A Quantum-Inspired Predator–Prey Algorithm for Real-Parameter Optimization

Quantum computing has opened up various opportunities for the enhancement of computational power in the coming decades. We can design algorithms inspired by the principles of quantum computing, without implementing in quantum computing infrastructure. In this paper, we present the quantum predator–p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithms Ročník 17; číslo 1; s. 33
Hlavní autoři: Khan, Azal Ahmad, Hussain, Salman, Chandra, Rohitash
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2024
Témata:
ISSN:1999-4893, 1999-4893
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Quantum computing has opened up various opportunities for the enhancement of computational power in the coming decades. We can design algorithms inspired by the principles of quantum computing, without implementing in quantum computing infrastructure. In this paper, we present the quantum predator–prey algorithm (QPPA), which fuses the fundamentals of quantum computing and swarm optimization based on a predator–prey algorithm. Our results demonstrate the efficacy of QPPA in solving complex real-parameter optimization problems with better accuracy when compared to related algorithms in the literature. QPPA achieves highly rapid convergence for relatively low- and high-dimensional optimization problems and outperforms selected traditional and advanced algorithms. This motivates the application of QPPA to real-world application problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a17010033