A moment approach for entropy solutions of parameter-dependent hyperbolic conservation laws

We propose a numerical method to solve parameter-dependent scalar hyperbolic partial differential equations (PDEs) with a moment approach, based on a previous work from Marx et al. (2020). This approach relies on a very weak notion of solution of nonlinear equations, namely parametric entropy measur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik Jg. 156; H. 4; S. 1289 - 1324
Hauptverfasser: Cardoen, Clément, Marx, Swann, Nouy, Anthony, Seguin, Nicolas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0029-599X, 0945-3245
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We propose a numerical method to solve parameter-dependent scalar hyperbolic partial differential equations (PDEs) with a moment approach, based on a previous work from Marx et al. (2020). This approach relies on a very weak notion of solution of nonlinear equations, namely parametric entropy measure-valued (MV) solutions, satisfying linear equations in the space of Borel measures. The infinite-dimensional linear problem is approximated by a hierarchy of convex, finite-dimensional, semidefinite programming problems, called Lasserre’s hierarchy. This gives us a sequence of approximations of the moments of the occupation measure associated with the parametric entropy MV solution, which is proved to converge. In the end, several post-treatments can be performed from this approximate moments sequence. In particular, the graph of the solution can be reconstructed from an optimization of the Christoffel–Darboux kernel associated with the approximate measure, that is a powerful approximation tool able to capture a large class of irregular functions. Also, for uncertainty quantification problems, several quantities of interest can be estimated, sometimes directly such as the expectation of smooth functionals of the solutions. The performance of our approach is evaluated through numerical experiments on the inviscid Burgers equation with parametrised initial conditions or parametrised flux function.
AbstractList We propose a numerical method to solve parameter-dependent scalar hyperbolic partial differential equations (PDEs) with a moment approach, based on a previous work from Marx et al. (2020). This approach relies on a very weak notion of solution of nonlinear equations, namely parametric entropy measure-valued (MV) solutions, satisfying linear equations in the space of Borel measures. The infinite-dimensional linear problem is approximated by a hierarchy of convex, finite-dimensional, semidefinite programming problems, called Lasserre’s hierarchy. This gives us a sequence of approximations of the moments of the occupation measure associated with the parametric entropy MV solution, which is proved to converge. In the end, several post-treatments can be performed from this approximate moments sequence. In particular, the graph of the solution can be reconstructed from an optimization of the Christoffel–Darboux kernel associated with the approximate measure, that is a powerful approximation tool able to capture a large class of irregular functions. Also, for uncertainty quantification problems, several quantities of interest can be estimated, sometimes directly such as the expectation of smooth functionals of the solutions. The performance of our approach is evaluated through numerical experiments on the inviscid Burgers equation with parametrised initial conditions or parametrised flux function.
We propose a numerical method to solve parameter-dependent hyperbolic partial differential equations (PDEs) with a moment approach, based on a previous work from Marx et al. (2020). This approach relies on a very weak notion of solution of nonlinear equations, namely parametric entropy measure-valued (MV) solutions, satisfying linear equations in the space of Borel measures. The infinite-dimensional linear problem is approximated by a hierarchy of convex, finite-dimensional, semidefinite programming problems, called Lasserre's hierarchy. This gives us a sequence of approximations of the moments of the occupation measure associated with the parametric entropy MV solution, which is proved to converge. In the end, several post-treatments can be performed from this approximate moments sequence. In particular, the graph of the solution can be reconstructed from an optimization of the Christoffel-Darboux kernel associated with the approximate measure, that is a powerful approximation tool able to capture a large class of irregular functions. Also, for uncertainty quantification problems, several quantities of interest can be estimated, sometimes directly such as the expectation of smooth functionals of the solutions. The performance of our approach is evaluated through numerical experiments on the inviscid Burgers equation with parametrised initial conditions or parametrised flux function.
Author Seguin, Nicolas
Cardoen, Clément
Marx, Swann
Nouy, Anthony
Author_xml – sequence: 1
  givenname: Clément
  surname: Cardoen
  fullname: Cardoen, Clément
  email: clement.cardoen@ec-nantes.fr
  organization: Nantes Université, Centrale Nantes, Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629
– sequence: 2
  givenname: Swann
  surname: Marx
  fullname: Marx, Swann
  organization: Nantes Université, Centrale Nantes, LS2N, CNRS UMR 6004
– sequence: 3
  givenname: Anthony
  surname: Nouy
  fullname: Nouy, Anthony
  organization: Nantes Université, Centrale Nantes, Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629
– sequence: 4
  givenname: Nicolas
  surname: Seguin
  fullname: Seguin, Nicolas
  organization: Inria, Centre de l’Université Côte d’Azur, antenne de Montpellier, Imag, UMR CNRS 5149, Université de Montpellier
BackLink https://hal.science/hal-04218591$$DView record in HAL
BookMark eNp9kEtr3DAURkVJoHn9gawEXWWh9Oply8sh5AUD3WRR6EJcy1LGwWO5kidh_n01cUqhi6x0uZwjvvudkqMxjp6QSw7XHKD-ngEE5wyEYsCVMEx_ISfQKM2kUPqozCAappvm51dymvMLAK8rxU_IrxXdxq0fZ4rTlCK6DQ0x0bJIcdrTHIfd3Mcx0xjohAm3fvaJdX7yY3ewNvvJpzYOvaOuYD694oGnA77lc3IccMj-4uM9I093t083D2z94_7xZrVmTjb1zGSrPBp0qgvOQGW85sFAaCpE5KihrtuurbQxPCgn207VlWt80KKtuKuUPCNXy7cbHOyU-i2mvY3Y24fV2h52oAQ3uuGvsrDfFrbc-nvn82xf4i6NJZ2VYJSsFYi6UGahXIo5Jx-s6-f3u-aE_WA52EPrdmndltbte-tWF1X8p_5N9KkkFykXeHz26V-qT6w_qSSXtw
CitedBy_id crossref_primary_10_1007_s00211_024_01422_x
crossref_primary_10_3934_dcds_2025051
Cites_doi 10.1016/bs.hna.2016.11.003
10.1007/s00365-021-09535-4
10.1007/978-3-319-00885-1
10.1051/m2an/2021011
10.1515/ijnsns-2021-0192
10.1142/p665
10.1137/070697835
10.1090/qam/2104269
10.4310/CMS.2015.v13.n3.a1
10.1080/03605307908820117
10.1007/978-3-0348-8629-1
10.1090/S0025-5718-2012-02574-9
10.1137/120896967
10.1016/bs.hna.2021.12.010
10.1137/17M1140807
10.1090/S0002-9947-2010-05016-0
10.1137/1.9781611970791
10.1137/17M1140571
10.1007/s00365-022-09563-8
10.1007/s10915-022-01866-z
10.1007/BF00752112
10.1137/070685051
10.1142/q0382
10.1007/978-3-662-47507-2
10.3934/mcrf.2019032
10.1007/978-3-642-04048-1
10.1016/j.jcp.2008.12.018
10.48550/arXiv.2211.10742
10.1070/SM1970v010n02ABEH002156
10.1007/s10543-019-00794-z
10.1142/s0219891619500061
10.4310/CDM.1997.v1997.n1.a2
10.1007/s10444-020-09834-7
10.1007/s002110100307
10.1007/978-1-4899-6824-1
10.1016/S1570-8659(00)07005-8
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - NonCommercial
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - NonCommercial
DBID C6C
AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s00211-024-01428-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 1324
ExternalDocumentID oai:HAL:hal-04218591v3
10_1007_s00211_024_01428_5
GrantInformation_xml – fundername: Centrale Nantes
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c397t-3b4ea8ac4dfc8068e51f80f96aaa1a5077bdb65881f4c3bd476c9ef52b61c643
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001271163400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-599X
IngestDate Tue Oct 14 20:43:33 EDT 2025
Mon Oct 06 16:36:52 EDT 2025
Tue Nov 18 22:26:04 EST 2025
Sat Nov 29 01:36:01 EST 2025
Fri Feb 21 02:38:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 35D99
35L65
65D15
Analysis of PDEs
Numerical analysis
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-3b4ea8ac4dfc8068e51f80f96aaa1a5077bdb65881f4c3bd476c9ef52b61c643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2149-2986
0000-0001-7783-9849
OpenAccessLink https://link.springer.com/10.1007/s00211-024-01428-5
PQID 3084374027
PQPubID 2043616
PageCount 36
ParticipantIDs hal_primary_oai_HAL_hal_04218591v3
proquest_journals_3084374027
crossref_citationtrail_10_1007_s00211_024_01428_5
crossref_primary_10_1007_s00211_024_01428_5
springer_journals_10_1007_s00211_024_01428_5
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References Henrion, D., Infusino, M., Kuhlmann, S., Vinnikov, V.: Infinite-dimensional moment-sos hierarchy for nonlinear partial differential equations (2023). arXiv:2305.18768
TacchiMConvergence of Lasserre’s hierarchy: the general caseOptim. Lett.2021161194397238
LaakmannFPetersenPEfficient approximation of solutions of parametric linear transport equations by Relu DnnsAdv. Comput. Math.2021420665910.1007/s10444-020-09834-7
Lasserre, J.B.: The Christoffel-Darboux Kernel for Data Analysis. In: 23ème Congrès Annuel de la Société Française de Recherche Opérationnelle et D’Aide à La Décision. INSA Lyon, Villeurbanne - Lyon (2022). https://hal.science/hal-03595424
AliprantisCDBorderKCInfinite Dimensional Analysis2006Berlin/HeidelbergSpringer
Abgrall, R., Mishra, S.: Chapter 19 - uncertainty quantification for hyperbolic systems of conservation laws. In: Abgrall, R., Shu, C.-W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems. Handbook of Numerical Analysis, vol. 18, pp. 507–544. Elsevier, Amsterdam (2017). https://doi.org/10.1016/bs.hna.2016.11.003
Otto, F.: Initial-boundary value problem for a scalar conservation law. Comptes Rendus de l’Académie des Sciences. Série I 322(8), 729–734 (1996)
PoëtteGDesprésBLucorDUncertainty quantification for systems of conservation lawsJ. Comput. Phys.2009228724432467250169310.1016/j.jcp.2008.12.018
GrundelSHertyMModel-order reduction for hyperbolic relaxation systemsInt. J. Nonlinear Sci. Numer. Simul.202210.1515/ijnsns-2021-0192
HenrionDLasserreJBGraph recovery from incomplete moment informationConstr. Approx.202256165187446943610.1007/s00365-022-09563-8
Korda, M., Henrion, D., Lasserre, J.B.: Moments and convex optimization for analysis and control of nonlinear partial differential equations. In: Handbook of Numerical Analysis vol. 23, pp. 339–366. Elsevier, Amsterdam (2022). https://hal.science/hal-01771699
Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences. Springer, Berlin/Heidelberg (2015). https://books.google.fr/books?id=NcMvCwAAQBAJ
ReissJSchulzePSesterhennJMehrmannVThe shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomenaSIAM J. Sci. Comput.201840313221344379906210.1137/17M1140571
Magron, V., Wang, J.: Sparse Polynomial Optimization |\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert $$\end{document} Series on Optimization and Its Applications vol. 5. World Scientific Publishing Company, London (2022). https://doi.org/10.1142/q0382
PanovEYOn the Dirichlet problem for first order quasilinear equations on a manifoldTrans. Am. Math. Soc.2011363523932446276372110.1090/S0002-9947-2010-05016-0
Whitham, G.B.: Linear and Nonlinear Waves. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, vol. 42. Wiley, Hoboken, NJ (2011)
ChalonsCDuvigneauRFioriniCSensitivity analysis and numerical diffusion effects for hyperbolic PDE systems with discontinuous solutions. The case of barotropic Euler equations in Lagrangian coordinatesSIAM J. Sci. Comput.201840639553981388124210.1137/17M1140807
LeVequeRJNumerical Methods for Conservation Laws19922Berlin/HeidelbergBirkhäuser10.1007/978-3-0348-8629-1
BijlHLucorDMishraSSchwabCUncertainty Quantification in Computational Fluid Dynamics2013Berlin/HeidelbergSpringer10.1007/978-3-319-00885-1
MarxSPauwelsEWeisserTHenrionDLasserreJBSemi-algebraic approximation using Christoffel-Darboux kernelConstr. Approx.2021434261910.1007/s00365-021-09535-4
MishraSRisebroNHSchwabCTokarevaSNumerical solution of scalar conservation laws with random flux functionsSIAM/ASA J. Uncertain. Quant.201641552591349851810.1137/120896967
LasserreJ-BHenrionDPrieurCTrélatENonlinear optimal control via occupation measures and LMI-relaxationsSIAM J. Control Optim.200847416431666242132410.1137/070685051
OttoFInitial-boundary value problem for a scalar conservation lawC. R. Acad. Sci. Paris Sér. I Math.199632287297341387428
Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics; 3rd ed. Grundlehren der mathematischen Wissenschaften: a series of comprehensive studies in mathematics. Springer, Dordrecht (2010). https://doi.org/10.1007/978-3-642-04048-1 . https://cds.cern.ch/record/1315649
GiesselmannJMeyerFRohdeCA posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation lawsBIT Numer. Math.2020413290010.1007/s10543-019-00794-z
Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, Covent Garden, London, UK (2009). https://doi.org/10.1142/p665 . https://www.worldscientific.com/doi/abs/10.1142/p665
Mula, O., Nouy, A.: Moment-SoS Methods for Optimal Transport Problems (2022). https://doi.org/10.48550/arXiv.2211.10742
KrupaSGVasseurAFOn uniqueness of solutions to conservation laws verifying a single entropy conditionJ. Hyperb. Differ. Equ.20191601157191395468010.1142/s0219891619500061
EvansLC Partial differential equations and Monge–Kantorovich mass transferCurr. Develop. Math.1997199716512610.4310/CDM.1997.v1997.n1.a2
MarxSWeisserTHenrionDLasserreJBA moment approach for entropy solutions to nonlinear hyperbolic PDEsMath. Control Related Fields2020101113140406362910.3934/mcrf.2019032
DiPernaRJMeasure-valued solutions to conservation lawsArch. Ration. Mech. Anal.19858822327077519110.1007/BF00752112
BardosCRouxAYNédélecJ-CFirst order quasilinear equations with boundary conditionsCommun. Part. Differ. Equ.1979491017103454251010.1080/03605307908820117
Nečas, J., Málek, J., Rokyta, M., Ružička, M.: Weak and Measure-valued Solutions to Evolutionary PDEs. Appl. Math. Math. Comput. 13. Chapman & Hall, London (1996)
ZhongXShuC-WEntropy stable Galerkin methods with suitable quadrature rules for hyperbolic systems with random inputsJ. Sci. Comput.2022443414510.1007/s10915-022-01866-z
Henrion, D., Lasserre, J.B., Lofberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming (2007)
De LellisCOttoFWestdickenbergMMinimal entropy conditions for burgers equationQ. Appl. Math.2004624687700210426910.1090/qam/2104269
BoulangerA-CMoireauPPerthameBSainte-MarieJData Assimilation for hyperbolic conservation laws. A Luenberger observer approach based on a kinetic descriptionCommun. Math. Sci.2015133587622331837710.4310/CMS.2015.v13.n3.a1
MishraSSchwabCSparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial dataMath. Comput.20128128019792018294514510.1090/S0025-5718-2012-02574-9
BardosCLe RouxA-YNedelecJCFirst order quasilinear equations with boundary conditionsCommun. Part. Differ. Equ.197941017103454251010.1080/03605307908820117
RechtBFazelMParriloPAGuaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimizationSIAM Rev.2010523471501268054310.1137/070697835
NesterovYNemirovskiiAInterior-Point Polynomial Algorithms in Convex Programming1994Philadelphia, PASociety for Industrial and Applied Mathematics10.1137/1.9781611970791
BadwaikJKlingenbergCRisebroNHRufAMMultilevel Monte Carlo finite volume methods for random conservation laws with discontinuous fluxESAIM: M2AN202155310391065426526310.1051/m2an/2021011
KruzhkovSNFirst order quasilinear equations in several independent variablesMath. USSR-Sbornik197010221710.1070/SM1970v010n02ABEH002156
VovelleJConvergence of finite volume monotone schemes for scalar conservation laws on bounded domainsNumer. Math.2002903563596188423110.1007/s002110100307
GodlewskiERaviartP-AHyperbolic Systems of Conservation Laws1991ParisEllipses
Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis, vol. 7, pp. 713–1018. Elsevier (2000). https://doi.org/10.1016/S1570-8659(00)07005-8 . https://www.sciencedirect.com/science/article/pii/S1570865900070058
F Laakmann (1428_CR15) 2021
C Chalons (1428_CR11) 2018; 40
SN Kruzhkov (1428_CR17) 1970; 10
C De Lellis (1428_CR26) 2004; 62
LC Evans (1428_CR46) 1997; 1997
J Giesselmann (1428_CR12) 2020
D Henrion (1428_CR25) 2022; 56
M Tacchi (1428_CR38) 2021; 16
SG Krupa (1428_CR27) 2019; 16
1428_CR32
S Grundel (1428_CR14) 2022
1428_CR31
J Vovelle (1428_CR35) 2002; 90
S Marx (1428_CR16) 2020; 10
1428_CR19
RJ DiPerna (1428_CR18) 1985; 88
EY Panov (1428_CR36) 2011; 363
1428_CR39
X Zhong (1428_CR9) 2022
1428_CR6
E Godlewski (1428_CR28) 1991
J Reiss (1428_CR13) 2018; 40
J Badwaik (1428_CR10) 2021; 55
A-C Boulanger (1428_CR5) 2015; 13
CD Aliprantis (1428_CR29) 2006
1428_CR23
1428_CR45
G Poëtte (1428_CR7) 2009; 228
1428_CR22
S Mishra (1428_CR21) 2016; 4
J-B Lasserre (1428_CR37) 2008; 47
B Recht (1428_CR40) 2010; 52
1428_CR43
1428_CR42
RJ LeVeque (1428_CR3) 1992
C Bardos (1428_CR33) 1979; 4
1428_CR41
Y Nesterov (1428_CR44) 1994
S Mishra (1428_CR20) 2012; 81
S Marx (1428_CR24) 2021
F Otto (1428_CR34) 1996; 322
1428_CR2
C Bardos (1428_CR30) 1979; 4
1428_CR1
H Bijl (1428_CR8) 2013
1428_CR4
References_xml – reference: De LellisCOttoFWestdickenbergMMinimal entropy conditions for burgers equationQ. Appl. Math.2004624687700210426910.1090/qam/2104269
– reference: OttoFInitial-boundary value problem for a scalar conservation lawC. R. Acad. Sci. Paris Sér. I Math.199632287297341387428
– reference: BadwaikJKlingenbergCRisebroNHRufAMMultilevel Monte Carlo finite volume methods for random conservation laws with discontinuous fluxESAIM: M2AN202155310391065426526310.1051/m2an/2021011
– reference: AliprantisCDBorderKCInfinite Dimensional Analysis2006Berlin/HeidelbergSpringer
– reference: Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences. Springer, Berlin/Heidelberg (2015). https://books.google.fr/books?id=NcMvCwAAQBAJ
– reference: MishraSRisebroNHSchwabCTokarevaSNumerical solution of scalar conservation laws with random flux functionsSIAM/ASA J. Uncertain. Quant.201641552591349851810.1137/120896967
– reference: RechtBFazelMParriloPAGuaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimizationSIAM Rev.2010523471501268054310.1137/070697835
– reference: Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis, vol. 7, pp. 713–1018. Elsevier (2000). https://doi.org/10.1016/S1570-8659(00)07005-8 . https://www.sciencedirect.com/science/article/pii/S1570865900070058
– reference: TacchiMConvergence of Lasserre’s hierarchy: the general caseOptim. Lett.2021161194397238
– reference: MarxSPauwelsEWeisserTHenrionDLasserreJBSemi-algebraic approximation using Christoffel-Darboux kernelConstr. Approx.2021434261910.1007/s00365-021-09535-4
– reference: Abgrall, R., Mishra, S.: Chapter 19 - uncertainty quantification for hyperbolic systems of conservation laws. In: Abgrall, R., Shu, C.-W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems. Handbook of Numerical Analysis, vol. 18, pp. 507–544. Elsevier, Amsterdam (2017). https://doi.org/10.1016/bs.hna.2016.11.003
– reference: Whitham, G.B.: Linear and Nonlinear Waves. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, vol. 42. Wiley, Hoboken, NJ (2011)
– reference: MarxSWeisserTHenrionDLasserreJBA moment approach for entropy solutions to nonlinear hyperbolic PDEsMath. Control Related Fields2020101113140406362910.3934/mcrf.2019032
– reference: BardosCLe RouxA-YNedelecJCFirst order quasilinear equations with boundary conditionsCommun. Part. Differ. Equ.197941017103454251010.1080/03605307908820117
– reference: BardosCRouxAYNédélecJ-CFirst order quasilinear equations with boundary conditionsCommun. Part. Differ. Equ.1979491017103454251010.1080/03605307908820117
– reference: ReissJSchulzePSesterhennJMehrmannVThe shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomenaSIAM J. Sci. Comput.201840313221344379906210.1137/17M1140571
– reference: Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, Covent Garden, London, UK (2009). https://doi.org/10.1142/p665 . https://www.worldscientific.com/doi/abs/10.1142/p665
– reference: Magron, V., Wang, J.: Sparse Polynomial Optimization |\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert $$\end{document} Series on Optimization and Its Applications vol. 5. World Scientific Publishing Company, London (2022). https://doi.org/10.1142/q0382
– reference: LaakmannFPetersenPEfficient approximation of solutions of parametric linear transport equations by Relu DnnsAdv. Comput. Math.2021420665910.1007/s10444-020-09834-7
– reference: LasserreJ-BHenrionDPrieurCTrélatENonlinear optimal control via occupation measures and LMI-relaxationsSIAM J. Control Optim.200847416431666242132410.1137/070685051
– reference: Henrion, D., Infusino, M., Kuhlmann, S., Vinnikov, V.: Infinite-dimensional moment-sos hierarchy for nonlinear partial differential equations (2023). arXiv:2305.18768
– reference: EvansLC Partial differential equations and Monge–Kantorovich mass transferCurr. Develop. Math.1997199716512610.4310/CDM.1997.v1997.n1.a2
– reference: Nečas, J., Málek, J., Rokyta, M., Ružička, M.: Weak and Measure-valued Solutions to Evolutionary PDEs. Appl. Math. Math. Comput. 13. Chapman & Hall, London (1996)
– reference: KrupaSGVasseurAFOn uniqueness of solutions to conservation laws verifying a single entropy conditionJ. Hyperb. Differ. Equ.20191601157191395468010.1142/s0219891619500061
– reference: PanovEYOn the Dirichlet problem for first order quasilinear equations on a manifoldTrans. Am. Math. Soc.2011363523932446276372110.1090/S0002-9947-2010-05016-0
– reference: KruzhkovSNFirst order quasilinear equations in several independent variablesMath. USSR-Sbornik197010221710.1070/SM1970v010n02ABEH002156
– reference: Otto, F.: Initial-boundary value problem for a scalar conservation law. Comptes Rendus de l’Académie des Sciences. Série I 322(8), 729–734 (1996)
– reference: DiPernaRJMeasure-valued solutions to conservation lawsArch. Ration. Mech. Anal.19858822327077519110.1007/BF00752112
– reference: Korda, M., Henrion, D., Lasserre, J.B.: Moments and convex optimization for analysis and control of nonlinear partial differential equations. In: Handbook of Numerical Analysis vol. 23, pp. 339–366. Elsevier, Amsterdam (2022). https://hal.science/hal-01771699
– reference: Mula, O., Nouy, A.: Moment-SoS Methods for Optimal Transport Problems (2022). https://doi.org/10.48550/arXiv.2211.10742
– reference: MishraSSchwabCSparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial dataMath. Comput.20128128019792018294514510.1090/S0025-5718-2012-02574-9
– reference: Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics; 3rd ed. Grundlehren der mathematischen Wissenschaften: a series of comprehensive studies in mathematics. Springer, Dordrecht (2010). https://doi.org/10.1007/978-3-642-04048-1 . https://cds.cern.ch/record/1315649
– reference: ChalonsCDuvigneauRFioriniCSensitivity analysis and numerical diffusion effects for hyperbolic PDE systems with discontinuous solutions. The case of barotropic Euler equations in Lagrangian coordinatesSIAM J. Sci. Comput.201840639553981388124210.1137/17M1140807
– reference: Lasserre, J.B.: The Christoffel-Darboux Kernel for Data Analysis. In: 23ème Congrès Annuel de la Société Française de Recherche Opérationnelle et D’Aide à La Décision. INSA Lyon, Villeurbanne - Lyon (2022). https://hal.science/hal-03595424
– reference: GodlewskiERaviartP-AHyperbolic Systems of Conservation Laws1991ParisEllipses
– reference: BoulangerA-CMoireauPPerthameBSainte-MarieJData Assimilation for hyperbolic conservation laws. A Luenberger observer approach based on a kinetic descriptionCommun. Math. Sci.2015133587622331837710.4310/CMS.2015.v13.n3.a1
– reference: HenrionDLasserreJBGraph recovery from incomplete moment informationConstr. Approx.202256165187446943610.1007/s00365-022-09563-8
– reference: LeVequeRJNumerical Methods for Conservation Laws19922Berlin/HeidelbergBirkhäuser10.1007/978-3-0348-8629-1
– reference: GrundelSHertyMModel-order reduction for hyperbolic relaxation systemsInt. J. Nonlinear Sci. Numer. Simul.202210.1515/ijnsns-2021-0192
– reference: ZhongXShuC-WEntropy stable Galerkin methods with suitable quadrature rules for hyperbolic systems with random inputsJ. Sci. Comput.2022443414510.1007/s10915-022-01866-z
– reference: VovelleJConvergence of finite volume monotone schemes for scalar conservation laws on bounded domainsNumer. Math.2002903563596188423110.1007/s002110100307
– reference: NesterovYNemirovskiiAInterior-Point Polynomial Algorithms in Convex Programming1994Philadelphia, PASociety for Industrial and Applied Mathematics10.1137/1.9781611970791
– reference: Henrion, D., Lasserre, J.B., Lofberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming (2007)
– reference: PoëtteGDesprésBLucorDUncertainty quantification for systems of conservation lawsJ. Comput. Phys.2009228724432467250169310.1016/j.jcp.2008.12.018
– reference: GiesselmannJMeyerFRohdeCA posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation lawsBIT Numer. Math.2020413290010.1007/s10543-019-00794-z
– reference: BijlHLucorDMishraSSchwabCUncertainty Quantification in Computational Fluid Dynamics2013Berlin/HeidelbergSpringer10.1007/978-3-319-00885-1
– volume-title: Infinite Dimensional Analysis
  year: 2006
  ident: 1428_CR29
– ident: 1428_CR6
  doi: 10.1016/bs.hna.2016.11.003
– year: 2021
  ident: 1428_CR24
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-021-09535-4
– volume-title: Uncertainty Quantification in Computational Fluid Dynamics
  year: 2013
  ident: 1428_CR8
  doi: 10.1007/978-3-319-00885-1
– volume: 55
  start-page: 1039
  issue: 3
  year: 2021
  ident: 1428_CR10
  publication-title: ESAIM: M2AN
  doi: 10.1051/m2an/2021011
– year: 2022
  ident: 1428_CR14
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2021-0192
– ident: 1428_CR22
  doi: 10.1142/p665
– volume: 52
  start-page: 471
  issue: 3
  year: 2010
  ident: 1428_CR40
  publication-title: SIAM Rev.
  doi: 10.1137/070697835
– volume: 62
  start-page: 687
  issue: 4
  year: 2004
  ident: 1428_CR26
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/2104269
– ident: 1428_CR43
– volume: 13
  start-page: 587
  issue: 3
  year: 2015
  ident: 1428_CR5
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2015.v13.n3.a1
– ident: 1428_CR23
– volume-title: Hyperbolic Systems of Conservation Laws
  year: 1991
  ident: 1428_CR28
– volume: 4
  start-page: 1017
  issue: 9
  year: 1979
  ident: 1428_CR33
  publication-title: Commun. Part. Differ. Equ.
  doi: 10.1080/03605307908820117
– volume-title: Numerical Methods for Conservation Laws
  year: 1992
  ident: 1428_CR3
  doi: 10.1007/978-3-0348-8629-1
– volume: 322
  start-page: 729
  issue: 8
  year: 1996
  ident: 1428_CR34
  publication-title: C. R. Acad. Sci. Paris Sér. I Math.
– volume: 16
  start-page: 1
  year: 2021
  ident: 1428_CR38
  publication-title: Optim. Lett.
– ident: 1428_CR41
– volume: 81
  start-page: 1979
  issue: 280
  year: 2012
  ident: 1428_CR20
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2012-02574-9
– volume: 4
  start-page: 552
  issue: 1
  year: 2016
  ident: 1428_CR21
  publication-title: SIAM/ASA J. Uncertain. Quant.
  doi: 10.1137/120896967
– ident: 1428_CR31
– ident: 1428_CR39
  doi: 10.1016/bs.hna.2021.12.010
– volume: 40
  start-page: 3955
  issue: 6
  year: 2018
  ident: 1428_CR11
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1140807
– volume: 363
  start-page: 2393
  issue: 5
  year: 2011
  ident: 1428_CR36
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-2010-05016-0
– volume-title: Interior-Point Polynomial Algorithms in Convex Programming
  year: 1994
  ident: 1428_CR44
  doi: 10.1137/1.9781611970791
– volume: 40
  start-page: 1322
  issue: 3
  year: 2018
  ident: 1428_CR13
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1140571
– volume: 56
  start-page: 165
  year: 2022
  ident: 1428_CR25
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-022-09563-8
– year: 2022
  ident: 1428_CR9
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-01866-z
– volume: 88
  start-page: 223
  year: 1985
  ident: 1428_CR18
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00752112
– volume: 47
  start-page: 1643
  issue: 4
  year: 2008
  ident: 1428_CR37
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/070685051
– ident: 1428_CR45
  doi: 10.1142/q0382
– ident: 1428_CR4
  doi: 10.1007/978-3-662-47507-2
– volume: 10
  start-page: 113
  issue: 1
  year: 2020
  ident: 1428_CR16
  publication-title: Math. Control Related Fields
  doi: 10.3934/mcrf.2019032
– volume: 4
  start-page: 1017
  year: 1979
  ident: 1428_CR30
  publication-title: Commun. Part. Differ. Equ.
  doi: 10.1080/03605307908820117
– ident: 1428_CR1
  doi: 10.1007/978-3-642-04048-1
– volume: 228
  start-page: 2443
  issue: 7
  year: 2009
  ident: 1428_CR7
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.12.018
– ident: 1428_CR42
  doi: 10.48550/arXiv.2211.10742
– volume: 10
  start-page: 217
  issue: 2
  year: 1970
  ident: 1428_CR17
  publication-title: Math. USSR-Sbornik
  doi: 10.1070/SM1970v010n02ABEH002156
– ident: 1428_CR2
– year: 2020
  ident: 1428_CR12
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-019-00794-z
– volume: 16
  start-page: 157
  issue: 01
  year: 2019
  ident: 1428_CR27
  publication-title: J. Hyperb. Differ. Equ.
  doi: 10.1142/s0219891619500061
– volume: 1997
  start-page: 65
  issue: 1
  year: 1997
  ident: 1428_CR46
  publication-title: Curr. Develop. Math.
  doi: 10.4310/CDM.1997.v1997.n1.a2
– year: 2021
  ident: 1428_CR15
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-020-09834-7
– volume: 90
  start-page: 563
  issue: 3
  year: 2002
  ident: 1428_CR35
  publication-title: Numer. Math.
  doi: 10.1007/s002110100307
– ident: 1428_CR19
  doi: 10.1007/978-1-4899-6824-1
– ident: 1428_CR32
  doi: 10.1016/S1570-8659(00)07005-8
SSID ssj0017641
Score 2.4220173
Snippet We propose a numerical method to solve parameter-dependent scalar hyperbolic partial differential equations (PDEs) with a moment approach, based on a previous...
We propose a numerical method to solve parameter-dependent hyperbolic partial differential equations (PDEs) with a moment approach, based on a previous work...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1289
SubjectTerms Approximation
Burgers equation
Conservation laws
Entropy
Functionals
Initial conditions
Linear equations
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Nonlinear equations
Numerical Analysis
Numerical and Computational Physics
Numerical methods
Parameterization
Parameters
Partial differential equations
Semidefinite programming
Simulation
Theoretical
Title A moment approach for entropy solutions of parameter-dependent hyperbolic conservation laws
URI https://link.springer.com/article/10.1007/s00211-024-01428-5
https://www.proquest.com/docview/3084374027
https://hal.science/hal-04218591
Volume 156
WOSCitedRecordID wos001271163400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9EEfnFecTgnimwbWNm3SxyGKDzpEhwx8KE2aoKDbWOvEf-9J19QLKuhrm17IOcn5TvLlOwCHzHBtkTH1jacpM1pRkUWGsjDwTegZKbksi03wXk8MBvFVdSgsd2x3tyVZztT1YTcbjjD19S1rAkEzDedhAcOdsMPx-ua23jvgEfMcsSOM40F1VOb7d3wKR_P3lgz5AWl-2RwtY85Z839_uworFcYk3ZlTrMGcHq5D09VvINVwXofly1qzNd-Auy55snIMBXE64wQBLbGrv6PxK6l9lIwMsYLhT5ZIQ10R3YLcY0Y7kVZmmChL0a4We8lj-pJvQv_stH9yTqvSC1QhQCloIJlORapYZpToREKj2UTHxFGapl6KGJLLTCJ4EZ5hKpAZ45GKtQl9GXkKQc4WNIajod4GolQcaSXxhcpg6hng_KBZgCgn83nIjGyB5wyQqEqW3FbHeExqQeWyKxPsyqTsyiRswVH9zHgmyvFr6wO0a93Q6mmfdy8Sew1nLM8K-E2DFrSd2ZNqFOdJ0BEs4Jhh8xYcOzO_3_75kzt_a74LS37pKZZX2IZGMXnWe7CopsVDPtkvvfsNuXDzcQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QH3wFtcziG8a2LZp0z4uoqy4LqKLLPgQmjRBQXdlWxX_vZPa1AMV9LVNDzKTzDfJl28A9pjh2iJj6htPU2a0onEWGcrCwDehZ6Tksiw2wbvduN9PzqtDYblju7styXKmrg-72XCEqa9vWRMImmk4DpMMI5Yl8l1cXtV7BzxiniN2hEnSr47KfP-OT-Fo_MaSIT8gzS-bo2XMOZ7_398uwFyFMUnrzSkWYUwPlmDe1W8g1XBegtmzWrM1X4brFrm3cgwFcTrjBAEtsau_w4cXUvsoGRpiBcPvLZGGuiK6BbnBjHYkrcwwUZaiXS32krv0OV-B3vFR77BNq9ILVCFAKWggmU7jVLHMqLgZxRrNFjdNEqVp6qWIIbnMJIKX2DNMBTJjPFKJNqEvI08hyFmFicFwoNeAKJVEWkl8oTKYegY4P2gWIMrJfB4yIxvgOQMIVcmS2-oYd6IWVC67UmBXirIrRdiA_fqZhzdRjl9b76Jd64ZWT7vd6gh7DWcszwr4PQUN2HRmF9UozkXQjFnAMcPmDThwZn6__fMn1__WfAem272zjuicdE83YMYvvcZyDDdhohg96i2YUk_FbT7aLj39FSnl9lU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6tDCH2MMYvUWDMQryB1SZx4uSxGlSdYBUSCFXiwYodWyBBWrWBaf_97tIkAwST0F4Tx4l85_g7-7vvAA6Ek5aQMfedZ7lw1vA4ixwXYeC70HNaS10Wm5DDYTwaJedPsvhLtnt9JDnPaSCVprzoTDLXaRLfaGnCMNgnBgUCaB624KOgokEUr19cNecIMhJeTfIIk2RUpc283sezpal1Q8TIJ6jzxUFpuf70V_7_y7_A5wp7st7cWVbhg83XYKWu68Cqab4Gn342Wq6zdbjusXuSaShYrT_OEOgy2hUeT36zxnfZ2DESEr8ngg2vi-sW7AYj3akm-WFmiLpdbQKzu_TXbAMu-yeX3we8KsnADQKXggda2DROjcicibtRbNGccdclUZqmXorYUupMI6iJPSdMoDMhI5NYF_o68gyCn01YyMe53QJmTBJZo7FD4zAkDfC_YUWA6CfzZSicboNXG0OZSq6cqmbcqUZouRxKhUOpyqFUYRsOm2cmc7GOf7beRxs3DUlne9A7U3QN_2QeCfs9Bm3YrV1AVbN7poJuLAKJkbdsw1Ft8r-3337l9vuaf4Ol8-O-OvsxPN2BZb90GqIe7sJCMX2wX2HRPBa3s-le6fR_AOeU_zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+moment+approach+for+entropy+solutions+of+parameter-dependent+hyperbolic+conservation+laws&rft.jtitle=Numerische+Mathematik&rft.au=Cardoen%2C+Cl%C3%A9ment&rft.au=Marx%2C+Swann&rft.au=Nouy%2C+Anthony&rft.au=Seguin%2C+Nicolas&rft.date=2024-08-01&rft.pub=Springer+Verlag&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=156&rft_id=info:doi/10.1007%2Fs00211-024-01428-5&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04218591v3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon