Dantzig–Wolfe reformulations for binary quadratic problems

The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig–Wolfe and Quadratic Convex optimization principles. We show that a few reformulations of our family yield continuous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming computation Jg. 14; H. 1; S. 85 - 120
Hauptverfasser: Ceselli, Alberto, Létocart, Lucas, Traversi, Emiliano
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Springer Nature B.V
Springer
Schlagworte:
ISSN:1867-2949, 1867-2957
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig–Wolfe and Quadratic Convex optimization principles. We show that a few reformulations of our family yield continuous relaxations that are strong in terms of dual bounds and computationally efficient to optimize. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We report and analyze in depth a particular reformulation providing continuous relaxations whose solutions turn out to be integer optima in all our tests.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1867-2949
1867-2957
DOI:10.1007/s12532-021-00206-w