Numerical simulation of solid–liquid food mixture in a high pressure processing unit using computational fluid dynamics
Temperature distribution, velocity and pressure profiles during high pressure compression (500 MPa) of liquid food (water) and solid–liquid food mixture (beef fat and water), within a three dimensional cylinder basket is simulated. The computations domain in both cases was performed for a cylinder w...
Uloženo v:
| Vydáno v: | Journal of food engineering Ročník 80; číslo 4; s. 1031 - 1042 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.06.2007
Elsevier |
| Témata: | |
| ISSN: | 0260-8774, 1873-5770 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Temperature distribution, velocity and pressure profiles during high pressure compression (500
MPa) of liquid food (water) and solid–liquid food mixture (beef fat and water), within a three dimensional cylinder basket is simulated. The computations domain in both cases was performed for a cylinder with a diameter of 38
mm and height of 290
mm, which are the same dimensions of the high pressure unit “FOOD-LAB model S-FL-850-9-W” available at the University of Auckland, New Zealand. The governing equations for continuity, momentum and energy conservation are solved using a commercial computational fluid dynamics (CFD) package (PHOENICS), version 3.5, which is based on a finite volume method of solution. The simulation for liquid food only shows the effect of forced and free convection flow on the temperature distribution in the liquid at the early stages of compression. This is due to the difference between the velocity of the pumping fluid as it enters the cylinder inlet hole (10
−2–10
−3)
m
s
−1 and the velocity in the treatment chamber (10
−8–10
−9)
m
s
−1. The simulation for the solid–liquid mixture shows as well, the temperature distribution in the solid and liquid at different stages of compression. It shows that the solid pieces are more heated than the liquid, which is due to the difference in their compression heating coefficient. Validation of the computed temperature in both cases is found to be in an agreement with those measured experimentally and reported in the literature. |
|---|---|
| AbstractList | Temperature distribution, velocity and pressure profiles during high pressure compression (500 MPa) of liquid food (water) and solid-liquid food mixture (beef fat and water), within a three dimensional cylinder basket is simulated. The computations domain in both cases was performed for a cylinder with a diameter of 38 mm and height of 290 mm, which are the same dimensions of the high pressure unit “FOOD-LAB model S-FL-850-9-W” available at the University of Auckland, New Zealand. The governing equations for continuity, momentum and energy conservation are solved using a commercial computational fluid dynamics (CFD) package (PHOENICS), version 3.5, which is based on a finite volume method of solution. The simulation for liquid food only shows the effect of forced and free convection flow on the temperature distribution in the liquid at the early stages of compression. This is due to the difference between the velocity of the pumping fluid as it enters the cylinder inlet hole (10⁻²-10⁻³) m s-1 and the velocity in the treatment chamber (10⁻⁸-10⁻⁹) m s-1. The simulation for the solid-liquid mixture shows as well, the temperature distribution in the solid and liquid at different stages of compression. It shows that the solid pieces are more heated than the liquid, which is due to the difference in their compression heating coefficient. Validation of the computed temperature in both cases is found to be in an agreement with those measured experimentally and reported in the literature. Temperature distribution, velocity and pressure profiles during high pressure compression (500 MPa) of liquid food (water) and solid–liquid food mixture (beef fat and water), within a three dimensional cylinder basket is simulated. The computations domain in both cases was performed for a cylinder with a diameter of 38 mm and height of 290 mm, which are the same dimensions of the high pressure unit “FOOD-LAB model S-FL-850-9-W” available at the University of Auckland, New Zealand. The governing equations for continuity, momentum and energy conservation are solved using a commercial computational fluid dynamics (CFD) package (PHOENICS), version 3.5, which is based on a finite volume method of solution. The simulation for liquid food only shows the effect of forced and free convection flow on the temperature distribution in the liquid at the early stages of compression. This is due to the difference between the velocity of the pumping fluid as it enters the cylinder inlet hole (10 −2–10 −3) m s −1 and the velocity in the treatment chamber (10 −8–10 −9) m s −1. The simulation for the solid–liquid mixture shows as well, the temperature distribution in the solid and liquid at different stages of compression. It shows that the solid pieces are more heated than the liquid, which is due to the difference in their compression heating coefficient. Validation of the computed temperature in both cases is found to be in an agreement with those measured experimentally and reported in the literature. |
| Author | Abdul Ghani, A.G. Farid, M.M. |
| Author_xml | – sequence: 1 givenname: A.G. surname: Abdul Ghani fullname: Abdul Ghani, A.G. – sequence: 2 givenname: M.M. surname: Farid fullname: Farid, M.M. email: m.farid@auckland.ac.nz |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18517785$$DView record in Pascal Francis |
| BookMark | eNqFkcFu1DAQhi1UJLaFVwBf4JYwTpzYkTiAKgpIFRygZ8vr2NtZJfbWTir2xjvwhn0SnKZw4NKTR9b3zz8z_yk58cFbQl4yKBmw9u2-3LsQeut3ZQXQliBLYPIJ2TAp6qIRAk7IBqoWCikEf0ZOU9oDQANVtSHHr_NoIxo90ITjPOgJg6fB0RQG7O9-_R7wZsaeLg50xJ_THC1FTzW9xt01PUSb0vJ1iMHkEv2Ozh4nOt-XJoyHebrvmQ3csHTqj16PaNJz8tTpIdkXD-8Zubr4-OP8c3H57dOX8w-Xhak7MRVMALcVr7hrt2C3TrO-YzLv3dim3mpZc93UWrtO8l46aE1joHZtX4HWYFxXn5E3a9884s1s06RGTMYOg_Y2zElxwbum6poMvn4Adcr3cFF7g0kdIo46HhWTDRNCLty7lTMxpBStUwbXHaeocVAM1JKL2qu_uaglFwVS5VyyvP1P_s_hMeGrVeh0UHoX82xX3ytgNYDgjeAsE-9XwuZ73qKNKhm03tgeozWT6gM-ZvIHxoO7dg |
| CODEN | JFOEDH |
| CitedBy_id | crossref_primary_10_1080_10408398_2013_821593 crossref_primary_10_1007_s11947_008_0096_4 crossref_primary_10_4028_www_scientific_net_AMR_740_242 crossref_primary_10_1007_s11947_007_0007_0 crossref_primary_10_1080_10408398_2010_518256 crossref_primary_10_1016_j_jfoodeng_2009_09_003 crossref_primary_10_1007_s11947_013_1204_7 crossref_primary_10_1016_j_ifset_2021_102771 crossref_primary_10_1016_j_jfoodeng_2011_01_001 crossref_primary_10_1016_j_jfoodeng_2019_109831 crossref_primary_10_1080_10407790_2024_2302859 crossref_primary_10_1111_jfpp_13085 crossref_primary_10_1016_j_jfoodeng_2019_109810 crossref_primary_10_1016_j_foodchem_2013_12_017 crossref_primary_10_1016_j_jfoodeng_2009_10_042 crossref_primary_10_3390_app13116534 crossref_primary_10_1002_aic_11301 crossref_primary_10_1016_j_jfoodeng_2009_12_014 crossref_primary_10_1007_s12393_010_9028_y crossref_primary_10_21496_ams_2012_020 crossref_primary_10_1007_s12393_014_9098_3 crossref_primary_10_1016_j_ifset_2013_06_012 crossref_primary_10_1016_j_heliyon_2023_e21593 crossref_primary_10_1016_j_foodres_2009_12_002 crossref_primary_10_1002_btpr_116 crossref_primary_10_1007_s11694_016_9415_z crossref_primary_10_1111_1541_4337_12763 crossref_primary_10_1016_j_jfoodeng_2009_10_010 crossref_primary_10_1016_j_jfoodeng_2011_03_025 crossref_primary_10_1016_j_tifs_2011_09_002 crossref_primary_10_1111_ijfs_12630 crossref_primary_10_1016_j_fbp_2017_01_001 |
| Cites_doi | 10.1016/j.ifset.2004.07.003 10.1016/S1466-8564(99)00003-X 10.1016/S0924-2244(97)01028-5 10.1016/S1466-8564(01)00060-1 10.1021/jf9802575 10.1016/j.ifset.2004.04.001 10.1016/S0260-8774(02)00427-2 |
| ContentType | Journal Article |
| Copyright | 2006 Elsevier Ltd 2007 INIST-CNRS |
| Copyright_xml | – notice: 2006 Elsevier Ltd – notice: 2007 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
| DOI | 10.1016/j.jfoodeng.2006.08.018 |
| DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1873-5770 |
| EndPage | 1042 |
| ExternalDocumentID | 18517785 10_1016_j_jfoodeng_2006_08_018 US201300745741 S026087740600570X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALCJ AALRI AAMNW AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SES SEW SPC SPCBC SSA SSG SSZ T5K VH1 WUQ Y6R ZY4 ~G- ~KM AAHBH AATTM AAXKI ABWVN ACRPL ADNMO AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS ~HD AGCQF AGRNS IQODW 7S9 L.6 |
| ID | FETCH-LOGICAL-c397t-1704e2424f6b0ebfa1d9180165e53ba834a53aaf984d8f06c5c03f6d20aa0cf93 |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000244544200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0260-8774 |
| IngestDate | Sun Nov 09 14:36:06 EST 2025 Mon Jul 21 09:16:57 EDT 2025 Sat Nov 29 06:45:34 EST 2025 Tue Nov 18 22:21:02 EST 2025 Thu Apr 03 09:45:07 EDT 2025 Fri Feb 23 02:34:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | CFD Velocity profile Temperature distribution Adiabatic heating High pressure processing Physical dressing Computational fluid dynamics Velocity Mixture Profile Solid High pressure Liquid Heating Numerical simulation Food |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c397t-1704e2424f6b0ebfa1d9180165e53ba834a53aaf984d8f06c5c03f6d20aa0cf93 |
| Notes | http://dx.doi.org/10.1016/j.jfoodeng.2006.08.018 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 47495295 |
| PQPubID | 24069 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_47495295 pascalfrancis_primary_18517785 crossref_citationtrail_10_1016_j_jfoodeng_2006_08_018 crossref_primary_10_1016_j_jfoodeng_2006_08_018 fao_agris_US201300745741 elsevier_sciencedirect_doi_10_1016_j_jfoodeng_2006_08_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-06-01 |
| PublicationDateYYYYMMDD | 2007-06-01 |
| PublicationDate_xml | – month: 06 year: 2007 text: 2007-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Journal of food engineering |
| PublicationYear | 2007 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Ludikhuyze, Indrawati, Van der Broeck, Weemens, Hendrickx (bib10) 1998; 46 Denys, Van Loey, Hendrickx (bib4) 2000; 1 Saul, Wagner (bib12) 1989; 9 Hartmann, Delgado, Szymczyk (bib7) 2003; 59 Rahman (bib11) 1995 Barbosa-Canovas, Pothakamury, Paulo, Swanson (bib1) 1997 Hartman, Schuhholz, Kitsubun, Chapleau, Bali, Delgado (bib8) 2004; 5 Bird, Stewart, Lightfoot (bib3) 1976 Hartmann (bib6) 2002; 3 Scott, Richardson (bib13) 1997; 8 Ghani, A. G., Farid, M. M., & Richards, P. (2004). A simulation study of heat transfer during high pressure processing of food using computational fluid dynamics (CFD). In Proceedings of the CHEMECA 2004 Conference, Sydney, Australia. Hayes (bib9) 1987 Balasubramaniam, Ting, Stewart, Robbins (bib2) 2004; 5 Hayes (10.1016/j.jfoodeng.2006.08.018_bib9) 1987 Barbosa-Canovas (10.1016/j.jfoodeng.2006.08.018_bib1) 1997 Denys (10.1016/j.jfoodeng.2006.08.018_bib4) 2000; 1 Saul (10.1016/j.jfoodeng.2006.08.018_bib12) 1989; 9 10.1016/j.jfoodeng.2006.08.018_bib5 Scott (10.1016/j.jfoodeng.2006.08.018_bib13) 1997; 8 Balasubramaniam (10.1016/j.jfoodeng.2006.08.018_bib2) 2004; 5 Hartmann (10.1016/j.jfoodeng.2006.08.018_bib7) 2003; 59 Ludikhuyze (10.1016/j.jfoodeng.2006.08.018_bib10) 1998; 46 Rahman (10.1016/j.jfoodeng.2006.08.018_bib11) 1995 Hartmann (10.1016/j.jfoodeng.2006.08.018_bib6) 2002; 3 Hartman (10.1016/j.jfoodeng.2006.08.018_bib8) 2004; 5 Bird (10.1016/j.jfoodeng.2006.08.018_bib3) 1976 |
| References_xml | – volume: 3 start-page: 11 year: 2002 end-page: 18 ident: bib6 article-title: Numerical simulation of thermodynamic and fluid-dynamic processes during high-pressure treatment of fluid food system publication-title: Journal of Innovative Food Science and Emerging Technologies – volume: 9 start-page: 1212 year: 1989 end-page: 1255 ident: bib12 article-title: A fundamental equation for water covering the range from the melting line to 1273 publication-title: Journal of Physical and Chemical Reference Data – volume: 46 start-page: 4081 year: 1998 end-page: 4086 ident: bib10 article-title: Effect of combined pressure and temperature on soybean lipoxygenase. 2. Modeling inactivation kinetics under static and dynamic conditions publication-title: Journal of Agricultural food Chemistry – volume: 8 start-page: 119 year: 1997 end-page: 124 ident: bib13 article-title: The applications of computational fluid dynamics in the food industry publication-title: Journal of Trends in Food Science & Technology – year: 1987 ident: bib9 article-title: Food engineering data handbook – reference: Ghani, A. G., Farid, M. M., & Richards, P. (2004). A simulation study of heat transfer during high pressure processing of food using computational fluid dynamics (CFD). In Proceedings of the CHEMECA 2004 Conference, Sydney, Australia. – year: 1976 ident: bib3 article-title: Transport phenomena – volume: 59 start-page: 33 year: 2003 end-page: 44 ident: bib7 article-title: Convective and diffusive transport effects in a high pressure induced inactivation process of packed food publication-title: Journal of Food Engineering – volume: 5 start-page: 299 year: 2004 end-page: 306 ident: bib2 article-title: Recommended laboratory practise for conducting high pressure microbial inactivation experiments publication-title: Journal of Innovative Food Science and Emerging Technologies – year: 1997 ident: bib1 article-title: Non thermal preservation of foods – volume: 1 start-page: 5 year: 2000 end-page: 19 ident: bib4 article-title: A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics publication-title: Journal of Innovative Food Science & Emerging Technologies – volume: 5 start-page: 399 year: 2004 end-page: 411 ident: bib8 article-title: Experimental and numerical analysis of thermofluiddynamics in a high-pressure autoclave publication-title: Journal of Innovative Food Science & Emerging Technologies – year: 1995 ident: bib11 article-title: Food properties handbook – year: 1997 ident: 10.1016/j.jfoodeng.2006.08.018_bib1 – volume: 5 start-page: 399 year: 2004 ident: 10.1016/j.jfoodeng.2006.08.018_bib8 article-title: Experimental and numerical analysis of thermofluiddynamics in a high-pressure autoclave publication-title: Journal of Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2004.07.003 – ident: 10.1016/j.jfoodeng.2006.08.018_bib5 – year: 1987 ident: 10.1016/j.jfoodeng.2006.08.018_bib9 – volume: 1 start-page: 5 year: 2000 ident: 10.1016/j.jfoodeng.2006.08.018_bib4 article-title: A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics publication-title: Journal of Innovative Food Science & Emerging Technologies doi: 10.1016/S1466-8564(99)00003-X – volume: 8 start-page: 119 year: 1997 ident: 10.1016/j.jfoodeng.2006.08.018_bib13 article-title: The applications of computational fluid dynamics in the food industry publication-title: Journal of Trends in Food Science & Technology doi: 10.1016/S0924-2244(97)01028-5 – volume: 9 start-page: 1212 year: 1989 ident: 10.1016/j.jfoodeng.2006.08.018_bib12 article-title: A fundamental equation for water covering the range from the melting line to 1273K at pressures up to 25000MPa publication-title: Journal of Physical and Chemical Reference Data – volume: 3 start-page: 11 year: 2002 ident: 10.1016/j.jfoodeng.2006.08.018_bib6 article-title: Numerical simulation of thermodynamic and fluid-dynamic processes during high-pressure treatment of fluid food system publication-title: Journal of Innovative Food Science and Emerging Technologies doi: 10.1016/S1466-8564(01)00060-1 – volume: 46 start-page: 4081 year: 1998 ident: 10.1016/j.jfoodeng.2006.08.018_bib10 article-title: Effect of combined pressure and temperature on soybean lipoxygenase. 2. Modeling inactivation kinetics under static and dynamic conditions publication-title: Journal of Agricultural food Chemistry doi: 10.1021/jf9802575 – year: 1995 ident: 10.1016/j.jfoodeng.2006.08.018_bib11 – volume: 5 start-page: 299 year: 2004 ident: 10.1016/j.jfoodeng.2006.08.018_bib2 article-title: Recommended laboratory practise for conducting high pressure microbial inactivation experiments publication-title: Journal of Innovative Food Science and Emerging Technologies doi: 10.1016/j.ifset.2004.04.001 – year: 1976 ident: 10.1016/j.jfoodeng.2006.08.018_bib3 – volume: 59 start-page: 33 year: 2003 ident: 10.1016/j.jfoodeng.2006.08.018_bib7 article-title: Convective and diffusive transport effects in a high pressure induced inactivation process of packed food publication-title: Journal of Food Engineering doi: 10.1016/S0260-8774(02)00427-2 |
| SSID | ssj0005022 |
| Score | 2.0667546 |
| Snippet | Temperature distribution, velocity and pressure profiles during high pressure compression (500
MPa) of liquid food (water) and solid–liquid food mixture (beef... Temperature distribution, velocity and pressure profiles during high pressure compression (500 MPa) of liquid food (water) and solid-liquid food mixture (beef... |
| SourceID | proquest pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1031 |
| SubjectTerms | Adiabatic heating animal fats and oils beef beef fat Biological and medical sciences CFD compressibility fluid mechanics Food engineering Food industries Fundamental and applied biological sciences. Psychology General aspects heat transfer High pressure processing high pressure treatment inactivation liquids liquified foods mixtures model validation physical properties pressure simulation models solids Temperature distribution temperature profiles velocity Velocity profile water |
| Title | Numerical simulation of solid–liquid food mixture in a high pressure processing unit using computational fluid dynamics |
| URI | https://dx.doi.org/10.1016/j.jfoodeng.2006.08.018 https://www.proquest.com/docview/47495295 |
| Volume | 80 |
| WOSCitedRecordID | wos000244544200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5770 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005022 issn: 0260-8774 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6Dgk4IBiglY_hA7coxWm-nGNhGyuaKgQr6i1yEntK1aVlaUb_Af5vnmO7SWFT4cAlqizZjvt-ee_5fSL0lqQgk5OBa6c8SG0vhAtrlGTE9nkoUo9mkajrFHw7D8djOp1GnzudnyYX5mYeFgVdr6PlfyU1jAGxZersP5B7sygMwG8gOjyB7PD8K8KPK-WEmVtlfqWbc0mVEHbNM3uef6_yzBKymPFVvq79B3lhMUvWLbbqqFg5tFT5A9KOUMFHb1UmOXdZrYz5UMzlSplqaV_eoeXWG_Gm6OEGYO-PJ-fWx7PheFSzp37T5Ot0-GV0XBtq-9pWa6wSYRM9pUxlWq63uBlcnID1qpY8hvWqJk4aYl6Lj8rmEy2ZDHfGwa38XpkeZv2ZPA0cRnuXaJ9orr5VYPs3wbcJRwSdxQlD6u-h_UHoR7SL9oejk-mnJlaIKHeUOUMr1fz2ve_ScvYEW8jwW1YCDIRqnfKHFlCrNheP0SNNLTxUWHqCOrw4QPdNynp5gB62qlY-RT82CMMNwvBC4DbCsHxdrBGG8wIzLBGGDcJwgzAsEYZrhOEthOEaYdgg7BmanJ5cfDizdf8OOwUtd2U7IfG4TD8SQUJ4IpiTRQ6V-XPcdxNGXY_5LmMiol5GBQlSPyWuCLIBYYykInKfo26xKPghwgFJCcmIm5EgkT1PKYtgFS9gPEkYC1gP-eb_jlNd3F72WJnHJopxFhs6yc6rQSybrzq0h95t5i1VeZedMyJDzlgrqUr5jAGTO-ceAv1jdgnyO558HcioAVDhfdDqe-hoCxTN22hs9tAbg5IYJIB067GCL6oy9kIvku76F7uWeIkeNJ_qK9RdXVf8NbqX3qzy8vpIY_4XSMrT1Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+solid-liquid+food+mixture+in+a+high+pressure+processing+unit+using+computational+fluid+dynamics&rft.jtitle=Journal+of+food+engineering&rft.au=ABDUL+GHANI%2C+A.+G&rft.au=FARID%2C+M.+M&rft.date=2007-06-01&rft.pub=Elsevier&rft.issn=0260-8774&rft.volume=80&rft.issue=4&rft.spage=1031&rft.epage=1042&rft_id=info:doi/10.1016%2Fj.jfoodeng.2006.08.018&rft.externalDBID=n%2Fa&rft.externalDocID=18517785 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0260-8774&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0260-8774&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0260-8774&client=summon |