Performance analysis framework for structural battery composites in electric vehicles

In this paper, a novel modelling framework to estimate system level performance of electric vehicles utilizing a structural battery composite material is presented. Electrical and mechanical properties are derived from material data of the constituents, device design and connection/layup schemes. Kn...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part B, Engineering Vol. 186; p. 107822
Main Authors: Carlstedt, David, Asp, Leif E.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2020
Subjects:
ISSN:1359-8368, 1879-1069
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a novel modelling framework to estimate system level performance of electric vehicles utilizing a structural battery composite material is presented. Electrical and mechanical properties are derived from material data of the constituents, device design and connection/layup schemes. Knowledge of the multifunctional, i.e. electrical and mechanical, performance of the structural battery composite allows for estimation of the electric vehicle drive range for any known drive cycle. The framework is used to evaluate effect on drive range from the introduction of structural batteries into existing electric vehicles (EVs). Comparative studies performed for Tesla model S and BMW i3 demonstrate a compelling vehicle weight saving potential with maintained drive range performance. Alternatively, if vehicle weight is to be maintained from the introduction of structural batteries the resulting drive range for lightweight EVs will be increased by 70%.
AbstractList In this paper, a novel modelling framework to estimate system level performance of electric vehicles utilizing a structural battery composite material is presented. Electrical and mechanical properties are derived from material data of the constituents, device design and connection/layup schemes. Knowledge of the multifunctional, i. e. electrical and mechanical, performance of the structural battery composite allows for estimation of the electric vehicle drive range for any known drive cycle. The framework is used to evaluate effect on drive range from the introduction of structural batteries into existing electric vehicles (EVs). Comparative studies performed for Tesla model S and BMW i3 demonstrate a compelling vehicle weight saving potential with maintained drive range performance. Alternatively, if vehicle weight is to be maintained from the introduction of structural batteries the resulting drive range for lightweight EVs will be increased by 70%.
ArticleNumber 107822
Author Asp, Leif E.
Carlstedt, David
Author_xml – sequence: 1
  givenname: David
  surname: Carlstedt
  fullname: Carlstedt, David
– sequence: 2
  givenname: Leif E.
  surname: Asp
  fullname: Asp, Leif E.
  email: leif.asp@chalmers.se
BackLink https://research.chalmers.se/publication/515268$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNqNkc2KFDEQgIOs4O7qO8QH6DF_3Z2cRAZ1hQUF3XNI0hUmY3dnqGR2mbc3w4iKpz1VUUV9RX11Q67WvAIhbznbcMaHd_tNyMshl1Sh-I1g4lwftRAvyDXXo-k4G8xVy2VvOi0H_YrclLJnjKleimvy8A0wZlzcGoC61c2nkgqN6BZ4yviTth4tFY-hHtHN1LtaAU_071KaVgozhIop0EfYpTBDeU1eRjcXePM73pKHTx9_bO-6-6-fv2w_3HdBmrF2PdciKtUPyhinpVCiHzSM2gflTdReGBV9ZNyPSjoWeDtv4rrXgXE5TD2Xt-T7hVue4HD09oBpcXiy2SWLUMBh2Nmwc_MCWGwBOympjefRQmTSqiCMNU2j5UpOcorSx35oVHOhBsylIMQ_XM7s2brd23-s27N1e7HeZt__NxtSdTXltaJL87MI2wsBmrjHBGhLSNDeMyVsmu2U0zMovwDRgKpP
CitedBy_id crossref_primary_10_1016_j_compscitech_2022_109283
crossref_primary_10_1016_j_compscitech_2023_110312
crossref_primary_10_1002_aesr_202000093
crossref_primary_10_1016_j_cej_2024_157772
crossref_primary_10_1109_TTE_2024_3392208
crossref_primary_10_1016_j_compstruct_2025_118943
crossref_primary_10_3390_applmech3030056
crossref_primary_10_1016_j_cej_2022_140778
crossref_primary_10_1016_j_cej_2024_154786
crossref_primary_10_1016_j_est_2023_110373
crossref_primary_10_1016_j_chemosphere_2022_134976
crossref_primary_10_1016_j_jestch_2025_102169
crossref_primary_10_1016_j_compscitech_2023_110319
crossref_primary_10_1016_j_compscitech_2021_109156
crossref_primary_10_1016_j_optlastec_2022_108796
crossref_primary_10_1088_2399_7532_abf158
crossref_primary_10_1088_2399_7532_ac4837
crossref_primary_10_1016_j_compscitech_2024_110568
crossref_primary_10_1016_j_est_2025_117345
crossref_primary_10_1002_advs_202404012
crossref_primary_10_1002_fam_2967
crossref_primary_10_1007_s11665_023_07979_2
crossref_primary_10_1016_j_engfailanal_2025_109535
crossref_primary_10_1016_j_joule_2020_07_027
crossref_primary_10_1016_j_compscitech_2023_109968
crossref_primary_10_1021_acsami_5c11625
crossref_primary_10_1016_j_est_2021_102747
crossref_primary_10_1016_j_compscitech_2024_110728
crossref_primary_10_1007_s00707_023_03726_9
crossref_primary_10_1021_acsapm_5c01663
crossref_primary_10_1007_s00158_023_03490_3
crossref_primary_10_1002_eom2_12418
crossref_primary_10_1016_j_cej_2022_137828
crossref_primary_10_1016_j_compscitech_2022_109731
crossref_primary_10_1016_j_compscitech_2023_110339
crossref_primary_10_1002_adma_202409725
crossref_primary_10_1016_j_cej_2025_165492
crossref_primary_10_1038_s41467_021_26801_y
crossref_primary_10_1016_j_compscitech_2023_110321
crossref_primary_10_1109_ACCESS_2025_3539877
crossref_primary_10_1016_j_est_2024_110849
crossref_primary_10_1002_adfm_202403729
crossref_primary_10_1016_j_carbon_2021_09_037
crossref_primary_10_1016_j_enchem_2025_100154
crossref_primary_10_1021_acsapm_5c00980
crossref_primary_10_3390_aerospace9010007
crossref_primary_10_1007_s10483_025_3296_7
crossref_primary_10_3390_math11071741
crossref_primary_10_1002_adfm_202205723
crossref_primary_10_1002_pc_29720
crossref_primary_10_1098_rsos_250606
crossref_primary_10_1016_j_cej_2025_164297
crossref_primary_10_1016_j_compositesa_2024_108589
crossref_primary_10_1016_j_envdev_2021_100676
crossref_primary_10_1002_aesr_202300109
crossref_primary_10_1038_s43246_023_00377_0
crossref_primary_10_3390_nano15171325
crossref_primary_10_1002_slct_202303023
crossref_primary_10_3390_en17051148
crossref_primary_10_1088_2399_7532_ac1ea7
crossref_primary_10_1002_aenm_202502761
crossref_primary_10_1016_j_compositesb_2024_111240
crossref_primary_10_1016_j_ijsolstr_2021_111343
crossref_primary_10_1088_2399_7532_ac65c8
crossref_primary_10_1007_s11367_023_02202_9
crossref_primary_10_1016_j_compscitech_2021_108787
crossref_primary_10_1088_2399_7532_ac2046
crossref_primary_10_1007_s40684_024_00656_2
crossref_primary_10_1016_j_matdes_2022_111256
crossref_primary_10_1016_j_pmatsci_2025_101506
crossref_primary_10_3389_fchem_2021_810781
crossref_primary_10_1002_aesr_202500013
crossref_primary_10_3390_wevj13020037
crossref_primary_10_1016_j_ijhydene_2024_06_305
crossref_primary_10_1016_j_euromechsol_2022_104586
crossref_primary_10_1007_s42114_023_00761_x
crossref_primary_10_1002_bte2_20230023
crossref_primary_10_12968_S0034_3617_23_70013_1
crossref_primary_10_1016_j_egyr_2025_02_029
crossref_primary_10_4271_13_05_03_0020
crossref_primary_10_1016_j_compositesb_2022_109810
crossref_primary_10_3390_en14196006
crossref_primary_10_1016_j_compositesb_2020_108004
crossref_primary_10_1016_j_compositesb_2025_112629
crossref_primary_10_1016_j_mattod_2022_06_007
crossref_primary_10_1177_00219983221132621
crossref_primary_10_1016_j_compscitech_2021_108768
crossref_primary_10_1016_j_scitotenv_2022_156830
crossref_primary_10_1002_eom2_12180
crossref_primary_10_1007_s42114_024_01085_0
crossref_primary_10_1016_j_mattod_2022_12_001
crossref_primary_10_1016_j_compositesb_2023_110758
crossref_primary_10_1016_j_jpowsour_2024_236050
crossref_primary_10_1016_j_compscitech_2024_110783
crossref_primary_10_1088_2399_7532_abc60d
crossref_primary_10_1016_j_compositesb_2023_110632
crossref_primary_10_1016_j_tws_2024_112606
crossref_primary_10_1016_j_jpowsour_2024_234392
crossref_primary_10_1016_j_jcomc_2025_100631
crossref_primary_10_1007_s10409_025_24867_x
crossref_primary_10_1021_acsomega_5c01630
crossref_primary_10_1016_j_matdes_2022_110452
Cites_doi 10.1039/C7TA04684G
10.1088/2399-7532/aada7b
10.1088/2399-7532/ab3bdd
10.1016/j.actamat.2004.01.007
10.1016/j.compstruct.2017.07.029
10.1179/174328910X12647080902259
10.1149/2.053112jes
10.1002/er.3707
10.1177/0731684418760207
10.1016/j.mattod.2014.10.040
10.1021/acsaem.9b00563
10.1016/j.compstruct.2017.12.072
10.1016/j.compstruct.2016.01.028
10.1142/9789814651905_0019
10.1088/2631-6331/ab5571
10.1016/j.compscitech.2018.04.041
10.1016/j.compscitech.2013.09.026
10.1016/j.compscitech.2018.10.033
10.3390/en5082952
10.1016/j.pmatsci.2017.04.005
10.3390/en11020335
10.1016/j.compscitech.2018.08.044
10.1177/0021998317752825
10.1016/j.compscitech.2014.06.020
10.1016/j.jpowsour.2018.12.051
10.1016/j.compscitech.2008.02.019
10.1016/j.compscitech.2019.04.024
10.3390/en8088573
10.3390/en4040582
10.1016/j.apenergy.2016.03.108
10.1016/j.compstruct.2010.05.003
10.1016/j.compstruct.2019.04.013
10.1088/2399-7532/aab707
10.3390/batteries4030042
10.1016/j.energy.2019.02.017
10.1177/0021998312460262
10.1177/1099636215591908
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
ADTPV
AOWAS
F1S
DOI 10.1016/j.compositesb.2020.107822
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1069
ExternalDocumentID oai_research_chalmers_se_d4389b1f_ef03_4c29_9016_143d3df3bf56
10_1016_j_compositesb_2020_107822
S1359836819351509
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
ZMT
~02
~G-
29F
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AI.
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
R2-
SEW
VH1
~HD
ADTPV
AOWAS
F1S
ID FETCH-LOGICAL-c397t-5182f4456499a83242568e78bc4b9f8b294fbf01b743a0c1202d1858c0136d513
ISICitedReferencesCount 124
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518706900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-8368
IngestDate Wed Nov 05 04:10:06 EST 2025
Sat Nov 29 07:04:20 EST 2025
Tue Nov 18 22:51:08 EST 2025
Fri Feb 23 02:49:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbon fibre
Smart materials
Computational modelling
Energy storage
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c397t-5182f4456499a83242568e78bc4b9f8b294fbf01b743a0c1202d1858c0136d513
ParticipantIDs swepub_primary_oai_research_chalmers_se_d4389b1f_ef03_4c29_9016_143d3df3bf56
crossref_primary_10_1016_j_compositesb_2020_107822
crossref_citationtrail_10_1016_j_compositesb_2020_107822
elsevier_sciencedirect_doi_10_1016_j_compositesb_2020_107822
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Composites. Part B, Engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pereira, Guo, Nieh, Arias, Hahn (bib11) 2008; 68
Gibson (bib5) 2010; 92
He, Xiong, Fan (bib44) 2011; 4
Chan, Jia, Lin, Hameed, Lee, Lau (bib9) 2018; 188
Lendlein, Trask (bib4) 2018; 1
Larminie, Lowry (bib42) 2003
Ferreira, Nóvoa, Marques (bib3) 2016; 151
González, Vilatela, Molina-Aldareguía, Lopes, LLorca (bib7) 2017; 89
Xu, Liu, Wang, Hu (bib41) 2016; 172
Deka, Hazarika, Kim, Park, Park (bib8) 2017; 41
Schneider, Ihrner, Zenkert, Johansson (bib22) 2019; 2
Johannisson, Ihrner, Zenkert, Johansson, Carlstedt, Asp (bib17) 2018; 168
Xu, Lindbergh, Varna (bib30) 2018; 37
Nitta, Wu, Lee, Yushin (bib47) 2015; 18
Asp, Greenhalgh (bib10) 2014; 101
Carlstedt, Asp (bib28) 2019; 179
Adam, Liao, Petersen, Geier, Finke, Wierach (bib6) 2018; 11
Xu, Lindbergh, Varna (bib29) 2018; 52
Dionisi, Harnden, Zenkert (bib31) 2017; 179
Asp, Johansson, Lindbergh, Xu, Zenkert (bib18) 2019; 1
Scholz (bib23) 2017
Wetzel (bib33) 2004; 8
Carlstedt, Johannisson, Zenkert, Linde, Asp (bib37) 2018
BMW (bib46)
Galos, Khatibi, Mouritz (bib15) 2019; 220
Carlstedt, Marklund, Asp (bib27) 2019; 169
Singh, Cao, Ma, Seo, Bakis, Zhang (bib13) 2015; 17
Ihrner, Johannisson, Sieland, Zenkert, Johansson (bib21) 2017; 5
Gu, Federici (bib38) 2018; 4
De Cauwer, Van Mierlo, Coosemans (bib1) 2015; 8
Ekstedt, Wysocki, Asp (bib34) 2010; 39
Gao, LaClair, Ou, Huff, Wu, Hao (bib2) 2019; 172
Barlow, Latham, McCrae, Boulter (bib43) 2009
bib45
Carlson (bib35) 2013
Johannisson, Zenkert, Lindbergh (bib26) 2019; 2
Fredi, Jeschke, Boulaoued, Wallenstein, Rashidi, Liu (bib19) 2018; 1
Leijonmarck, Carlson, Lindbergh, Asp, Maples, Bismarck (bib32) 2013; 89
Thomas, Qidwai (bib25) 2004; 52
Hagberg, Maples, Alvim, Xu, Johannisson, Bismarck (bib36) 2018; 162
Snyder, O'Brien, Wetzel (bib16) 2015
Kjell, Jacques, Zenkert, Behm, Lindbergh (bib20) 2011; 158
Thomas, Qidwai, Pogue, Pham (bib12) 2013; 47
Ladpli, Nardari, Kopsaftopoulos, Chang (bib14) 2019; 414
Scholz, Hermanutz, Hornung (bib24) 2018
Yoshio, Brodd, Kozawa (bib39) 2009
Omar, Daowd, van den Bossche, Hegazy, Smekens, Coosemans (bib40) 2012; 5
Ladpli (10.1016/j.compositesb.2020.107822_bib14) 2019; 414
Lendlein (10.1016/j.compositesb.2020.107822_bib4) 2018; 1
Thomas (10.1016/j.compositesb.2020.107822_bib25) 2004; 52
BMW (10.1016/j.compositesb.2020.107822_bib46)
Singh (10.1016/j.compositesb.2020.107822_bib13) 2015; 17
Gu (10.1016/j.compositesb.2020.107822_bib38) 2018; 4
Gao (10.1016/j.compositesb.2020.107822_bib2) 2019; 172
Omar (10.1016/j.compositesb.2020.107822_bib40) 2012; 5
Adam (10.1016/j.compositesb.2020.107822_bib6) 2018; 11
Gibson (10.1016/j.compositesb.2020.107822_bib5) 2010; 92
Scholz (10.1016/j.compositesb.2020.107822_bib24) 2018
Johannisson (10.1016/j.compositesb.2020.107822_bib17) 2018; 168
Chan (10.1016/j.compositesb.2020.107822_bib9) 2018; 188
Asp (10.1016/j.compositesb.2020.107822_bib18) 2019; 1
Xu (10.1016/j.compositesb.2020.107822_bib29) 2018; 52
Yoshio (10.1016/j.compositesb.2020.107822_bib39) 2009
Dionisi (10.1016/j.compositesb.2020.107822_bib31) 2017; 179
Barlow (10.1016/j.compositesb.2020.107822_bib43) 2009
De Cauwer (10.1016/j.compositesb.2020.107822_bib1) 2015; 8
Asp (10.1016/j.compositesb.2020.107822_bib10) 2014; 101
Carlstedt (10.1016/j.compositesb.2020.107822_bib27) 2019; 169
Xu (10.1016/j.compositesb.2020.107822_bib30) 2018; 37
Fredi (10.1016/j.compositesb.2020.107822_bib19) 2018; 1
Galos (10.1016/j.compositesb.2020.107822_bib15) 2019; 220
Schneider (10.1016/j.compositesb.2020.107822_bib22) 2019; 2
Pereira (10.1016/j.compositesb.2020.107822_bib11) 2008; 68
Johannisson (10.1016/j.compositesb.2020.107822_bib26) 2019; 2
Leijonmarck (10.1016/j.compositesb.2020.107822_bib32) 2013; 89
Snyder (10.1016/j.compositesb.2020.107822_bib16) 2015
Kjell (10.1016/j.compositesb.2020.107822_bib20) 2011; 158
He (10.1016/j.compositesb.2020.107822_bib44) 2011; 4
González (10.1016/j.compositesb.2020.107822_bib7) 2017; 89
Hagberg (10.1016/j.compositesb.2020.107822_bib36) 2018; 162
Scholz (10.1016/j.compositesb.2020.107822_bib23) 2017
Xu (10.1016/j.compositesb.2020.107822_bib41) 2016; 172
Ihrner (10.1016/j.compositesb.2020.107822_bib21) 2017; 5
Carlstedt (10.1016/j.compositesb.2020.107822_bib28) 2019; 179
Ekstedt (10.1016/j.compositesb.2020.107822_bib34) 2010; 39
Deka (10.1016/j.compositesb.2020.107822_bib8) 2017; 41
Wetzel (10.1016/j.compositesb.2020.107822_bib33) 2004; 8
Carlson (10.1016/j.compositesb.2020.107822_bib35) 2013
Ferreira (10.1016/j.compositesb.2020.107822_bib3) 2016; 151
Carlstedt (10.1016/j.compositesb.2020.107822_bib37) 2018
Thomas (10.1016/j.compositesb.2020.107822_bib12) 2013; 47
Larminie (10.1016/j.compositesb.2020.107822_bib42) 2003
Nitta (10.1016/j.compositesb.2020.107822_bib47) 2015; 18
References_xml – volume: 17
  start-page: 666
  year: 2015
  end-page: 690
  ident: bib13
  article-title: Design, manufacture and test of a novel structural battery based on sandwich construction
  publication-title: J Sandw Struct Mater
– year: 2003
  ident: bib42
  article-title: Electric vehicle Technology explained
– volume: 179
  start-page: 69
  year: 2019
  end-page: 78
  ident: bib28
  article-title: Thermal and diffusion induced stresses in a structural battery under galvanostatic cycling
  publication-title: Compos Sci Technol
– volume: 89
  start-page: 194
  year: 2017
  end-page: 251
  ident: bib7
  article-title: Structural composites for multifunctional applications: current challenges and future trends
  publication-title: Prog Mater Sci
– volume: 89
  start-page: 149
  year: 2013
  end-page: 157
  ident: bib32
  article-title: Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries
  publication-title: Compos Sci Technol
– volume: 151
  start-page: 3
  year: 2016
  end-page: 35
  ident: bib3
  article-title: Multifunctional material systems: a state-of-the-art review
  publication-title: Compos Struct
– start-page: 657
  year: 2015
  end-page: 699
  ident: bib16
  article-title: Structural batteries, capacitors and supercapacitors
  publication-title: Handb Solid State Batter
– volume: 18
  start-page: 252
  year: 2015
  end-page: 264
  ident: bib47
  article-title: Li-ion battery materials: present and future
  publication-title: Mater Today
– volume: 52
  start-page: 2155
  year: 2004
  end-page: 2164
  ident: bib25
  article-title: Mechanical design and performance of composite multifunctional materials
  publication-title: Acta Mater
– year: 2018
  ident: bib37
  article-title: Conceptual design framework for laminated structural battery composites
  publication-title: Proc. 18th Eur. Conf. Compos. Mater., Athens, Greece
– volume: 11
  start-page: 335
  year: 2018
  ident: bib6
  article-title: Multifunctional composites for future energy storage in aerospace structures
  publication-title: Energies
– volume: 52
  start-page: 2729
  year: 2018
  end-page: 2742
  ident: bib29
  article-title: Carbon fiber composites with battery function: stresses and dimensional changes due to Li-ion diffusion
  publication-title: J Compos Mater
– ident: bib46
– start-page: 1
  year: 2018
  end-page: 12
  ident: bib24
  article-title: Feasibility analysis and comparative assessment of structural power Technology in all-electric composite aircraft
  publication-title: Conf. 67. Dtsch. Luft- und Raumfahrtkongress, Friedrichshafen, Germany
– volume: 4
  start-page: 42
  year: 2018
  ident: bib38
  article-title: Fabrication of a flexible current collector for lithium ion batteries by inkjet printing
  publication-title: Batteries
– volume: 41
  start-page: 1397
  year: 2017
  end-page: 1411
  ident: bib8
  article-title: Recent development and challenges of multifunctional structural supercapacitors for automotive industries
  publication-title: Int J Energy Res
– volume: 2
  year: 2019
  ident: bib26
  article-title: Model of a structural battery and its potential for system level mass savings
  publication-title: Multifunct Mater
– year: 2013
  ident: bib35
  article-title: Multifunctional composite materials – design, manufacture and experimental characterisation
– volume: 101
  start-page: 41
  year: 2014
  end-page: 61
  ident: bib10
  article-title: Structural power composites
  publication-title: Compos Sci Technol
– volume: 172
  start-page: 180
  year: 2016
  end-page: 189
  ident: bib41
  article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies
  publication-title: Appl Energy
– volume: 2
  year: 2019
  ident: bib22
  article-title: Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries
  publication-title: ACS Appl Energy Mater
– volume: 37
  start-page: 701
  year: 2018
  end-page: 715
  ident: bib30
  article-title: Multiphysics modeling of mechanical and electrochemical phenomena in structural composites for energy storage: single carbon fiber micro-battery
  publication-title: J Reinforc Plast Compos
– volume: 179
  start-page: 580
  year: 2017
  end-page: 589
  ident: bib31
  article-title: A model to analyse deformations and stresses in structural batteries due to electrode expansions
  publication-title: Compos Struct
– volume: 47
  start-page: 5
  year: 2013
  end-page: 26
  ident: bib12
  article-title: Multifunctional structure-battery composites for marine systems
  publication-title: J Compos Mater
– volume: 8
  start-page: 91
  year: 2004
  end-page: 95
  ident: bib33
  article-title: Reducing weight: multifunctional composites integrated power, communications, and structure
  publication-title: AMPTIAC Q
– volume: 158
  start-page: A1455
  year: 2011
  end-page: A1460
  ident: bib20
  article-title: PAN-based carbon fiber negative electrodes for structural lithium-ion batteries
  publication-title: J Electrochem Soc
– volume: 5
  start-page: 2952
  year: 2012
  end-page: 2988
  ident: bib40
  article-title: Rechargeable energy storage systems for plug-in hybrid electric vehicles-assessment of electrical characteristics
  publication-title: Energies
– ident: bib45
  article-title: Tesla model S owner's manual. Version 2018.48.12
– volume: 1
  year: 2018
  ident: bib4
  article-title: Multifunctional materials: concepts, function-structure relationships, knowledge-based design, translational materials research
  publication-title: Multifunct Mater
– volume: 4
  start-page: 582
  year: 2011
  end-page: 598
  ident: bib44
  article-title: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach
  publication-title: Energies
– volume: 5
  start-page: 25652
  year: 2017
  end-page: 25659
  ident: bib21
  article-title: Structural lithium ion battery electrolytes: via reaction induced phase-separation
  publication-title: J Mater Chem A
– year: 2009
  ident: bib39
  article-title: Lithium-ion batteries
– volume: 168
  start-page: 81
  year: 2018
  end-page: 87
  ident: bib17
  article-title: Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries
  publication-title: Compos Sci Technol
– volume: 169
  start-page: 26
  year: 2019
  end-page: 33
  ident: bib27
  article-title: Effects of state of charge on elastic properties of 3D structural battery composites
  publication-title: Compos Sci Technol
– volume: 220
  start-page: 677
  year: 2019
  end-page: 686
  ident: bib15
  article-title: Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries
  publication-title: Compos Struct
– year: 2009
  ident: bib43
  article-title: A reference book of driving cycles for use in the measurement of road vehicle emissions
– volume: 8
  start-page: 8573
  year: 2015
  end-page: 8593
  ident: bib1
  article-title: Energy consumption prediction for electric vehicles based on real-world data
  publication-title: Energies
– volume: 172
  start-page: 823
  year: 2019
  end-page: 839
  ident: bib2
  article-title: Evaluation of electric vehicle component performance over eco-driving cycles
  publication-title: Energy
– volume: 68
  start-page: 1935
  year: 2008
  end-page: 1941
  ident: bib11
  article-title: Embedding thin-film lithium energy cells in structural composites
  publication-title: Compos Sci Technol
– volume: 414
  start-page: 517
  year: 2019
  end-page: 529
  ident: bib14
  article-title: Multifunctional energy storage composite structures with embedded lithium-ion batteries
  publication-title: J Power Sources
– year: 2017
  ident: bib23
  article-title: Feasibility analysis and comparative assessment of structural power Technology in all-electric composite aircraft
– volume: 1
  year: 2018
  ident: bib19
  article-title: Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes
  publication-title: Multifunct Mater
– volume: 162
  start-page: 235
  year: 2018
  end-page: 243
  ident: bib36
  article-title: Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries
  publication-title: Compos Sci Technol
– volume: 39
  start-page: 148
  year: 2010
  end-page: 150
  ident: bib34
  article-title: Structural batteries made from fibre reinforced composites
  publication-title: Plast Rubber Compos
– volume: 1
  year: 2019
  ident: bib18
  article-title: Structural battery composites: a review
  publication-title: Funct Compos Struct
– volume: 92
  start-page: 2793
  year: 2010
  end-page: 2810
  ident: bib5
  article-title: A review of recent research on mechanics of multifunctional composite materials and structures
  publication-title: Compos Struct
– volume: 188
  start-page: 126
  year: 2018
  end-page: 142
  ident: bib9
  article-title: A critical review on multifunctional composites as structural capacitors for energy storage
  publication-title: Compos Struct
– ident: 10.1016/j.compositesb.2020.107822_bib46
– volume: 5
  start-page: 25652
  year: 2017
  ident: 10.1016/j.compositesb.2020.107822_bib21
  article-title: Structural lithium ion battery electrolytes: via reaction induced phase-separation
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA04684G
– volume: 1
  year: 2018
  ident: 10.1016/j.compositesb.2020.107822_bib4
  article-title: Multifunctional materials: concepts, function-structure relationships, knowledge-based design, translational materials research
  publication-title: Multifunct Mater
  doi: 10.1088/2399-7532/aada7b
– volume: 8
  start-page: 91
  issue: 4
  year: 2004
  ident: 10.1016/j.compositesb.2020.107822_bib33
  article-title: Reducing weight: multifunctional composites integrated power, communications, and structure
  publication-title: AMPTIAC Q
– volume: 2
  year: 2019
  ident: 10.1016/j.compositesb.2020.107822_bib26
  article-title: Model of a structural battery and its potential for system level mass savings
  publication-title: Multifunct Mater
  doi: 10.1088/2399-7532/ab3bdd
– year: 2017
  ident: 10.1016/j.compositesb.2020.107822_bib23
– volume: 52
  start-page: 2155
  year: 2004
  ident: 10.1016/j.compositesb.2020.107822_bib25
  article-title: Mechanical design and performance of composite multifunctional materials
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2004.01.007
– year: 2003
  ident: 10.1016/j.compositesb.2020.107822_bib42
– volume: 179
  start-page: 580
  year: 2017
  ident: 10.1016/j.compositesb.2020.107822_bib31
  article-title: A model to analyse deformations and stresses in structural batteries due to electrode expansions
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.07.029
– volume: 39
  start-page: 148
  year: 2010
  ident: 10.1016/j.compositesb.2020.107822_bib34
  article-title: Structural batteries made from fibre reinforced composites
  publication-title: Plast Rubber Compos
  doi: 10.1179/174328910X12647080902259
– year: 2009
  ident: 10.1016/j.compositesb.2020.107822_bib43
– volume: 158
  start-page: A1455
  year: 2011
  ident: 10.1016/j.compositesb.2020.107822_bib20
  article-title: PAN-based carbon fiber negative electrodes for structural lithium-ion batteries
  publication-title: J Electrochem Soc
  doi: 10.1149/2.053112jes
– year: 2009
  ident: 10.1016/j.compositesb.2020.107822_bib39
– volume: 41
  start-page: 1397
  year: 2017
  ident: 10.1016/j.compositesb.2020.107822_bib8
  article-title: Recent development and challenges of multifunctional structural supercapacitors for automotive industries
  publication-title: Int J Energy Res
  doi: 10.1002/er.3707
– volume: 37
  start-page: 701
  year: 2018
  ident: 10.1016/j.compositesb.2020.107822_bib30
  article-title: Multiphysics modeling of mechanical and electrochemical phenomena in structural composites for energy storage: single carbon fiber micro-battery
  publication-title: J Reinforc Plast Compos
  doi: 10.1177/0731684418760207
– volume: 18
  start-page: 252
  year: 2015
  ident: 10.1016/j.compositesb.2020.107822_bib47
  article-title: Li-ion battery materials: present and future
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2014.10.040
– volume: 2
  year: 2019
  ident: 10.1016/j.compositesb.2020.107822_bib22
  article-title: Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.9b00563
– volume: 188
  start-page: 126
  year: 2018
  ident: 10.1016/j.compositesb.2020.107822_bib9
  article-title: A critical review on multifunctional composites as structural capacitors for energy storage
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.12.072
– volume: 151
  start-page: 3
  year: 2016
  ident: 10.1016/j.compositesb.2020.107822_bib3
  article-title: Multifunctional material systems: a state-of-the-art review
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.01.028
– start-page: 657
  year: 2015
  ident: 10.1016/j.compositesb.2020.107822_bib16
  article-title: Structural batteries, capacitors and supercapacitors
  publication-title: Handb Solid State Batter
  doi: 10.1142/9789814651905_0019
– volume: 1
  year: 2019
  ident: 10.1016/j.compositesb.2020.107822_bib18
  article-title: Structural battery composites: a review
  publication-title: Funct Compos Struct
  doi: 10.1088/2631-6331/ab5571
– volume: 162
  start-page: 235
  year: 2018
  ident: 10.1016/j.compositesb.2020.107822_bib36
  article-title: Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2018.04.041
– volume: 89
  start-page: 149
  year: 2013
  ident: 10.1016/j.compositesb.2020.107822_bib32
  article-title: Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2013.09.026
– volume: 169
  start-page: 26
  year: 2019
  ident: 10.1016/j.compositesb.2020.107822_bib27
  article-title: Effects of state of charge on elastic properties of 3D structural battery composites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2018.10.033
– volume: 5
  start-page: 2952
  year: 2012
  ident: 10.1016/j.compositesb.2020.107822_bib40
  article-title: Rechargeable energy storage systems for plug-in hybrid electric vehicles-assessment of electrical characteristics
  publication-title: Energies
  doi: 10.3390/en5082952
– volume: 89
  start-page: 194
  year: 2017
  ident: 10.1016/j.compositesb.2020.107822_bib7
  article-title: Structural composites for multifunctional applications: current challenges and future trends
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2017.04.005
– year: 2013
  ident: 10.1016/j.compositesb.2020.107822_bib35
– volume: 11
  start-page: 335
  year: 2018
  ident: 10.1016/j.compositesb.2020.107822_bib6
  article-title: Multifunctional composites for future energy storage in aerospace structures
  publication-title: Energies
  doi: 10.3390/en11020335
– volume: 168
  start-page: 81
  year: 2018
  ident: 10.1016/j.compositesb.2020.107822_bib17
  article-title: Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2018.08.044
– volume: 52
  start-page: 2729
  year: 2018
  ident: 10.1016/j.compositesb.2020.107822_bib29
  article-title: Carbon fiber composites with battery function: stresses and dimensional changes due to Li-ion diffusion
  publication-title: J Compos Mater
  doi: 10.1177/0021998317752825
– volume: 101
  start-page: 41
  year: 2014
  ident: 10.1016/j.compositesb.2020.107822_bib10
  article-title: Structural power composites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2014.06.020
– volume: 414
  start-page: 517
  year: 2019
  ident: 10.1016/j.compositesb.2020.107822_bib14
  article-title: Multifunctional energy storage composite structures with embedded lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.12.051
– volume: 68
  start-page: 1935
  year: 2008
  ident: 10.1016/j.compositesb.2020.107822_bib11
  article-title: Embedding thin-film lithium energy cells in structural composites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2008.02.019
– volume: 179
  start-page: 69
  year: 2019
  ident: 10.1016/j.compositesb.2020.107822_bib28
  article-title: Thermal and diffusion induced stresses in a structural battery under galvanostatic cycling
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2019.04.024
– volume: 8
  start-page: 8573
  year: 2015
  ident: 10.1016/j.compositesb.2020.107822_bib1
  article-title: Energy consumption prediction for electric vehicles based on real-world data
  publication-title: Energies
  doi: 10.3390/en8088573
– start-page: 1
  year: 2018
  ident: 10.1016/j.compositesb.2020.107822_bib24
  article-title: Feasibility analysis and comparative assessment of structural power Technology in all-electric composite aircraft
– year: 2018
  ident: 10.1016/j.compositesb.2020.107822_bib37
  article-title: Conceptual design framework for laminated structural battery composites
– volume: 4
  start-page: 582
  year: 2011
  ident: 10.1016/j.compositesb.2020.107822_bib44
  article-title: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach
  publication-title: Energies
  doi: 10.3390/en4040582
– volume: 172
  start-page: 180
  year: 2016
  ident: 10.1016/j.compositesb.2020.107822_bib41
  article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.108
– volume: 92
  start-page: 2793
  year: 2010
  ident: 10.1016/j.compositesb.2020.107822_bib5
  article-title: A review of recent research on mechanics of multifunctional composite materials and structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2010.05.003
– volume: 220
  start-page: 677
  year: 2019
  ident: 10.1016/j.compositesb.2020.107822_bib15
  article-title: Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.04.013
– volume: 1
  year: 2018
  ident: 10.1016/j.compositesb.2020.107822_bib19
  article-title: Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes
  publication-title: Multifunct Mater
  doi: 10.1088/2399-7532/aab707
– volume: 4
  start-page: 42
  year: 2018
  ident: 10.1016/j.compositesb.2020.107822_bib38
  article-title: Fabrication of a flexible current collector for lithium ion batteries by inkjet printing
  publication-title: Batteries
  doi: 10.3390/batteries4030042
– volume: 172
  start-page: 823
  year: 2019
  ident: 10.1016/j.compositesb.2020.107822_bib2
  article-title: Evaluation of electric vehicle component performance over eco-driving cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.017
– volume: 47
  start-page: 5
  year: 2013
  ident: 10.1016/j.compositesb.2020.107822_bib12
  article-title: Multifunctional structure-battery composites for marine systems
  publication-title: J Compos Mater
  doi: 10.1177/0021998312460262
– volume: 17
  start-page: 666
  year: 2015
  ident: 10.1016/j.compositesb.2020.107822_bib13
  article-title: Design, manufacture and test of a novel structural battery based on sandwich construction
  publication-title: J Sandw Struct Mater
  doi: 10.1177/1099636215591908
SSID ssj0004532
Score 2.60523
Snippet In this paper, a novel modelling framework to estimate system level performance of electric vehicles utilizing a structural battery composite material is...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 107822
SubjectTerms Carbon fibre
Computational modelling
Energy storage
Smart Materials
Title Performance analysis framework for structural battery composites in electric vehicles
URI https://dx.doi.org/10.1016/j.compositesb.2020.107822
https://research.chalmers.se/publication/515268
Volume 186
WOSCitedRecordID wos000518706900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LatwwFBVpUkq7KOmLpo-gQHeDB1u2bAm6SUJKG0LIIoHZCUuWmAnBDeMhpH_fq4ctJyQwpe3GGNvSyLrH8pHm-FyEvjBVGaYMT1hTwgSFU5pwmO8khpRVyiSjzKQu2UR1espmM34W0lt1Lp1A1bbs9pZf_9dQwzEItv109g_CPVQKB2Afgg5bCDts1wr82Z1PAYLliOk1WE5W6E1jneGGdP6av5y03Oq3nD5r4pPjLNTkRs-dbm7MYQ-HS6dAQJeryYEbUKOxYfxfY3llV1NX98TzAK_OpcU70QszXnYg6Uit4kfK3K4f5j4nThxKyweHZb9CcDmN9yKntlI4YxlKfBfdcb0OdkdzoeYul0wnOi0am65dZkZok-aiUIQLblVqwPuavDG5NLR8grZIRTkMclv7P45mxyP7eJexbmj7M7QXBX-PNO5RwjJ2lnVs5HwbvQzTCLzvw_8Kbej2NXoxisEbdDECAu6BgAcgYDiHIxBwAAKO7cOLFvdAwD0Q3qKLb0fnh9-TkEQjUUA1VwmFCaQprGkQ5zWz9JmWTFdMqkJywyThhZEmzSRQyTpVGdx5AxyOKWvm19Asf4c225-tfo-wNBlVssnrUtVF3bgHmVQyTzX0O6FkB7G-p4QKDvM20cmV6KWEl2LUycJ2svCdvIPIUPTa26ysU-hrHw4R-KLngQJwt07xEx_C4Rf_CnQf_m11H9Hz-Nh9QpuAB_0ZPVU3q0W33A3A_g1NBrtc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+framework+for+structural+battery+composites+in+electric+vehicles&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Carlstedt%2C+David&rft.au=Asp%2C+Leif&rft.date=2020-04-01&rft.issn=1359-8368&rft.volume=186&rft_id=info:doi/10.1016%2Fj.compositesb.2020.107822&rft.externalDocID=oai_research_chalmers_se_d4389b1f_ef03_4c29_9016_143d3df3bf56
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon