Airway mechanics, gas exchange, and blood flow in a nonlinear model of the normal human lung

A model integrating airway/lung mechanics, pulmonary blood flow, and gas exchange for a normal human subject executing the forced vital capacity (FVC) maneuver is presented. It requires as input the intrapleural pressure measured during the maneuver. Selected model-generated output variables are com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) Jg. 84; H. 4; S. 1447
Hauptverfasser: Liu, C H, Niranjan, S C, Clark, Jr, J W, San, K Y, Zwischenberger, J B, Bidani, A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.04.1998
Schlagworte:
ISSN:8750-7587
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A model integrating airway/lung mechanics, pulmonary blood flow, and gas exchange for a normal human subject executing the forced vital capacity (FVC) maneuver is presented. It requires as input the intrapleural pressure measured during the maneuver. Selected model-generated output variables are compared against measured data (flow at the mouth, change in lung volume, and expired O2 and CO2 concentrations at the mouth). A nonlinear parameter-estimation algorithm is employed to vary selected sensitive model parameters to obtain reasonable least squares fits to the data. This study indicates that 1) all three components of the respiratory model are necessary to characterize the FVC maneuver; 2) changes in pulmonary blood flow rate are associated with changes in alveolar and intrapleural pressures and affect gas exchange and the time course of expired gas concentrations; and 3) a collapsible midairway segment must be included to match airflow during a forced expiration. Model simulations suggest that the resistances to airflow offered by the collapsible segment and the small airways are significant throughout forced expiration; their combined effect is needed to adequately match the inspiratory and expiratory flow-volume loops. Despite the limitations of this lumped single-compartment model, a remarkable agreement with airflow and expired gas concentration measurements is obtained for normal subjects. Furthermore, the model provides insight into the important dynamic interactions between ventilation and perfusion during the FVC maneuver.
AbstractList A model integrating airway/lung mechanics, pulmonary blood flow, and gas exchange for a normal human subject executing the forced vital capacity (FVC) maneuver is presented. It requires as input the intrapleural pressure measured during the maneuver. Selected model-generated output variables are compared against measured data (flow at the mouth, change in lung volume, and expired O2 and CO2 concentrations at the mouth). A nonlinear parameter-estimation algorithm is employed to vary selected sensitive model parameters to obtain reasonable least squares fits to the data. This study indicates that 1) all three components of the respiratory model are necessary to characterize the FVC maneuver; 2) changes in pulmonary blood flow rate are associated with changes in alveolar and intrapleural pressures and affect gas exchange and the time course of expired gas concentrations; and 3) a collapsible midairway segment must be included to match airflow during a forced expiration. Model simulations suggest that the resistances to airflow offered by the collapsible segment and the small airways are significant throughout forced expiration; their combined effect is needed to adequately match the inspiratory and expiratory flow-volume loops. Despite the limitations of this lumped single-compartment model, a remarkable agreement with airflow and expired gas concentration measurements is obtained for normal subjects. Furthermore, the model provides insight into the important dynamic interactions between ventilation and perfusion during the FVC maneuver.
A model integrating airway/lung mechanics, pulmonary blood flow, and gas exchange for a normal human subject executing the forced vital capacity (FVC) maneuver is presented. It requires as input the intrapleural pressure measured during the maneuver. Selected model-generated output variables are compared against measured data (flow at the mouth, change in lung volume, and expired O2 and CO2 concentrations at the mouth). A nonlinear parameter-estimation algorithm is employed to vary selected sensitive model parameters to obtain reasonable least squares fits to the data. This study indicates that 1) all three components of the respiratory model are necessary to characterize the FVC maneuver; 2) changes in pulmonary blood flow rate are associated with changes in alveolar and intrapleural pressures and affect gas exchange and the time course of expired gas concentrations; and 3) a collapsible midairway segment must be included to match airflow during a forced expiration. Model simulations suggest that the resistances to airflow offered by the collapsible segment and the small airways are significant throughout forced expiration; their combined effect is needed to adequately match the inspiratory and expiratory flow-volume loops. Despite the limitations of this lumped single-compartment model, a remarkable agreement with airflow and expired gas concentration measurements is obtained for normal subjects. Furthermore, the model provides insight into the important dynamic interactions between ventilation and perfusion during the FVC maneuver.A model integrating airway/lung mechanics, pulmonary blood flow, and gas exchange for a normal human subject executing the forced vital capacity (FVC) maneuver is presented. It requires as input the intrapleural pressure measured during the maneuver. Selected model-generated output variables are compared against measured data (flow at the mouth, change in lung volume, and expired O2 and CO2 concentrations at the mouth). A nonlinear parameter-estimation algorithm is employed to vary selected sensitive model parameters to obtain reasonable least squares fits to the data. This study indicates that 1) all three components of the respiratory model are necessary to characterize the FVC maneuver; 2) changes in pulmonary blood flow rate are associated with changes in alveolar and intrapleural pressures and affect gas exchange and the time course of expired gas concentrations; and 3) a collapsible midairway segment must be included to match airflow during a forced expiration. Model simulations suggest that the resistances to airflow offered by the collapsible segment and the small airways are significant throughout forced expiration; their combined effect is needed to adequately match the inspiratory and expiratory flow-volume loops. Despite the limitations of this lumped single-compartment model, a remarkable agreement with airflow and expired gas concentration measurements is obtained for normal subjects. Furthermore, the model provides insight into the important dynamic interactions between ventilation and perfusion during the FVC maneuver.
Author Niranjan, S C
Zwischenberger, J B
Liu, C H
Bidani, A
Clark, Jr, J W
San, K Y
Author_xml – sequence: 1
  givenname: C H
  surname: Liu
  fullname: Liu, C H
  organization: Department of Chemical Engineering, University of Texas Medical Branch, Galveston, Texas 77555, USA
– sequence: 2
  givenname: S C
  surname: Niranjan
  fullname: Niranjan, S C
– sequence: 3
  givenname: J W
  surname: Clark, Jr
  fullname: Clark, Jr, J W
– sequence: 4
  givenname: K Y
  surname: San
  fullname: San, K Y
– sequence: 5
  givenname: J B
  surname: Zwischenberger
  fullname: Zwischenberger, J B
– sequence: 6
  givenname: A
  surname: Bidani
  fullname: Bidani, A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9516216$$D View this record in MEDLINE/PubMed
BookMark eNotkMtqwzAQRbVISZO0f9CCVl3FriRLlrwMoS8IdNPuCmYsyYmDLLmWTZq_r0tzN8M9HGZglmjmg7cI3VGSUirY4xG6zqW0KFSqeMpTyrmcoYWSgiRSKHmNljEeCZm4oHM0LwTNGc0X6GvT9Cc449bqA_hGxzXeQ8T256_u7RqDN7hyIRhcu3DCjceAp-Ou8RZ63AZjHQ41Hg52wn0LDh_GFjx2o9_foKsaXLS3l7lCn89PH9vXZPf-8rbd7BKdFXJIGCEKBNVEV7WuptRqIlwYboXOWKWIyrPCZFoTUxumuKpNxjglBlSea2Ar9PC_t-vD92jjULZN1NY58DaMsZSFFIzLbBLvL-JYtdaUXd-00J_LyzvYLz4vY3A
CitedBy_id crossref_primary_10_3389_fphys_2025_1612501
crossref_primary_10_1007_s00421_013_2623_x
crossref_primary_10_1016_j_jaerosci_2021_105782
crossref_primary_10_1016_j_cmpb_2010_06_020
crossref_primary_10_1023_A_1024795417999
crossref_primary_10_1088_1742_6596_1988_1_012010
crossref_primary_10_1016_j_compbiomed_2024_108960
crossref_primary_10_1002_cnm_1437
crossref_primary_10_1007_s10441_013_9175_7
crossref_primary_10_1007_s11517_022_02601_4
crossref_primary_10_1016_j_jaerosci_2024_106430
crossref_primary_10_1109_ACCESS_2025_3556023
crossref_primary_10_1109_TBME_2024_3486580
crossref_primary_10_1515_BMT_2009_030
crossref_primary_10_1002_wsbm_167
crossref_primary_10_1016_j_jbiomech_2011_08_012
crossref_primary_10_1002_cnm_2929
crossref_primary_10_1016_j_matcom_2020_05_014
crossref_primary_10_1186_1742_4682_6_15
crossref_primary_10_1177_0954411912451823
crossref_primary_10_1134_S0005117911020238
crossref_primary_10_1016_j_ymssp_2025_112689
crossref_primary_10_1016_j_resp_2022_103883
crossref_primary_10_1039_C7RA11357A
crossref_primary_10_3390_a18070389
crossref_primary_10_1002_ppul_23962
crossref_primary_10_1016_j_compbiomed_2004_08_001
crossref_primary_10_1006_cbmr_1999_1515
crossref_primary_10_1109_JPROC_2006_871772
crossref_primary_10_1016_j_cmpb_2018_03_008
crossref_primary_10_1023_B_ACBI_0000046596_43503_36
crossref_primary_10_1016_j_cma_2024_117499
crossref_primary_10_1016_j_mbs_2009_05_002
crossref_primary_10_1152_japplphysiol_00888_2010
crossref_primary_10_1016_j_jtbi_2010_01_011
crossref_primary_10_1177_0954411918823035
crossref_primary_10_1023_A_1014278526603
crossref_primary_10_1007_s10439_010_0069_4
crossref_primary_10_1186_s12938_018_0591_4
crossref_primary_10_1371_journal_pone_0198425
crossref_primary_10_1007_s10439_006_9213_6
crossref_primary_10_1016_j_jtbi_2005_06_005
crossref_primary_10_1016_j_pbiomolbio_2011_06_014
crossref_primary_10_1016_j_heliyon_2023_e13610
crossref_primary_10_1002_wsbm_1244
crossref_primary_10_1016_j_arcontrol_2019_05_002
crossref_primary_10_1016_j_cmpb_2010_06_017
crossref_primary_10_1016_j_compbiomed_2014_05_001
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/jappl.1998.84.4.1447
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
ExternalDocumentID 9516216
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
18M
1CY
29J
2WC
39C
3O-
4.4
53G
5VS
85S
8M5
AAFWJ
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
ACPRK
ACYGS
ADBBV
ADFNX
AEILP
AENEX
AFOSN
AFRAH
AGCDD
AGNAY
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
C2-
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
J5H
KQ8
L7B
MVM
NEJ
NPM
OHT
OK1
P-O
P2P
P6G
PQQKQ
RAP
RHF
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
VH1
VXZ
W8F
WH7
WOQ
X7M
XOL
XSW
YBH
YCJ
YQJ
YQT
YWH
ZXP
~02
7X8
ADXHL
ID FETCH-LOGICAL-c397t-2008a51c0cbfcbbbbf800845d4e5c32b808639d3cc0dfd2848fd32410da866ca2
IEDL.DBID 7X8
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000072716100046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 8750-7587
IngestDate Thu Sep 04 20:28:41 EDT 2025
Wed Feb 19 02:41:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-2008a51c0cbfcbbbbf800845d4e5c32b808639d3cc0dfd2848fd32410da866ca2
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 9516216
PQID 79752473
PQPubID 23479
ParticipantIDs proquest_miscellaneous_79752473
pubmed_primary_9516216
PublicationCentury 1900
PublicationDate 1998-04-01
PublicationDateYYYYMMDD 1998-04-01
PublicationDate_xml – month: 04
  year: 1998
  text: 1998-04-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 1998
SSID ssj0014451
Score 1.8602743
Snippet A model integrating airway/lung mechanics, pulmonary blood flow, and gas exchange for a normal human subject executing the forced vital capacity (FVC) maneuver...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1447
SubjectTerms Adult
Algorithms
Computer Simulation
Elasticity
Humans
Lung Compliance - physiology
Models, Biological
Nonlinear Dynamics
Predictive Value of Tests
Pulmonary Circulation - physiology
Pulmonary Gas Exchange - physiology
Respiratory Mechanics - physiology
Vital Capacity
Title Airway mechanics, gas exchange, and blood flow in a nonlinear model of the normal human lung
URI https://www.ncbi.nlm.nih.gov/pubmed/9516216
https://www.proquest.com/docview/79752473
Volume 84
WOSCitedRecordID wos000072716100046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UinjxLb6dg3gymscmuwFBiigebOlBoQehbPYhlZpq66v_3tlNiifxYA45BALL7uzMN49vBuBIch5JoxWdgFEBszYMilSxoIiF5JE2LDO-u_4tb7dFt5t3ZuB8yoVxZZVTnegVtR4qFyM_4zlPY8aTi5fXwM2McrnVeoDGLDQSAjJOpnn3J4fgWm9V0b0wIFTMa-IcGayzJ5cddkQ9cSrYKXMZTv47xPSm5nr5f4tcgaUaYmKzkolVmDHlGqw3S3Kvnyd4jL7o00fT12ChVefW1-Gh2R99ygk-G0cG7qvxCT7KMZqviht8grLU6Ovc0Q6Gn9gvUWJZddqQI_QjdXBokRAlfSZ9P0A_ABAHpE824P766u7yJqhnLwSKEMqbuzxCppEKVWFVQY8VrvV-qplJVRIXglyhJNeJUqG2mmycsJqwWRRqKbJMyXgT5mgJZgswYzkpAZZKm-ZMk7slLc9ch9REWKaF2IbD6Wb2SLZdwkKWZvg-7k23cxs2q_PovVQtOHqEC7M4ynb-_HUXFisWoau12YOGpUtt9mFefbz1x6MDLzH0bnda3119yxk
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Airway+mechanics%2C+gas+exchange%2C+and+blood+flow+in+a+nonlinear+model+of+the+normal+human+lung&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Liu%2C+C+H&rft.au=Niranjan%2C+S+C&rft.au=Clark%2C+J+W&rft.au=San%2C+K+Y&rft.date=1998-04-01&rft.issn=8750-7587&rft.volume=84&rft.issue=4&rft.spage=1447&rft_id=info:doi/10.1152%2Fjappl.1998.84.4.1447&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon