Numerical simulation of solid–liquid food mixture in a high pressure processing unit using computational fluid dynamics

Temperature distribution, velocity and pressure profiles during high pressure compression (500 MPa) of liquid food (water) and solid–liquid food mixture (beef fat and water), within a three dimensional cylinder basket is simulated. The computations domain in both cases was performed for a cylinder w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of food engineering Ročník 80; číslo 4; s. 1031 - 1042
Hlavní autoři: Abdul Ghani, A.G., Farid, M.M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.06.2007
Elsevier
Témata:
ISSN:0260-8774, 1873-5770
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Temperature distribution, velocity and pressure profiles during high pressure compression (500 MPa) of liquid food (water) and solid–liquid food mixture (beef fat and water), within a three dimensional cylinder basket is simulated. The computations domain in both cases was performed for a cylinder with a diameter of 38 mm and height of 290 mm, which are the same dimensions of the high pressure unit “FOOD-LAB model S-FL-850-9-W” available at the University of Auckland, New Zealand. The governing equations for continuity, momentum and energy conservation are solved using a commercial computational fluid dynamics (CFD) package (PHOENICS), version 3.5, which is based on a finite volume method of solution. The simulation for liquid food only shows the effect of forced and free convection flow on the temperature distribution in the liquid at the early stages of compression. This is due to the difference between the velocity of the pumping fluid as it enters the cylinder inlet hole (10 −2–10 −3) m s −1 and the velocity in the treatment chamber (10 −8–10 −9) m s −1. The simulation for the solid–liquid mixture shows as well, the temperature distribution in the solid and liquid at different stages of compression. It shows that the solid pieces are more heated than the liquid, which is due to the difference in their compression heating coefficient. Validation of the computed temperature in both cases is found to be in an agreement with those measured experimentally and reported in the literature.
AbstractList Temperature distribution, velocity and pressure profiles during high pressure compression (500 MPa) of liquid food (water) and solid-liquid food mixture (beef fat and water), within a three dimensional cylinder basket is simulated. The computations domain in both cases was performed for a cylinder with a diameter of 38 mm and height of 290 mm, which are the same dimensions of the high pressure unit “FOOD-LAB model S-FL-850-9-W” available at the University of Auckland, New Zealand. The governing equations for continuity, momentum and energy conservation are solved using a commercial computational fluid dynamics (CFD) package (PHOENICS), version 3.5, which is based on a finite volume method of solution. The simulation for liquid food only shows the effect of forced and free convection flow on the temperature distribution in the liquid at the early stages of compression. This is due to the difference between the velocity of the pumping fluid as it enters the cylinder inlet hole (10⁻²-10⁻³) m s-1 and the velocity in the treatment chamber (10⁻⁸-10⁻⁹) m s-1. The simulation for the solid-liquid mixture shows as well, the temperature distribution in the solid and liquid at different stages of compression. It shows that the solid pieces are more heated than the liquid, which is due to the difference in their compression heating coefficient. Validation of the computed temperature in both cases is found to be in an agreement with those measured experimentally and reported in the literature.
Temperature distribution, velocity and pressure profiles during high pressure compression (500 MPa) of liquid food (water) and solid–liquid food mixture (beef fat and water), within a three dimensional cylinder basket is simulated. The computations domain in both cases was performed for a cylinder with a diameter of 38 mm and height of 290 mm, which are the same dimensions of the high pressure unit “FOOD-LAB model S-FL-850-9-W” available at the University of Auckland, New Zealand. The governing equations for continuity, momentum and energy conservation are solved using a commercial computational fluid dynamics (CFD) package (PHOENICS), version 3.5, which is based on a finite volume method of solution. The simulation for liquid food only shows the effect of forced and free convection flow on the temperature distribution in the liquid at the early stages of compression. This is due to the difference between the velocity of the pumping fluid as it enters the cylinder inlet hole (10 −2–10 −3) m s −1 and the velocity in the treatment chamber (10 −8–10 −9) m s −1. The simulation for the solid–liquid mixture shows as well, the temperature distribution in the solid and liquid at different stages of compression. It shows that the solid pieces are more heated than the liquid, which is due to the difference in their compression heating coefficient. Validation of the computed temperature in both cases is found to be in an agreement with those measured experimentally and reported in the literature.
Author Abdul Ghani, A.G.
Farid, M.M.
Author_xml – sequence: 1
  givenname: A.G.
  surname: Abdul Ghani
  fullname: Abdul Ghani, A.G.
– sequence: 2
  givenname: M.M.
  surname: Farid
  fullname: Farid, M.M.
  email: m.farid@auckland.ac.nz
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18517785$$DView record in Pascal Francis
BookMark eNqFkcFu1DAQhi1UJLaFVwBf4JYwTpzYkTiAKgpIFRygZ8vr2NtZJfbWTir2xjvwhn0SnKZw4NKTR9b3zz8z_yk58cFbQl4yKBmw9u2-3LsQeut3ZQXQliBLYPIJ2TAp6qIRAk7IBqoWCikEf0ZOU9oDQANVtSHHr_NoIxo90ITjPOgJg6fB0RQG7O9-_R7wZsaeLg50xJ_THC1FTzW9xt01PUSb0vJ1iMHkEv2Ozh4nOt-XJoyHebrvmQ3csHTqj16PaNJz8tTpIdkXD-8Zubr4-OP8c3H57dOX8w-Xhak7MRVMALcVr7hrt2C3TrO-YzLv3dim3mpZc93UWrtO8l46aE1joHZtX4HWYFxXn5E3a9884s1s06RGTMYOg_Y2zElxwbum6poMvn4Adcr3cFF7g0kdIo46HhWTDRNCLty7lTMxpBStUwbXHaeocVAM1JKL2qu_uaglFwVS5VyyvP1P_s_hMeGrVeh0UHoX82xX3ytgNYDgjeAsE-9XwuZ73qKNKhm03tgeozWT6gM-ZvIHxoO7dg
CODEN JFOEDH
CitedBy_id crossref_primary_10_1080_10408398_2013_821593
crossref_primary_10_1007_s11947_008_0096_4
crossref_primary_10_4028_www_scientific_net_AMR_740_242
crossref_primary_10_1007_s11947_007_0007_0
crossref_primary_10_1080_10408398_2010_518256
crossref_primary_10_1016_j_jfoodeng_2009_09_003
crossref_primary_10_1007_s11947_013_1204_7
crossref_primary_10_1016_j_ifset_2021_102771
crossref_primary_10_1016_j_jfoodeng_2011_01_001
crossref_primary_10_1016_j_jfoodeng_2019_109831
crossref_primary_10_1080_10407790_2024_2302859
crossref_primary_10_1111_jfpp_13085
crossref_primary_10_1016_j_jfoodeng_2019_109810
crossref_primary_10_1016_j_foodchem_2013_12_017
crossref_primary_10_1016_j_jfoodeng_2009_10_042
crossref_primary_10_3390_app13116534
crossref_primary_10_1002_aic_11301
crossref_primary_10_1016_j_jfoodeng_2009_12_014
crossref_primary_10_1007_s12393_010_9028_y
crossref_primary_10_21496_ams_2012_020
crossref_primary_10_1007_s12393_014_9098_3
crossref_primary_10_1016_j_ifset_2013_06_012
crossref_primary_10_1016_j_heliyon_2023_e21593
crossref_primary_10_1016_j_foodres_2009_12_002
crossref_primary_10_1002_btpr_116
crossref_primary_10_1007_s11694_016_9415_z
crossref_primary_10_1111_1541_4337_12763
crossref_primary_10_1016_j_jfoodeng_2009_10_010
crossref_primary_10_1016_j_jfoodeng_2011_03_025
crossref_primary_10_1016_j_tifs_2011_09_002
crossref_primary_10_1111_ijfs_12630
crossref_primary_10_1016_j_fbp_2017_01_001
Cites_doi 10.1016/j.ifset.2004.07.003
10.1016/S1466-8564(99)00003-X
10.1016/S0924-2244(97)01028-5
10.1016/S1466-8564(01)00060-1
10.1021/jf9802575
10.1016/j.ifset.2004.04.001
10.1016/S0260-8774(02)00427-2
ContentType Journal Article
Copyright 2006 Elsevier Ltd
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Ltd
– notice: 2007 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.jfoodeng.2006.08.018
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1873-5770
EndPage 1042
ExternalDocumentID 18517785
10_1016_j_jfoodeng_2006_08_018
US201300745741
S026087740600570X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALCJ
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSZ
T5K
VH1
WUQ
Y6R
ZY4
~G-
~KM
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
IQODW
7S9
L.6
ID FETCH-LOGICAL-c397t-1704e2424f6b0ebfa1d9180165e53ba834a53aaf984d8f06c5c03f6d20aa0cf93
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000244544200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0260-8774
IngestDate Sun Nov 09 14:36:06 EST 2025
Mon Jul 21 09:16:57 EDT 2025
Sat Nov 29 06:45:34 EST 2025
Tue Nov 18 22:21:02 EST 2025
Thu Apr 03 09:45:07 EDT 2025
Fri Feb 23 02:34:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords CFD
Velocity profile
Temperature distribution
Adiabatic heating
High pressure processing
Physical dressing
Computational fluid dynamics
Velocity
Mixture
Profile
Solid
High pressure
Liquid
Heating
Numerical simulation
Food
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c397t-1704e2424f6b0ebfa1d9180165e53ba834a53aaf984d8f06c5c03f6d20aa0cf93
Notes http://dx.doi.org/10.1016/j.jfoodeng.2006.08.018
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 47495295
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_47495295
pascalfrancis_primary_18517785
crossref_citationtrail_10_1016_j_jfoodeng_2006_08_018
crossref_primary_10_1016_j_jfoodeng_2006_08_018
fao_agris_US201300745741
elsevier_sciencedirect_doi_10_1016_j_jfoodeng_2006_08_018
PublicationCentury 2000
PublicationDate 2007-06-01
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of food engineering
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ludikhuyze, Indrawati, Van der Broeck, Weemens, Hendrickx (bib10) 1998; 46
Denys, Van Loey, Hendrickx (bib4) 2000; 1
Saul, Wagner (bib12) 1989; 9
Hartmann, Delgado, Szymczyk (bib7) 2003; 59
Rahman (bib11) 1995
Barbosa-Canovas, Pothakamury, Paulo, Swanson (bib1) 1997
Hartman, Schuhholz, Kitsubun, Chapleau, Bali, Delgado (bib8) 2004; 5
Bird, Stewart, Lightfoot (bib3) 1976
Hartmann (bib6) 2002; 3
Scott, Richardson (bib13) 1997; 8
Ghani, A. G., Farid, M. M., & Richards, P. (2004). A simulation study of heat transfer during high pressure processing of food using computational fluid dynamics (CFD). In Proceedings of the CHEMECA 2004 Conference, Sydney, Australia.
Hayes (bib9) 1987
Balasubramaniam, Ting, Stewart, Robbins (bib2) 2004; 5
Hayes (10.1016/j.jfoodeng.2006.08.018_bib9) 1987
Barbosa-Canovas (10.1016/j.jfoodeng.2006.08.018_bib1) 1997
Denys (10.1016/j.jfoodeng.2006.08.018_bib4) 2000; 1
Saul (10.1016/j.jfoodeng.2006.08.018_bib12) 1989; 9
10.1016/j.jfoodeng.2006.08.018_bib5
Scott (10.1016/j.jfoodeng.2006.08.018_bib13) 1997; 8
Balasubramaniam (10.1016/j.jfoodeng.2006.08.018_bib2) 2004; 5
Hartmann (10.1016/j.jfoodeng.2006.08.018_bib7) 2003; 59
Ludikhuyze (10.1016/j.jfoodeng.2006.08.018_bib10) 1998; 46
Rahman (10.1016/j.jfoodeng.2006.08.018_bib11) 1995
Hartmann (10.1016/j.jfoodeng.2006.08.018_bib6) 2002; 3
Hartman (10.1016/j.jfoodeng.2006.08.018_bib8) 2004; 5
Bird (10.1016/j.jfoodeng.2006.08.018_bib3) 1976
References_xml – volume: 3
  start-page: 11
  year: 2002
  end-page: 18
  ident: bib6
  article-title: Numerical simulation of thermodynamic and fluid-dynamic processes during high-pressure treatment of fluid food system
  publication-title: Journal of Innovative Food Science and Emerging Technologies
– volume: 9
  start-page: 1212
  year: 1989
  end-page: 1255
  ident: bib12
  article-title: A fundamental equation for water covering the range from the melting line to 1273
  publication-title: Journal of Physical and Chemical Reference Data
– volume: 46
  start-page: 4081
  year: 1998
  end-page: 4086
  ident: bib10
  article-title: Effect of combined pressure and temperature on soybean lipoxygenase. 2. Modeling inactivation kinetics under static and dynamic conditions
  publication-title: Journal of Agricultural food Chemistry
– volume: 8
  start-page: 119
  year: 1997
  end-page: 124
  ident: bib13
  article-title: The applications of computational fluid dynamics in the food industry
  publication-title: Journal of Trends in Food Science & Technology
– year: 1987
  ident: bib9
  article-title: Food engineering data handbook
– reference: Ghani, A. G., Farid, M. M., & Richards, P. (2004). A simulation study of heat transfer during high pressure processing of food using computational fluid dynamics (CFD). In Proceedings of the CHEMECA 2004 Conference, Sydney, Australia.
– year: 1976
  ident: bib3
  article-title: Transport phenomena
– volume: 59
  start-page: 33
  year: 2003
  end-page: 44
  ident: bib7
  article-title: Convective and diffusive transport effects in a high pressure induced inactivation process of packed food
  publication-title: Journal of Food Engineering
– volume: 5
  start-page: 299
  year: 2004
  end-page: 306
  ident: bib2
  article-title: Recommended laboratory practise for conducting high pressure microbial inactivation experiments
  publication-title: Journal of Innovative Food Science and Emerging Technologies
– year: 1997
  ident: bib1
  article-title: Non thermal preservation of foods
– volume: 1
  start-page: 5
  year: 2000
  end-page: 19
  ident: bib4
  article-title: A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics
  publication-title: Journal of Innovative Food Science & Emerging Technologies
– volume: 5
  start-page: 399
  year: 2004
  end-page: 411
  ident: bib8
  article-title: Experimental and numerical analysis of thermofluiddynamics in a high-pressure autoclave
  publication-title: Journal of Innovative Food Science & Emerging Technologies
– year: 1995
  ident: bib11
  article-title: Food properties handbook
– year: 1997
  ident: 10.1016/j.jfoodeng.2006.08.018_bib1
– volume: 5
  start-page: 399
  year: 2004
  ident: 10.1016/j.jfoodeng.2006.08.018_bib8
  article-title: Experimental and numerical analysis of thermofluiddynamics in a high-pressure autoclave
  publication-title: Journal of Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2004.07.003
– ident: 10.1016/j.jfoodeng.2006.08.018_bib5
– year: 1987
  ident: 10.1016/j.jfoodeng.2006.08.018_bib9
– volume: 1
  start-page: 5
  year: 2000
  ident: 10.1016/j.jfoodeng.2006.08.018_bib4
  article-title: A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics
  publication-title: Journal of Innovative Food Science & Emerging Technologies
  doi: 10.1016/S1466-8564(99)00003-X
– volume: 8
  start-page: 119
  year: 1997
  ident: 10.1016/j.jfoodeng.2006.08.018_bib13
  article-title: The applications of computational fluid dynamics in the food industry
  publication-title: Journal of Trends in Food Science & Technology
  doi: 10.1016/S0924-2244(97)01028-5
– volume: 9
  start-page: 1212
  year: 1989
  ident: 10.1016/j.jfoodeng.2006.08.018_bib12
  article-title: A fundamental equation for water covering the range from the melting line to 1273K at pressures up to 25000MPa
  publication-title: Journal of Physical and Chemical Reference Data
– volume: 3
  start-page: 11
  year: 2002
  ident: 10.1016/j.jfoodeng.2006.08.018_bib6
  article-title: Numerical simulation of thermodynamic and fluid-dynamic processes during high-pressure treatment of fluid food system
  publication-title: Journal of Innovative Food Science and Emerging Technologies
  doi: 10.1016/S1466-8564(01)00060-1
– volume: 46
  start-page: 4081
  year: 1998
  ident: 10.1016/j.jfoodeng.2006.08.018_bib10
  article-title: Effect of combined pressure and temperature on soybean lipoxygenase. 2. Modeling inactivation kinetics under static and dynamic conditions
  publication-title: Journal of Agricultural food Chemistry
  doi: 10.1021/jf9802575
– year: 1995
  ident: 10.1016/j.jfoodeng.2006.08.018_bib11
– volume: 5
  start-page: 299
  year: 2004
  ident: 10.1016/j.jfoodeng.2006.08.018_bib2
  article-title: Recommended laboratory practise for conducting high pressure microbial inactivation experiments
  publication-title: Journal of Innovative Food Science and Emerging Technologies
  doi: 10.1016/j.ifset.2004.04.001
– year: 1976
  ident: 10.1016/j.jfoodeng.2006.08.018_bib3
– volume: 59
  start-page: 33
  year: 2003
  ident: 10.1016/j.jfoodeng.2006.08.018_bib7
  article-title: Convective and diffusive transport effects in a high pressure induced inactivation process of packed food
  publication-title: Journal of Food Engineering
  doi: 10.1016/S0260-8774(02)00427-2
SSID ssj0005022
Score 2.0667546
Snippet Temperature distribution, velocity and pressure profiles during high pressure compression (500 MPa) of liquid food (water) and solid–liquid food mixture (beef...
Temperature distribution, velocity and pressure profiles during high pressure compression (500 MPa) of liquid food (water) and solid-liquid food mixture (beef...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1031
SubjectTerms Adiabatic heating
animal fats and oils
beef
beef fat
Biological and medical sciences
CFD
compressibility
fluid mechanics
Food engineering
Food industries
Fundamental and applied biological sciences. Psychology
General aspects
heat transfer
High pressure processing
high pressure treatment
inactivation
liquids
liquified foods
mixtures
model validation
physical properties
pressure
simulation models
solids
Temperature distribution
temperature profiles
velocity
Velocity profile
water
Title Numerical simulation of solid–liquid food mixture in a high pressure processing unit using computational fluid dynamics
URI https://dx.doi.org/10.1016/j.jfoodeng.2006.08.018
https://www.proquest.com/docview/47495295
Volume 80
WOSCitedRecordID wos000244544200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5770
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005022
  issn: 0260-8774
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6Dgl4QDBAK5fhB96ihNxtP1ZoDBBUSGxob5Fz8UiVpWVppvLGb4B_yC_hOLabFjbGHniJKkt2nJ7Px8c-lw-h5zlhOeNpYBOPwwEl91Ob0yy0M5EXsH-Qwu-iLT69I5MJPT5mHwaD7yYX5rwidU2XSzb_r6KGNhC2TJ29hrhXg0ID_AahwxPEDs9_EvykVU6YymrKU03OJU1CeCvMRcc2BFX5pS1zS8iixqflsvMjlLXFLVm_2OqiY2XTXOURyPuEFha_1Zok3Xm7MNeIopIj5YravrnE2u1eVPTFD3u3U95W1sFnRS1ljZ0DZwUpOMYrymPnvbNxO0H6KCqtxOC8BBpXMfEYjau4mzSywjX1KTkn1rZiOCr6F6p5deMwdaZy8jB37VSijquV-UZd7d_2u1UUoglwmyZmHEnKGSeSl9OjW2jbJxGjQ7Q9frN__LYPHHKVb8p82Vre-cUzuszk2RJ8JmNxeQOYEIpH5Q-ToLNzDu-iO1pkeKyAdQ8NinoH3TT5680Our1WwvI--rqCG-7hhmcCd3D7-e2HAhqWE8YaaLisMccSaNgADfdAwxJouAMa3gAa7oCGDdAeoKNX-4cvX9uazsPOwOhd2B5xw0JmI4k4dYtUcC9nHpXpdEUUpJwGIY8CzgWjYU6FG2dR5gYizn2XczcTLHiIhvWsLnYRppy4Xi5HS_0w4jHLhIiFF2WCeGGa8RGKzD-eZLrWvaRcqZK_y3yEXqz6zVW1lyt7MCPQRNusyhZNAKtX9t0FBCT8BLbz5OijL4MIwKKPwMgfob0NWPSzgRMSITQaoWcGJwlsCNLLx-ti1jZJSEImvfePrv0tj9Gtfgk_QcPFWVs8RTey80XZnO3pZfAL0WzfeQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+solid%E2%80%93liquid+food+mixture+in+a+high+pressure+processing+unit+using+computational+fluid+dynamics&rft.jtitle=Journal+of+food+engineering&rft.au=Abdul+Ghani%2C+A.G.&rft.au=Farid%2C+M.M.&rft.date=2007-06-01&rft.issn=0260-8774&rft.volume=80&rft.issue=4&rft.spage=1031&rft.epage=1042&rft_id=info:doi/10.1016%2Fj.jfoodeng.2006.08.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfoodeng_2006_08_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0260-8774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0260-8774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0260-8774&client=summon