Performance analysis framework for structural battery composites in electric vehicles
In this paper, a novel modelling framework to estimate system level performance of electric vehicles utilizing a structural battery composite material is presented. Electrical and mechanical properties are derived from material data of the constituents, device design and connection/layup schemes. Kn...
Saved in:
| Published in: | Composites. Part B, Engineering Vol. 186; p. 107822 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.04.2020
|
| Subjects: | |
| ISSN: | 1359-8368, 1879-1069 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, a novel modelling framework to estimate system level performance of electric vehicles utilizing a structural battery composite material is presented. Electrical and mechanical properties are derived from material data of the constituents, device design and connection/layup schemes. Knowledge of the multifunctional, i.e. electrical and mechanical, performance of the structural battery composite allows for estimation of the electric vehicle drive range for any known drive cycle. The framework is used to evaluate effect on drive range from the introduction of structural batteries into existing electric vehicles (EVs). Comparative studies performed for Tesla model S and BMW i3 demonstrate a compelling vehicle weight saving potential with maintained drive range performance. Alternatively, if vehicle weight is to be maintained from the introduction of structural batteries the resulting drive range for lightweight EVs will be increased by 70%. |
|---|---|
| AbstractList | In this paper, a novel modelling framework to estimate system level performance of electric vehicles utilizing a structural battery composite material is presented. Electrical and mechanical properties are derived from material data of the constituents, device design and connection/layup schemes. Knowledge of the multifunctional, i. e. electrical and mechanical, performance of the structural battery composite allows for estimation of the electric vehicle drive range for any known drive cycle. The framework is used to evaluate effect on drive range from the introduction of structural batteries into existing electric vehicles (EVs). Comparative studies performed for Tesla model S and BMW i3 demonstrate a compelling vehicle weight saving potential with maintained drive range performance. Alternatively, if vehicle weight is to be maintained from the introduction of structural batteries the resulting drive range for lightweight EVs will be increased by 70%. |
| ArticleNumber | 107822 |
| Author | Asp, Leif E. Carlstedt, David |
| Author_xml | – sequence: 1 givenname: David surname: Carlstedt fullname: Carlstedt, David – sequence: 2 givenname: Leif E. surname: Asp fullname: Asp, Leif E. email: leif.asp@chalmers.se |
| BackLink | https://research.chalmers.se/publication/515268$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNqNkc2KFDEQgIOs4O7qO8QH6DF_3Z2cRAZ1hQUF3XNI0hUmY3dnqGR2mbc3w4iKpz1VUUV9RX11Q67WvAIhbznbcMaHd_tNyMshl1Sh-I1g4lwftRAvyDXXo-k4G8xVy2VvOi0H_YrclLJnjKleimvy8A0wZlzcGoC61c2nkgqN6BZ4yviTth4tFY-hHtHN1LtaAU_071KaVgozhIop0EfYpTBDeU1eRjcXePM73pKHTx9_bO-6-6-fv2w_3HdBmrF2PdciKtUPyhinpVCiHzSM2gflTdReGBV9ZNyPSjoWeDtv4rrXgXE5TD2Xt-T7hVue4HD09oBpcXiy2SWLUMBh2Nmwc_MCWGwBOympjefRQmTSqiCMNU2j5UpOcorSx35oVHOhBsylIMQ_XM7s2brd23-s27N1e7HeZt__NxtSdTXltaJL87MI2wsBmrjHBGhLSNDeMyVsmu2U0zMovwDRgKpP |
| CitedBy_id | crossref_primary_10_1016_j_compscitech_2022_109283 crossref_primary_10_1016_j_compscitech_2023_110312 crossref_primary_10_1002_aesr_202000093 crossref_primary_10_1016_j_cej_2024_157772 crossref_primary_10_1109_TTE_2024_3392208 crossref_primary_10_1016_j_compstruct_2025_118943 crossref_primary_10_3390_applmech3030056 crossref_primary_10_1016_j_cej_2022_140778 crossref_primary_10_1016_j_cej_2024_154786 crossref_primary_10_1016_j_est_2023_110373 crossref_primary_10_1016_j_chemosphere_2022_134976 crossref_primary_10_1016_j_jestch_2025_102169 crossref_primary_10_1016_j_compscitech_2023_110319 crossref_primary_10_1016_j_compscitech_2021_109156 crossref_primary_10_1016_j_optlastec_2022_108796 crossref_primary_10_1088_2399_7532_abf158 crossref_primary_10_1088_2399_7532_ac4837 crossref_primary_10_1016_j_compscitech_2024_110568 crossref_primary_10_1016_j_est_2025_117345 crossref_primary_10_1002_advs_202404012 crossref_primary_10_1002_fam_2967 crossref_primary_10_1007_s11665_023_07979_2 crossref_primary_10_1016_j_engfailanal_2025_109535 crossref_primary_10_1016_j_joule_2020_07_027 crossref_primary_10_1016_j_compscitech_2023_109968 crossref_primary_10_1021_acsami_5c11625 crossref_primary_10_1016_j_est_2021_102747 crossref_primary_10_1016_j_compscitech_2024_110728 crossref_primary_10_1007_s00707_023_03726_9 crossref_primary_10_1021_acsapm_5c01663 crossref_primary_10_1007_s00158_023_03490_3 crossref_primary_10_1002_eom2_12418 crossref_primary_10_1016_j_cej_2022_137828 crossref_primary_10_1016_j_compscitech_2022_109731 crossref_primary_10_1016_j_compscitech_2023_110339 crossref_primary_10_1002_adma_202409725 crossref_primary_10_1016_j_cej_2025_165492 crossref_primary_10_1038_s41467_021_26801_y crossref_primary_10_1016_j_compscitech_2023_110321 crossref_primary_10_1109_ACCESS_2025_3539877 crossref_primary_10_1016_j_est_2024_110849 crossref_primary_10_1002_adfm_202403729 crossref_primary_10_1016_j_carbon_2021_09_037 crossref_primary_10_1016_j_enchem_2025_100154 crossref_primary_10_1021_acsapm_5c00980 crossref_primary_10_3390_aerospace9010007 crossref_primary_10_1007_s10483_025_3296_7 crossref_primary_10_3390_math11071741 crossref_primary_10_1002_adfm_202205723 crossref_primary_10_1002_pc_29720 crossref_primary_10_1098_rsos_250606 crossref_primary_10_1016_j_cej_2025_164297 crossref_primary_10_1016_j_compositesa_2024_108589 crossref_primary_10_1016_j_envdev_2021_100676 crossref_primary_10_1002_aesr_202300109 crossref_primary_10_1038_s43246_023_00377_0 crossref_primary_10_3390_nano15171325 crossref_primary_10_1002_slct_202303023 crossref_primary_10_3390_en17051148 crossref_primary_10_1088_2399_7532_ac1ea7 crossref_primary_10_1002_aenm_202502761 crossref_primary_10_1016_j_compositesb_2024_111240 crossref_primary_10_1016_j_ijsolstr_2021_111343 crossref_primary_10_1088_2399_7532_ac65c8 crossref_primary_10_1007_s11367_023_02202_9 crossref_primary_10_1016_j_compscitech_2021_108787 crossref_primary_10_1088_2399_7532_ac2046 crossref_primary_10_1007_s40684_024_00656_2 crossref_primary_10_1016_j_matdes_2022_111256 crossref_primary_10_1016_j_pmatsci_2025_101506 crossref_primary_10_3389_fchem_2021_810781 crossref_primary_10_1002_aesr_202500013 crossref_primary_10_3390_wevj13020037 crossref_primary_10_1016_j_ijhydene_2024_06_305 crossref_primary_10_1016_j_euromechsol_2022_104586 crossref_primary_10_1007_s42114_023_00761_x crossref_primary_10_1002_bte2_20230023 crossref_primary_10_12968_S0034_3617_23_70013_1 crossref_primary_10_1016_j_egyr_2025_02_029 crossref_primary_10_4271_13_05_03_0020 crossref_primary_10_1016_j_compositesb_2022_109810 crossref_primary_10_3390_en14196006 crossref_primary_10_1016_j_compositesb_2020_108004 crossref_primary_10_1016_j_compositesb_2025_112629 crossref_primary_10_1016_j_mattod_2022_06_007 crossref_primary_10_1177_00219983221132621 crossref_primary_10_1016_j_compscitech_2021_108768 crossref_primary_10_1016_j_scitotenv_2022_156830 crossref_primary_10_1002_eom2_12180 crossref_primary_10_1007_s42114_024_01085_0 crossref_primary_10_1016_j_mattod_2022_12_001 crossref_primary_10_1016_j_compositesb_2023_110758 crossref_primary_10_1016_j_jpowsour_2024_236050 crossref_primary_10_1016_j_compscitech_2024_110783 crossref_primary_10_1088_2399_7532_abc60d crossref_primary_10_1016_j_compositesb_2023_110632 crossref_primary_10_1016_j_tws_2024_112606 crossref_primary_10_1016_j_jpowsour_2024_234392 crossref_primary_10_1016_j_jcomc_2025_100631 crossref_primary_10_1007_s10409_025_24867_x crossref_primary_10_1021_acsomega_5c01630 crossref_primary_10_1016_j_matdes_2022_110452 |
| Cites_doi | 10.1039/C7TA04684G 10.1088/2399-7532/aada7b 10.1088/2399-7532/ab3bdd 10.1016/j.actamat.2004.01.007 10.1016/j.compstruct.2017.07.029 10.1179/174328910X12647080902259 10.1149/2.053112jes 10.1002/er.3707 10.1177/0731684418760207 10.1016/j.mattod.2014.10.040 10.1021/acsaem.9b00563 10.1016/j.compstruct.2017.12.072 10.1016/j.compstruct.2016.01.028 10.1142/9789814651905_0019 10.1088/2631-6331/ab5571 10.1016/j.compscitech.2018.04.041 10.1016/j.compscitech.2013.09.026 10.1016/j.compscitech.2018.10.033 10.3390/en5082952 10.1016/j.pmatsci.2017.04.005 10.3390/en11020335 10.1016/j.compscitech.2018.08.044 10.1177/0021998317752825 10.1016/j.compscitech.2014.06.020 10.1016/j.jpowsour.2018.12.051 10.1016/j.compscitech.2008.02.019 10.1016/j.compscitech.2019.04.024 10.3390/en8088573 10.3390/en4040582 10.1016/j.apenergy.2016.03.108 10.1016/j.compstruct.2010.05.003 10.1016/j.compstruct.2019.04.013 10.1088/2399-7532/aab707 10.3390/batteries4030042 10.1016/j.energy.2019.02.017 10.1177/0021998312460262 10.1177/1099636215591908 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION ADTPV AOWAS F1S |
| DOI | 10.1016/j.compositesb.2020.107822 |
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Chalmers tekniska högskola |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1069 |
| ExternalDocumentID | oai_research_chalmers_se_d4389b1f_ef03_4c29_9016_143d3df3bf56 10_1016_j_compositesb_2020_107822 S1359836819351509 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K ZMT ~02 ~G- 29F 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGQPQ AI. AIIUN ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FGOYB HZ~ R2- SEW VH1 ~HD ADTPV AOWAS F1S |
| ID | FETCH-LOGICAL-c397t-5182f4456499a83242568e78bc4b9f8b294fbf01b743a0c1202d1858c0136d513 |
| ISICitedReferencesCount | 124 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518706900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-8368 |
| IngestDate | Wed Nov 05 04:10:06 EST 2025 Sat Nov 29 07:04:20 EST 2025 Tue Nov 18 22:51:08 EST 2025 Fri Feb 23 02:49:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Carbon fibre Smart materials Computational modelling Energy storage |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c397t-5182f4456499a83242568e78bc4b9f8b294fbf01b743a0c1202d1858c0136d513 |
| ParticipantIDs | swepub_primary_oai_research_chalmers_se_d4389b1f_ef03_4c29_9016_143d3df3bf56 crossref_primary_10_1016_j_compositesb_2020_107822 crossref_citationtrail_10_1016_j_compositesb_2020_107822 elsevier_sciencedirect_doi_10_1016_j_compositesb_2020_107822 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Composites. Part B, Engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pereira, Guo, Nieh, Arias, Hahn (bib11) 2008; 68 Gibson (bib5) 2010; 92 He, Xiong, Fan (bib44) 2011; 4 Chan, Jia, Lin, Hameed, Lee, Lau (bib9) 2018; 188 Lendlein, Trask (bib4) 2018; 1 Larminie, Lowry (bib42) 2003 Ferreira, Nóvoa, Marques (bib3) 2016; 151 González, Vilatela, Molina-Aldareguía, Lopes, LLorca (bib7) 2017; 89 Xu, Liu, Wang, Hu (bib41) 2016; 172 Deka, Hazarika, Kim, Park, Park (bib8) 2017; 41 Schneider, Ihrner, Zenkert, Johansson (bib22) 2019; 2 Johannisson, Ihrner, Zenkert, Johansson, Carlstedt, Asp (bib17) 2018; 168 Xu, Lindbergh, Varna (bib30) 2018; 37 Nitta, Wu, Lee, Yushin (bib47) 2015; 18 Asp, Greenhalgh (bib10) 2014; 101 Carlstedt, Asp (bib28) 2019; 179 Adam, Liao, Petersen, Geier, Finke, Wierach (bib6) 2018; 11 Xu, Lindbergh, Varna (bib29) 2018; 52 Dionisi, Harnden, Zenkert (bib31) 2017; 179 Asp, Johansson, Lindbergh, Xu, Zenkert (bib18) 2019; 1 Scholz (bib23) 2017 Wetzel (bib33) 2004; 8 Carlstedt, Johannisson, Zenkert, Linde, Asp (bib37) 2018 BMW (bib46) Galos, Khatibi, Mouritz (bib15) 2019; 220 Carlstedt, Marklund, Asp (bib27) 2019; 169 Singh, Cao, Ma, Seo, Bakis, Zhang (bib13) 2015; 17 Ihrner, Johannisson, Sieland, Zenkert, Johansson (bib21) 2017; 5 Gu, Federici (bib38) 2018; 4 De Cauwer, Van Mierlo, Coosemans (bib1) 2015; 8 Ekstedt, Wysocki, Asp (bib34) 2010; 39 Gao, LaClair, Ou, Huff, Wu, Hao (bib2) 2019; 172 Barlow, Latham, McCrae, Boulter (bib43) 2009 bib45 Carlson (bib35) 2013 Johannisson, Zenkert, Lindbergh (bib26) 2019; 2 Fredi, Jeschke, Boulaoued, Wallenstein, Rashidi, Liu (bib19) 2018; 1 Leijonmarck, Carlson, Lindbergh, Asp, Maples, Bismarck (bib32) 2013; 89 Thomas, Qidwai (bib25) 2004; 52 Hagberg, Maples, Alvim, Xu, Johannisson, Bismarck (bib36) 2018; 162 Snyder, O'Brien, Wetzel (bib16) 2015 Kjell, Jacques, Zenkert, Behm, Lindbergh (bib20) 2011; 158 Thomas, Qidwai, Pogue, Pham (bib12) 2013; 47 Ladpli, Nardari, Kopsaftopoulos, Chang (bib14) 2019; 414 Scholz, Hermanutz, Hornung (bib24) 2018 Yoshio, Brodd, Kozawa (bib39) 2009 Omar, Daowd, van den Bossche, Hegazy, Smekens, Coosemans (bib40) 2012; 5 Ladpli (10.1016/j.compositesb.2020.107822_bib14) 2019; 414 Lendlein (10.1016/j.compositesb.2020.107822_bib4) 2018; 1 Thomas (10.1016/j.compositesb.2020.107822_bib25) 2004; 52 BMW (10.1016/j.compositesb.2020.107822_bib46) Singh (10.1016/j.compositesb.2020.107822_bib13) 2015; 17 Gu (10.1016/j.compositesb.2020.107822_bib38) 2018; 4 Gao (10.1016/j.compositesb.2020.107822_bib2) 2019; 172 Omar (10.1016/j.compositesb.2020.107822_bib40) 2012; 5 Adam (10.1016/j.compositesb.2020.107822_bib6) 2018; 11 Gibson (10.1016/j.compositesb.2020.107822_bib5) 2010; 92 Scholz (10.1016/j.compositesb.2020.107822_bib24) 2018 Johannisson (10.1016/j.compositesb.2020.107822_bib17) 2018; 168 Chan (10.1016/j.compositesb.2020.107822_bib9) 2018; 188 Asp (10.1016/j.compositesb.2020.107822_bib18) 2019; 1 Xu (10.1016/j.compositesb.2020.107822_bib29) 2018; 52 Yoshio (10.1016/j.compositesb.2020.107822_bib39) 2009 Dionisi (10.1016/j.compositesb.2020.107822_bib31) 2017; 179 Barlow (10.1016/j.compositesb.2020.107822_bib43) 2009 De Cauwer (10.1016/j.compositesb.2020.107822_bib1) 2015; 8 Asp (10.1016/j.compositesb.2020.107822_bib10) 2014; 101 Carlstedt (10.1016/j.compositesb.2020.107822_bib27) 2019; 169 Xu (10.1016/j.compositesb.2020.107822_bib30) 2018; 37 Fredi (10.1016/j.compositesb.2020.107822_bib19) 2018; 1 Galos (10.1016/j.compositesb.2020.107822_bib15) 2019; 220 Schneider (10.1016/j.compositesb.2020.107822_bib22) 2019; 2 Pereira (10.1016/j.compositesb.2020.107822_bib11) 2008; 68 Johannisson (10.1016/j.compositesb.2020.107822_bib26) 2019; 2 Leijonmarck (10.1016/j.compositesb.2020.107822_bib32) 2013; 89 Snyder (10.1016/j.compositesb.2020.107822_bib16) 2015 Kjell (10.1016/j.compositesb.2020.107822_bib20) 2011; 158 He (10.1016/j.compositesb.2020.107822_bib44) 2011; 4 González (10.1016/j.compositesb.2020.107822_bib7) 2017; 89 Hagberg (10.1016/j.compositesb.2020.107822_bib36) 2018; 162 Scholz (10.1016/j.compositesb.2020.107822_bib23) 2017 Xu (10.1016/j.compositesb.2020.107822_bib41) 2016; 172 Ihrner (10.1016/j.compositesb.2020.107822_bib21) 2017; 5 Carlstedt (10.1016/j.compositesb.2020.107822_bib28) 2019; 179 Ekstedt (10.1016/j.compositesb.2020.107822_bib34) 2010; 39 Deka (10.1016/j.compositesb.2020.107822_bib8) 2017; 41 Wetzel (10.1016/j.compositesb.2020.107822_bib33) 2004; 8 Carlson (10.1016/j.compositesb.2020.107822_bib35) 2013 Ferreira (10.1016/j.compositesb.2020.107822_bib3) 2016; 151 Carlstedt (10.1016/j.compositesb.2020.107822_bib37) 2018 Thomas (10.1016/j.compositesb.2020.107822_bib12) 2013; 47 Larminie (10.1016/j.compositesb.2020.107822_bib42) 2003 Nitta (10.1016/j.compositesb.2020.107822_bib47) 2015; 18 |
| References_xml | – volume: 17 start-page: 666 year: 2015 end-page: 690 ident: bib13 article-title: Design, manufacture and test of a novel structural battery based on sandwich construction publication-title: J Sandw Struct Mater – year: 2003 ident: bib42 article-title: Electric vehicle Technology explained – volume: 179 start-page: 69 year: 2019 end-page: 78 ident: bib28 article-title: Thermal and diffusion induced stresses in a structural battery under galvanostatic cycling publication-title: Compos Sci Technol – volume: 89 start-page: 194 year: 2017 end-page: 251 ident: bib7 article-title: Structural composites for multifunctional applications: current challenges and future trends publication-title: Prog Mater Sci – volume: 89 start-page: 149 year: 2013 end-page: 157 ident: bib32 article-title: Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries publication-title: Compos Sci Technol – volume: 151 start-page: 3 year: 2016 end-page: 35 ident: bib3 article-title: Multifunctional material systems: a state-of-the-art review publication-title: Compos Struct – start-page: 657 year: 2015 end-page: 699 ident: bib16 article-title: Structural batteries, capacitors and supercapacitors publication-title: Handb Solid State Batter – volume: 18 start-page: 252 year: 2015 end-page: 264 ident: bib47 article-title: Li-ion battery materials: present and future publication-title: Mater Today – volume: 52 start-page: 2155 year: 2004 end-page: 2164 ident: bib25 article-title: Mechanical design and performance of composite multifunctional materials publication-title: Acta Mater – year: 2018 ident: bib37 article-title: Conceptual design framework for laminated structural battery composites publication-title: Proc. 18th Eur. Conf. Compos. Mater., Athens, Greece – volume: 11 start-page: 335 year: 2018 ident: bib6 article-title: Multifunctional composites for future energy storage in aerospace structures publication-title: Energies – volume: 52 start-page: 2729 year: 2018 end-page: 2742 ident: bib29 article-title: Carbon fiber composites with battery function: stresses and dimensional changes due to Li-ion diffusion publication-title: J Compos Mater – ident: bib46 – start-page: 1 year: 2018 end-page: 12 ident: bib24 article-title: Feasibility analysis and comparative assessment of structural power Technology in all-electric composite aircraft publication-title: Conf. 67. Dtsch. Luft- und Raumfahrtkongress, Friedrichshafen, Germany – volume: 4 start-page: 42 year: 2018 ident: bib38 article-title: Fabrication of a flexible current collector for lithium ion batteries by inkjet printing publication-title: Batteries – volume: 41 start-page: 1397 year: 2017 end-page: 1411 ident: bib8 article-title: Recent development and challenges of multifunctional structural supercapacitors for automotive industries publication-title: Int J Energy Res – volume: 2 year: 2019 ident: bib26 article-title: Model of a structural battery and its potential for system level mass savings publication-title: Multifunct Mater – year: 2013 ident: bib35 article-title: Multifunctional composite materials – design, manufacture and experimental characterisation – volume: 101 start-page: 41 year: 2014 end-page: 61 ident: bib10 article-title: Structural power composites publication-title: Compos Sci Technol – volume: 172 start-page: 180 year: 2016 end-page: 189 ident: bib41 article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies publication-title: Appl Energy – volume: 2 year: 2019 ident: bib22 article-title: Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries publication-title: ACS Appl Energy Mater – volume: 37 start-page: 701 year: 2018 end-page: 715 ident: bib30 article-title: Multiphysics modeling of mechanical and electrochemical phenomena in structural composites for energy storage: single carbon fiber micro-battery publication-title: J Reinforc Plast Compos – volume: 179 start-page: 580 year: 2017 end-page: 589 ident: bib31 article-title: A model to analyse deformations and stresses in structural batteries due to electrode expansions publication-title: Compos Struct – volume: 47 start-page: 5 year: 2013 end-page: 26 ident: bib12 article-title: Multifunctional structure-battery composites for marine systems publication-title: J Compos Mater – volume: 8 start-page: 91 year: 2004 end-page: 95 ident: bib33 article-title: Reducing weight: multifunctional composites integrated power, communications, and structure publication-title: AMPTIAC Q – volume: 158 start-page: A1455 year: 2011 end-page: A1460 ident: bib20 article-title: PAN-based carbon fiber negative electrodes for structural lithium-ion batteries publication-title: J Electrochem Soc – volume: 5 start-page: 2952 year: 2012 end-page: 2988 ident: bib40 article-title: Rechargeable energy storage systems for plug-in hybrid electric vehicles-assessment of electrical characteristics publication-title: Energies – ident: bib45 article-title: Tesla model S owner's manual. Version 2018.48.12 – volume: 1 year: 2018 ident: bib4 article-title: Multifunctional materials: concepts, function-structure relationships, knowledge-based design, translational materials research publication-title: Multifunct Mater – volume: 4 start-page: 582 year: 2011 end-page: 598 ident: bib44 article-title: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach publication-title: Energies – volume: 5 start-page: 25652 year: 2017 end-page: 25659 ident: bib21 article-title: Structural lithium ion battery electrolytes: via reaction induced phase-separation publication-title: J Mater Chem A – year: 2009 ident: bib39 article-title: Lithium-ion batteries – volume: 168 start-page: 81 year: 2018 end-page: 87 ident: bib17 article-title: Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries publication-title: Compos Sci Technol – volume: 169 start-page: 26 year: 2019 end-page: 33 ident: bib27 article-title: Effects of state of charge on elastic properties of 3D structural battery composites publication-title: Compos Sci Technol – volume: 220 start-page: 677 year: 2019 end-page: 686 ident: bib15 article-title: Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries publication-title: Compos Struct – year: 2009 ident: bib43 article-title: A reference book of driving cycles for use in the measurement of road vehicle emissions – volume: 8 start-page: 8573 year: 2015 end-page: 8593 ident: bib1 article-title: Energy consumption prediction for electric vehicles based on real-world data publication-title: Energies – volume: 172 start-page: 823 year: 2019 end-page: 839 ident: bib2 article-title: Evaluation of electric vehicle component performance over eco-driving cycles publication-title: Energy – volume: 68 start-page: 1935 year: 2008 end-page: 1941 ident: bib11 article-title: Embedding thin-film lithium energy cells in structural composites publication-title: Compos Sci Technol – volume: 414 start-page: 517 year: 2019 end-page: 529 ident: bib14 article-title: Multifunctional energy storage composite structures with embedded lithium-ion batteries publication-title: J Power Sources – year: 2017 ident: bib23 article-title: Feasibility analysis and comparative assessment of structural power Technology in all-electric composite aircraft – volume: 1 year: 2018 ident: bib19 article-title: Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes publication-title: Multifunct Mater – volume: 162 start-page: 235 year: 2018 end-page: 243 ident: bib36 article-title: Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries publication-title: Compos Sci Technol – volume: 39 start-page: 148 year: 2010 end-page: 150 ident: bib34 article-title: Structural batteries made from fibre reinforced composites publication-title: Plast Rubber Compos – volume: 1 year: 2019 ident: bib18 article-title: Structural battery composites: a review publication-title: Funct Compos Struct – volume: 92 start-page: 2793 year: 2010 end-page: 2810 ident: bib5 article-title: A review of recent research on mechanics of multifunctional composite materials and structures publication-title: Compos Struct – volume: 188 start-page: 126 year: 2018 end-page: 142 ident: bib9 article-title: A critical review on multifunctional composites as structural capacitors for energy storage publication-title: Compos Struct – ident: 10.1016/j.compositesb.2020.107822_bib46 – volume: 5 start-page: 25652 year: 2017 ident: 10.1016/j.compositesb.2020.107822_bib21 article-title: Structural lithium ion battery electrolytes: via reaction induced phase-separation publication-title: J Mater Chem A doi: 10.1039/C7TA04684G – volume: 1 year: 2018 ident: 10.1016/j.compositesb.2020.107822_bib4 article-title: Multifunctional materials: concepts, function-structure relationships, knowledge-based design, translational materials research publication-title: Multifunct Mater doi: 10.1088/2399-7532/aada7b – volume: 8 start-page: 91 issue: 4 year: 2004 ident: 10.1016/j.compositesb.2020.107822_bib33 article-title: Reducing weight: multifunctional composites integrated power, communications, and structure publication-title: AMPTIAC Q – volume: 2 year: 2019 ident: 10.1016/j.compositesb.2020.107822_bib26 article-title: Model of a structural battery and its potential for system level mass savings publication-title: Multifunct Mater doi: 10.1088/2399-7532/ab3bdd – year: 2017 ident: 10.1016/j.compositesb.2020.107822_bib23 – volume: 52 start-page: 2155 year: 2004 ident: 10.1016/j.compositesb.2020.107822_bib25 article-title: Mechanical design and performance of composite multifunctional materials publication-title: Acta Mater doi: 10.1016/j.actamat.2004.01.007 – year: 2003 ident: 10.1016/j.compositesb.2020.107822_bib42 – volume: 179 start-page: 580 year: 2017 ident: 10.1016/j.compositesb.2020.107822_bib31 article-title: A model to analyse deformations and stresses in structural batteries due to electrode expansions publication-title: Compos Struct doi: 10.1016/j.compstruct.2017.07.029 – volume: 39 start-page: 148 year: 2010 ident: 10.1016/j.compositesb.2020.107822_bib34 article-title: Structural batteries made from fibre reinforced composites publication-title: Plast Rubber Compos doi: 10.1179/174328910X12647080902259 – year: 2009 ident: 10.1016/j.compositesb.2020.107822_bib43 – volume: 158 start-page: A1455 year: 2011 ident: 10.1016/j.compositesb.2020.107822_bib20 article-title: PAN-based carbon fiber negative electrodes for structural lithium-ion batteries publication-title: J Electrochem Soc doi: 10.1149/2.053112jes – year: 2009 ident: 10.1016/j.compositesb.2020.107822_bib39 – volume: 41 start-page: 1397 year: 2017 ident: 10.1016/j.compositesb.2020.107822_bib8 article-title: Recent development and challenges of multifunctional structural supercapacitors for automotive industries publication-title: Int J Energy Res doi: 10.1002/er.3707 – volume: 37 start-page: 701 year: 2018 ident: 10.1016/j.compositesb.2020.107822_bib30 article-title: Multiphysics modeling of mechanical and electrochemical phenomena in structural composites for energy storage: single carbon fiber micro-battery publication-title: J Reinforc Plast Compos doi: 10.1177/0731684418760207 – volume: 18 start-page: 252 year: 2015 ident: 10.1016/j.compositesb.2020.107822_bib47 article-title: Li-ion battery materials: present and future publication-title: Mater Today doi: 10.1016/j.mattod.2014.10.040 – volume: 2 year: 2019 ident: 10.1016/j.compositesb.2020.107822_bib22 article-title: Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.9b00563 – volume: 188 start-page: 126 year: 2018 ident: 10.1016/j.compositesb.2020.107822_bib9 article-title: A critical review on multifunctional composites as structural capacitors for energy storage publication-title: Compos Struct doi: 10.1016/j.compstruct.2017.12.072 – volume: 151 start-page: 3 year: 2016 ident: 10.1016/j.compositesb.2020.107822_bib3 article-title: Multifunctional material systems: a state-of-the-art review publication-title: Compos Struct doi: 10.1016/j.compstruct.2016.01.028 – start-page: 657 year: 2015 ident: 10.1016/j.compositesb.2020.107822_bib16 article-title: Structural batteries, capacitors and supercapacitors publication-title: Handb Solid State Batter doi: 10.1142/9789814651905_0019 – volume: 1 year: 2019 ident: 10.1016/j.compositesb.2020.107822_bib18 article-title: Structural battery composites: a review publication-title: Funct Compos Struct doi: 10.1088/2631-6331/ab5571 – volume: 162 start-page: 235 year: 2018 ident: 10.1016/j.compositesb.2020.107822_bib36 article-title: Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2018.04.041 – volume: 89 start-page: 149 year: 2013 ident: 10.1016/j.compositesb.2020.107822_bib32 article-title: Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2013.09.026 – volume: 169 start-page: 26 year: 2019 ident: 10.1016/j.compositesb.2020.107822_bib27 article-title: Effects of state of charge on elastic properties of 3D structural battery composites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2018.10.033 – volume: 5 start-page: 2952 year: 2012 ident: 10.1016/j.compositesb.2020.107822_bib40 article-title: Rechargeable energy storage systems for plug-in hybrid electric vehicles-assessment of electrical characteristics publication-title: Energies doi: 10.3390/en5082952 – volume: 89 start-page: 194 year: 2017 ident: 10.1016/j.compositesb.2020.107822_bib7 article-title: Structural composites for multifunctional applications: current challenges and future trends publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2017.04.005 – year: 2013 ident: 10.1016/j.compositesb.2020.107822_bib35 – volume: 11 start-page: 335 year: 2018 ident: 10.1016/j.compositesb.2020.107822_bib6 article-title: Multifunctional composites for future energy storage in aerospace structures publication-title: Energies doi: 10.3390/en11020335 – volume: 168 start-page: 81 year: 2018 ident: 10.1016/j.compositesb.2020.107822_bib17 article-title: Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2018.08.044 – volume: 52 start-page: 2729 year: 2018 ident: 10.1016/j.compositesb.2020.107822_bib29 article-title: Carbon fiber composites with battery function: stresses and dimensional changes due to Li-ion diffusion publication-title: J Compos Mater doi: 10.1177/0021998317752825 – volume: 101 start-page: 41 year: 2014 ident: 10.1016/j.compositesb.2020.107822_bib10 article-title: Structural power composites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2014.06.020 – volume: 414 start-page: 517 year: 2019 ident: 10.1016/j.compositesb.2020.107822_bib14 article-title: Multifunctional energy storage composite structures with embedded lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.12.051 – volume: 68 start-page: 1935 year: 2008 ident: 10.1016/j.compositesb.2020.107822_bib11 article-title: Embedding thin-film lithium energy cells in structural composites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2008.02.019 – volume: 179 start-page: 69 year: 2019 ident: 10.1016/j.compositesb.2020.107822_bib28 article-title: Thermal and diffusion induced stresses in a structural battery under galvanostatic cycling publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2019.04.024 – volume: 8 start-page: 8573 year: 2015 ident: 10.1016/j.compositesb.2020.107822_bib1 article-title: Energy consumption prediction for electric vehicles based on real-world data publication-title: Energies doi: 10.3390/en8088573 – start-page: 1 year: 2018 ident: 10.1016/j.compositesb.2020.107822_bib24 article-title: Feasibility analysis and comparative assessment of structural power Technology in all-electric composite aircraft – year: 2018 ident: 10.1016/j.compositesb.2020.107822_bib37 article-title: Conceptual design framework for laminated structural battery composites – volume: 4 start-page: 582 year: 2011 ident: 10.1016/j.compositesb.2020.107822_bib44 article-title: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach publication-title: Energies doi: 10.3390/en4040582 – volume: 172 start-page: 180 year: 2016 ident: 10.1016/j.compositesb.2020.107822_bib41 article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.108 – volume: 92 start-page: 2793 year: 2010 ident: 10.1016/j.compositesb.2020.107822_bib5 article-title: A review of recent research on mechanics of multifunctional composite materials and structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2010.05.003 – volume: 220 start-page: 677 year: 2019 ident: 10.1016/j.compositesb.2020.107822_bib15 article-title: Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries publication-title: Compos Struct doi: 10.1016/j.compstruct.2019.04.013 – volume: 1 year: 2018 ident: 10.1016/j.compositesb.2020.107822_bib19 article-title: Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes publication-title: Multifunct Mater doi: 10.1088/2399-7532/aab707 – volume: 4 start-page: 42 year: 2018 ident: 10.1016/j.compositesb.2020.107822_bib38 article-title: Fabrication of a flexible current collector for lithium ion batteries by inkjet printing publication-title: Batteries doi: 10.3390/batteries4030042 – volume: 172 start-page: 823 year: 2019 ident: 10.1016/j.compositesb.2020.107822_bib2 article-title: Evaluation of electric vehicle component performance over eco-driving cycles publication-title: Energy doi: 10.1016/j.energy.2019.02.017 – volume: 47 start-page: 5 year: 2013 ident: 10.1016/j.compositesb.2020.107822_bib12 article-title: Multifunctional structure-battery composites for marine systems publication-title: J Compos Mater doi: 10.1177/0021998312460262 – volume: 17 start-page: 666 year: 2015 ident: 10.1016/j.compositesb.2020.107822_bib13 article-title: Design, manufacture and test of a novel structural battery based on sandwich construction publication-title: J Sandw Struct Mater doi: 10.1177/1099636215591908 |
| SSID | ssj0004532 |
| Score | 2.60523 |
| Snippet | In this paper, a novel modelling framework to estimate system level performance of electric vehicles utilizing a structural battery composite material is... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 107822 |
| SubjectTerms | Carbon fibre Computational modelling Energy storage Smart Materials |
| Title | Performance analysis framework for structural battery composites in electric vehicles |
| URI | https://dx.doi.org/10.1016/j.compositesb.2020.107822 https://research.chalmers.se/publication/515268 |
| Volume | 186 |
| WOSCitedRecordID | wos000518706900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-1069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004532 issn: 1359-8368 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LatwwFBVpUkq7KOmLpo-gQHeDB1u2bAm6SUJKG0LIIoHZCUuWmAnBDeMhpH_fq4ctJyQwpe3GGNvSyLrH8pHm-FyEvjBVGaYMT1hTwgSFU5pwmO8khpRVyiSjzKQu2UR1espmM34W0lt1Lp1A1bbs9pZf_9dQwzEItv109g_CPVQKB2Afgg5bCDts1wr82Z1PAYLliOk1WE5W6E1jneGGdP6av5y03Oq3nD5r4pPjLNTkRs-dbm7MYQ-HS6dAQJeryYEbUKOxYfxfY3llV1NX98TzAK_OpcU70QszXnYg6Uit4kfK3K4f5j4nThxKyweHZb9CcDmN9yKntlI4YxlKfBfdcb0OdkdzoeYul0wnOi0am65dZkZok-aiUIQLblVqwPuavDG5NLR8grZIRTkMclv7P45mxyP7eJexbmj7M7QXBX-PNO5RwjJ2lnVs5HwbvQzTCLzvw_8Kbej2NXoxisEbdDECAu6BgAcgYDiHIxBwAAKO7cOLFvdAwD0Q3qKLb0fnh9-TkEQjUUA1VwmFCaQprGkQ5zWz9JmWTFdMqkJywyThhZEmzSRQyTpVGdx5AxyOKWvm19Asf4c225-tfo-wNBlVssnrUtVF3bgHmVQyTzX0O6FkB7G-p4QKDvM20cmV6KWEl2LUycJ2svCdvIPIUPTa26ysU-hrHw4R-KLngQJwt07xEx_C4Rf_CnQf_m11H9Hz-Nh9QpuAB_0ZPVU3q0W33A3A_g1NBrtc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+framework+for+structural+battery+composites+in+electric+vehicles&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Carlstedt%2C+David&rft.au=Asp%2C+Leif&rft.date=2020-04-01&rft.issn=1359-8368&rft.volume=186&rft_id=info:doi/10.1016%2Fj.compositesb.2020.107822&rft.externalDocID=oai_research_chalmers_se_d4389b1f_ef03_4c29_9016_143d3df3bf56 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon |