On the notion of ground state for nonlinear Schrödinger equations on metric graphs
We compare ground states for the nonlinear Schrödinger equation on metric graphs, defined as global minimizers of the action functional constrained on the Nehari manifold, and least action solutions, namely minimizers of the action among all solutions to the equation. In principle, four alternative...
Uloženo v:
| Vydáno v: | Calculus of variations and partial differential equations Ročník 62; číslo 5; s. 159 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 0944-2669, 1432-0835 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!