G Desaulniers (206_CR15) 2006
R Fortet (206_CR18) 1960; 4
L Liberti (206_CR32) 2007; 5
A Billionnet (206_CR7) 2012; 131
206_CR28
D Pisinger (206_CR35) 2007; 19
A Billionnet (206_CR8) 2009; 157
206_CR24
A Ceselli (206_CR12) 2017; 5923
References_xml – volume: 28
  start-page: 269
  year: 1982
  end-page: 287
  ident: CR16
  article-title: Algorithm 47: an algorithm for the solution of the 0–1 knapsack problem
  publication-title: Computing
  doi: 10.1007/BF02241754
– volume: 11
  start-page: 125
  issue: 2
  year: 1999
  end-page: 137
  ident: CR11
  article-title: Exact solution of the quadratic knapsack problem
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.11.2.125
– ident: CR22
– volume: 43
  start-page: 32:1
  issue: 4
  year: 2017
  end-page: 32:23
  ident: CR26
  article-title: Biqcrunch: a semidefinite branch-and-bound method for solving binary quadratic problems
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/3005345
– volume: 19
  start-page: 239
  issue: 3
  year: 1961
  end-page: 244
  ident: CR41
  article-title: A duality theorem for non-linear programming
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/135625
– volume: 5
  start-page: 75
  issue: 1
  year: 2007
  end-page: 88
  ident: CR17
  article-title: Partial Lagrangian relaxation for general quadratic programming
  publication-title: 4OR
  doi: 10.1007/s10288-006-0011-7
– volume: 90
  start-page: 399
  issue: 3
  year: 2001
  end-page: 427
  ident: CR29
  article-title: A geometric study of duality gaps, with applications
  publication-title: Math. Program.
  doi: 10.1007/PL00011429
– volume: 284
  start-page: 501
  issue: 2
  year: 2020
  end-page: 526
  ident: CR5
  article-title: Random sampling and machine learning to understand good decompositions
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-018-3067-9
– year: 2009
  ident: CR25
  publication-title: 50 Years of Integer Programming 1958–2008
– volume: 28
  start-page: 1130
  year: 1980
  end-page: 1154
  ident: CR4
  article-title: An algorithm for large zero-one knapsack problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.28.5.1130
– volume: 121
  start-page: 307
  issue: 2
  year: 2010
  ident: CR37
  article-title: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations
  publication-title: Math. Program.
  doi: 10.1007/s10107-008-0235-8
– volume: 34
  start-page: 49
  issue: 1
  year: 2014
  end-page: 72
  ident: CR30
  article-title: An efficient hybrid heuristic method for the 0–1 exact -item quadratic knapsack problem
  publication-title: Pesquisa Operacional
  doi: 10.1590/S0101-74382014000100005
– volume: 199
  start-page: 33
  issue: 1
  year: 2012
  end-page: 49
  ident: CR3
  article-title: Combining QCR and CHR for convex quadratic pure 0–1 programming problems with linear constraints
  publication-title: Ann. OR
  doi: 10.1007/s10479-011-0969-1
– volume: 155
  start-page: 623
  year: 2007
  end-page: 648
  ident: CR34
  article-title: The quadratic knapsack problem: a survey
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2006.08.007
– volume: 32
  start-page: 1274
  issue: 10
  year: 1986
  end-page: 1290
  ident: CR39
  article-title: A tight linearization and an algorithm for 0–1 quadratic programming problems
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.32.10.1274
– year: 2006
  ident: CR15
  publication-title: Column Generation
– volume: 131
  start-page: 381
  issue: 1–2
  year: 2012
  end-page: 401
  ident: CR7
  article-title: Extending the QCR method to general mixed-integer programs
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0381-7
– volume: 6
  start-page: 187
  year: 2008
  end-page: 190
  ident: CR36
  article-title: Quadratic convex reformulations for quadratic 0–1 programming
  publication-title: 4OR
  doi: 10.1007/s10288-007-0044-6
– volume: 157
  start-page: 1185
  year: 2009
  end-page: 1197
  ident: CR8
  article-title: Improving the performance of standard solvers via a tighter convex reformulation of constrained quadratic 0–1 programs: the QCR method
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2007.12.007
– volume: 57
  start-page: 3
  year: 2013
  end-page: 50
  ident: CR33
  article-title: GloMIQO: global mixed-integer quadratic optimizer
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9874-7
– volume: 141
  start-page: 435
  issue: 1–2
  year: 2013
  end-page: 452
  ident: CR10
  article-title: Semidefinite relaxations for non-convex quadratic mixed-integer programming
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0534-y
– ident: CR23
– volume: 12
  start-page: 105
  issue: 1
  year: 1997
  end-page: 112
  ident: CR2
  article-title: Security constrained economic dispatch using nonlinear Dantzig–Wolfe decomposition
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.574929
– volume: 5
  start-page: 231
  issue: 3
  year: 2007
  end-page: 245
  ident: CR32
  article-title: Compact linearization for binary quadratic problems
  publication-title: 4OR
  doi: 10.1007/s10288-006-0015-3
– volume: 8
  start-page: 101
  year: 1960
  end-page: 111
  ident: CR14
  article-title: Decomposition principle for linear programs
  publication-title: Oper. Res.
  doi: 10.1287/opre.8.1.101
– volume: 5923
  start-page: 1
  year: 2017
  end-page: 32
  ident: CR12
  article-title: Dantzig Wolfe decomposition and objective function convexification for binary quadratic problems: the cardinality constrained quadratic knapsack case
  publication-title: Tech. Rep.
– ident: CR38
– volume: 157
  start-page: 565
  year: 2004
  end-page: 575
  ident: CR9
  article-title: An exact method based on Lagrangean decomposition for the 0–1 quadratic knapsak problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(03)00244-3
– start-page: 239
  year: 2010
  end-page: 252
  ident: CR19
  article-title: Experiments with a generic Dantzig–Wolfe decomposition for integer programs
  publication-title: Experimental Algorithms
  doi: 10.1007/978-3-642-13193-6_21
– volume: 26
  start-page: 33
  issue: 1
  year: 2000
  end-page: 41
  ident: CR27
  article-title: Simplicial with truncated Dantzig–Wolfe decomposition for nonlinear multicommodity network flow problems with side constraints
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(99)00059-0
– ident: CR31
– ident: CR13
– volume: 4
  start-page: 17
  year: 1960
  end-page: 26
  ident: CR18
  article-title: Applications de lalgèbre de boole en recherche opérationnelle
  publication-title: Revue Française de Recherche Opérationnelle
– volume: 140
  start-page: 235
  issue: 1
  year: 2005
  end-page: 261
  ident: CR21
  article-title: Miniaturized linearizations for quadratic 0/1 problems
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-005-3973-5
– volume: 19
  start-page: 280
  issue: 2
  year: 2007
  end-page: 290
  ident: CR35
  article-title: Solution of large quadratic knapsack problems through aggressive reduction
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1050.0172
– volume: 149
  start-page: 391
  issue: 1–2
  year: 2015
  end-page: 424
  ident: CR6
  article-title: Automatic Dantzig–Wolfe reformulation of mixed integer programs
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0761-5
– volume: 22
  start-page: 455
  issue: 4
  year: 1975
  end-page: 460
  ident: CR20
  article-title: Improved linear integer programming formulations of nonlinear integer problems
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.22.4.455
– volume: 1
  start-page: 99
  issue: 2
  year: 2004
  end-page: 120
  ident: CR1
  article-title: Comparisons and enhancement strategies for linearizing mixed 0–1 quadratic programs
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2004.03.006
– ident: CR28
– ident: CR24
– volume: 34
  start-page: 296
  issue: 3
  year: 2006
  end-page: 306
  ident: CR40
  article-title: A generic view of Dantzig–Wolfe decomposition in mixed integer programming
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2005.05.009
– volume-title: 50 Years of Integer Programming 1958–2008
  year: 2009
  ident: 206_CR25
– volume: 32
  start-page: 1274
  issue: 10
  year: 1986
  ident: 206_CR39
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.32.10.1274
– volume: 1
  start-page: 99
  issue: 2
  year: 2004
  ident: 206_CR1
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2004.03.006
– ident: 206_CR38
– volume: 131
  start-page: 381
  issue: 1–2
  year: 2012
  ident: 206_CR7
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0381-7
– volume: 43
  start-page: 32:1
  issue: 4
  year: 2017
  ident: 206_CR26
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/3005345
– volume: 28
  start-page: 1130
  year: 1980
  ident: 206_CR4
  publication-title: Oper. Res.
  doi: 10.1287/opre.28.5.1130
– volume: 4
  start-page: 17
  year: 1960
  ident: 206_CR18
  publication-title: Revue Française de Recherche Opérationnelle
– start-page: 239
  volume-title: Experimental Algorithms
  year: 2010
  ident: 206_CR19
  doi: 10.1007/978-3-642-13193-6_21
– volume: 157
  start-page: 1185
  year: 2009
  ident: 206_CR8
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2007.12.007
– volume: 140
  start-page: 235
  issue: 1
  year: 2005
  ident: 206_CR21
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-005-3973-5
– volume: 34
  start-page: 296
  issue: 3
  year: 2006
  ident: 206_CR40
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2005.05.009
– ident: 206_CR23
  doi: 10.1007/978-0-387-74759-0_380
– volume: 90
  start-page: 399
  issue: 3
  year: 2001
  ident: 206_CR29
  publication-title: Math. Program.
  doi: 10.1007/PL00011429
– volume: 12
  start-page: 105
  issue: 1
  year: 1997
  ident: 206_CR2
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.574929
– ident: 206_CR28
– ident: 206_CR24
– volume: 57
  start-page: 3
  year: 2013
  ident: 206_CR33
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9874-7
– ident: 206_CR22
– volume: 5
  start-page: 231
  issue: 3
  year: 2007
  ident: 206_CR32
  publication-title: 4OR
  doi: 10.1007/s10288-006-0015-3
– volume: 19
  start-page: 239
  issue: 3
  year: 1961
  ident: 206_CR41
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/135625
– volume: 155
  start-page: 623
  year: 2007
  ident: 206_CR34
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2006.08.007
– volume: 8
  start-page: 101
  year: 1960
  ident: 206_CR14
  publication-title: Oper. Res.
  doi: 10.1287/opre.8.1.101
– volume: 6
  start-page: 187
  year: 2008
  ident: 206_CR36
  publication-title: 4OR
  doi: 10.1007/s10288-007-0044-6
– volume: 26
  start-page: 33
  issue: 1
  year: 2000
  ident: 206_CR27
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(99)00059-0
– volume: 199
  start-page: 33
  issue: 1
  year: 2012
  ident: 206_CR3
  publication-title: Ann. OR
  doi: 10.1007/s10479-011-0969-1
– volume: 11
  start-page: 125
  issue: 2
  year: 1999
  ident: 206_CR11
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.11.2.125
– volume: 5923
  start-page: 1
  year: 2017
  ident: 206_CR12
  publication-title: Tech. Rep.
– volume: 149
  start-page: 391
  issue: 1–2
  year: 2015
  ident: 206_CR6
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0761-5
– volume: 157
  start-page: 565
  year: 2004
  ident: 206_CR9
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(03)00244-3
– volume-title: Column Generation
  year: 2006
  ident: 206_CR15
– volume: 19
  start-page: 280
  issue: 2
  year: 2007
  ident: 206_CR35
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1050.0172
– volume: 28
  start-page: 269
  year: 1982
  ident: 206_CR16
  publication-title: Computing
  doi: 10.1007/BF02241754
– volume: 5
  start-page: 75
  issue: 1
  year: 2007
  ident: 206_CR17
  publication-title: 4OR
  doi: 10.1007/s10288-006-0011-7
– volume: 141
  start-page: 435
  issue: 1–2
  year: 2013
  ident: 206_CR10
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0534-y
– ident: 206_CR31
  doi: 10.1007/978-3-319-45587-7_15
– volume: 121
  start-page: 307
  issue: 2
  year: 2010
  ident: 206_CR37
  publication-title: Math. Program.
  doi: 10.1007/s10107-008-0235-8
– ident: 206_CR13
  doi: 10.13130/RD_UNIMI/3QA23K
– volume: 284
  start-page: 501
  issue: 2
  year: 2020
  ident: 206_CR5
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-018-3067-9
– volume: 34
  start-page: 49
  issue: 1
  year: 2014
  ident: 206_CR30
  publication-title: Pesquisa Operacional
  doi: 10.1590/S0101-74382014000100005
– volume: 22
  start-page: 455
  issue: 4
  year: 1975
  ident: 206_CR20
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.22.4.455
SSID ssj0000327839
Score 2.2506506
Snippet The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms Computational geometry
Computer Science
Convexity
Discrete Mathematics
Full Length Paper
Knapsack problem
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research
Operations Research/Decision Theory
Optimization
Theory of Computation
Title Dantzig–Wolfe reformulations for binary quadratic problems
URI https://link.springer.com/article/10.1007/s12532-021-00206-w
https://www.proquest.com/docview/2637579375
https://hal.science/hal-03554329
Volume 14
WOSCitedRecordID wos000737090900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1867-2957
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327839
  issn: 1867-2949
  databaseCode: RSV
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL046kIXvsX6oog7DSRNmzbgRkRxoYP4nF1J0kQHhhm14wy48h_8Q7_EpLYzo6igq5I2bcO9SXPS3HsOwHbGuCYiUogzIVBITIIkEyHSWCSRMZJSIguxibheTxoNflYmheVVtHu1JVl8qYfJbkFEA-RCChzGYahfgwk73SVOsOH84nrwZwVTpx7hcK8ja0MBD3mZLfP9Yz7NSLU7Fw85Aja_7I8W087R7P8aPAczJcz09z_6xTyM6fYCTI-QD9rS6YCxNV-EPev-7nPz9u3l9abTMtq37bRwthT3yn1b8GWRu-s_PInM9Rvll2o0-RJcHR1eHhyjUlkBKYs_uogpLaSgmSL2gLUiDJvQjnXNDZcKU6UlF7EJpMjscgYLxWKThByrWAcyppQuw3i709Yr4MfUGEIljoSKHRhLZJgJzkIijV0KMe4BqaybqpJ23KlftNIhYbKzU2rtlBZ2Svse7Azuuf8g3fi19pZ12qCi48s-3j9J3Tns0BQNeI94sF75NC1HaZ4GjMaRIwiMPNitfDi8_PMrV_9WfQ2mApc1UYSurcN49_FJb8Ck6nWb-eNm0XvfAdDk6ak
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLa7PIt40kDRt2oAXEWXFdRHft5CkiQqyProqePI_-A_9JSa13VVRQU8l7bQNM5PmSzPzDcBKxrghMtaIMylRRGyKFJMRMlimsbWKUqKKYhNJs5menfH9Miksr6Ldqy3J4kvdTXYLYxoiH1LgMQ5Dj73QH7kZyzPmHxyedP6sYOqrR3jc68naUMgjXmbLfP-YTzNS74WPh_wANr_sjxbTzvbo_zo8BiMlzAw23v1iHHpMawKGP5APutZeh7E1n4R1Z_720-X56_PL6fWVNYHrp4OzZXGvPHCNQBW5u8Htvcy83-igrEaTT8Hx9tbRZh2VlRWQdvijjZg2UkmaaeIO2GjCsI3cWDfccqUx1UZxmdhQycwtZ7DULLFpxLFOTKgSSuk09LWuW2YGgoRaS6jCsdSJB2OpijLJWUSUdUshxmtAKu0KXdKO--oXV6JLmOz1JJyeRKEn8ViD1c49N--kG79KLzujdQQ9X3Z9oyH8OezRFA35A6nBfGVTUY7SXISMJrEnCIxrsFbZsHv551fO_k18CQbrR3sN0dhp7s7BUOgzKIowtnnoa9_dmwUY0A_ty_xusfDkN8z-7I0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xqCo4AKUglkeJqt6ohR0nTixxQcCKqnSF1JZys2zHBiS0PBJA4sR_4B_yS_Bksw9QW6nqKXLixNbMJP4mnvkG4FMhpGM6tUQKrUnCfE6M0AlxVOep94ZzZupiE1mnkx8fy8ORLP462r2_JdnLaUCWpm61eVn4zWHiW5zymGB4AeIdQe7GYTLBQHr0178fDf6yUI6VJBADI3EbiWUim8yZ3z_mxeo0foqxkSPA89Veab0EtWf_f_JzMNPAz2i7Zy_vYMx152F6hJQwtL4NmFzL97AVzKK6Pzt5enj8dXHuXRTmHGBuU_SrjEIjMnVOb3R1owu0Jxs1VWrKBfjZ3vuxs0-aigvEBlxSEWGdNpoXloUDdZYJ6pPwDXDSS2Mpt85InfnY6CK4OVRbkfk8kdRmLjYZ53wRJroXXbcEUca9Z9zQVNsMQVpukkJLkTDjg4skZAtYX9LKNnTkWBXjXA2JlFFOKshJ1XJSdy3YGNxz2SPj-Gvvj0GBg47Io72_faDwHEWUxWN5y1qw2tevat7eUsWCZykSB6Yt-NzX5_Dyn4dc_rfu6_D2cLetDr50vq7AVIyJFXV02ypMVNc3bg3e2NvqrLz-UBv1M24V9XE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dantzig%E2%80%93Wolfe+reformulations+for+binary+quadratic+problems&rft.jtitle=Mathematical+programming+computation&rft.au=Ceselli%2C+Alberto&rft.au=L%C3%A9tocart%2C+Lucas&rft.au=Traversi%2C+Emiliano&rft.date=2022-03-01&rft.issn=1867-2949&rft.eissn=1867-2957&rft.volume=14&rft.issue=1&rft.spage=85&rft.epage=120&rft_id=info:doi/10.1007%2Fs12532-021-00206-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12532_021_00206_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2949&client=summon