Robust unsupervised small area change detection from SAR imagery using deep learning

[Display omitted] •A multiscale superpixel reconstruction method was developed to generate the Difference Image.•A two-stage center-constrained FCM algorithm was designed to deal with imbalanced data clustering.•CWNN combined with DCGAN was adopted to classify hard pixels. Small area change detectio...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS journal of photogrammetry and remote sensing Vol. 173; pp. 79 - 94
Main Authors: Zhang, Xinzheng, Su, Hang, Zhang, Ce, Gu, Xiaowei, Tan, Xiaoheng, Atkinson, Peter M.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.03.2021
Subjects:
ISSN:0924-2716, 1872-8235
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •A multiscale superpixel reconstruction method was developed to generate the Difference Image.•A two-stage center-constrained FCM algorithm was designed to deal with imbalanced data clustering.•CWNN combined with DCGAN was adopted to classify hard pixels. Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection.
AbstractList [Display omitted] •A multiscale superpixel reconstruction method was developed to generate the Difference Image.•A two-stage center-constrained FCM algorithm was designed to deal with imbalanced data clustering.•CWNN combined with DCGAN was adopted to classify hard pixels. Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection.
Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection.
Author Zhang, Xinzheng
Zhang, Ce
Gu, Xiaowei
Tan, Xiaoheng
Su, Hang
Atkinson, Peter M.
Author_xml – sequence: 1
  givenname: Xinzheng
  surname: Zhang
  fullname: Zhang, Xinzheng
  email: zhangxinzheng03@126.com
  organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
– sequence: 2
  givenname: Hang
  surname: Su
  fullname: Su, Hang
  organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
– sequence: 3
  givenname: Ce
  surname: Zhang
  fullname: Zhang, Ce
  email: c.zhang9@lancaster.ac.uk
  organization: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
– sequence: 4
  givenname: Xiaowei
  surname: Gu
  fullname: Gu, Xiaowei
  organization: Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, United Kingdom
– sequence: 5
  givenname: Xiaoheng
  surname: Tan
  fullname: Tan, Xiaoheng
  organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
– sequence: 6
  givenname: Peter M.
  surname: Atkinson
  fullname: Atkinson, Peter M.
  organization: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
BookMark eNqNkEtLAzEUhYMo2FZ_g1m6mZrHmMfCRSm-QBB8rEMmc6emTDNjMlPovzel4sKNwrlcLpxz4H5TdBy6AAhdUDKnhIqr9dynPqZ1njkjjM5JFimP0IQqyQrF-PUxmhDNyoJJKk7RNKU1IYReCzVBby9dNaYBjyGNPcStT1DjtLFti20Ei92HDSvANQzgBt8F3MRug18XL9hv7AriDo_Jh1U2QI9bsDHk6wydNLZNcP69Z-j97vZt-VA8Pd8_LhdPheNaDgUVUjPleEUE1bWsLedKEFoyyStKS8qbUkBjHa9lIyzVjRJSaV3VDpSGivIZujz09rH7HCENZuOTg7a1AboxGaaVKEtNlMjWm4PVxS6lCI1xfrD7j4ZofWsoMXuaZm1-aJo9TUOySJnz8le-j5lA3P0juTgkIZPYeogmOQ_BQe1jZmrqzv_Z8QWwTZf4
CitedBy_id crossref_primary_10_3390_rs15071724
crossref_primary_10_1109_TGRS_2025_3591814
crossref_primary_10_1016_j_jag_2024_103725
crossref_primary_10_1016_j_rse_2023_113821
crossref_primary_10_1016_j_ecolind_2022_108999
crossref_primary_10_3390_agronomy15040873
crossref_primary_10_3390_rs16050799
crossref_primary_10_1016_j_knosys_2025_113135
crossref_primary_10_1080_01431161_2024_2365818
crossref_primary_10_1016_j_isprsjprs_2022_01_004
crossref_primary_10_3390_rs17050840
crossref_primary_10_1016_j_isprsjprs_2022_09_006
crossref_primary_10_3390_rs14153604
crossref_primary_10_1080_01431161_2025_2505257
crossref_primary_10_1080_01431161_2023_2273245
crossref_primary_10_1016_j_jag_2023_103511
crossref_primary_10_1109_TGRS_2024_3407088
crossref_primary_10_1016_j_isprsjprs_2021_05_019
crossref_primary_10_1016_j_isprsjprs_2024_01_002
crossref_primary_10_1016_j_ecoinf_2023_102019
crossref_primary_10_1109_JSTARS_2024_3406421
crossref_primary_10_3390_rs14246362
crossref_primary_10_1117_1_JRS_18_016503
crossref_primary_10_1016_j_displa_2024_102840
crossref_primary_10_3390_rs15051194
crossref_primary_10_1109_JSTARS_2022_3199017
crossref_primary_10_1109_TGRS_2023_3294884
crossref_primary_10_23919_JSEE_2022_000087
crossref_primary_10_1109_TGRS_2022_3190977
crossref_primary_10_1016_j_rse_2023_113801
crossref_primary_10_1109_LGRS_2022_3222794
crossref_primary_10_1016_j_jag_2022_102734
crossref_primary_10_1109_TGRS_2024_3367970
crossref_primary_10_1016_j_jag_2025_104550
crossref_primary_10_3390_rs15020470
crossref_primary_10_1109_JSTARS_2022_3184355
crossref_primary_10_1109_JSTARS_2023_3333959
crossref_primary_10_1109_LGRS_2021_3110302
crossref_primary_10_1109_TGRS_2021_3110998
crossref_primary_10_1109_TGRS_2025_3598588
crossref_primary_10_1016_j_knosys_2023_110281
crossref_primary_10_1109_JSTARS_2022_3187108
crossref_primary_10_1016_j_ophoto_2023_100044
crossref_primary_10_14358_PERS_22_00108R2
crossref_primary_10_1109_JSTARS_2025_3557434
crossref_primary_10_1007_s00521_023_09377_0
crossref_primary_10_1109_TGRS_2025_3584073
crossref_primary_10_1109_ACCESS_2023_3307208
crossref_primary_10_1109_TGRS_2025_3584650
crossref_primary_10_1109_JSEN_2024_3432143
crossref_primary_10_3390_rs16030560
crossref_primary_10_1109_TGRS_2023_3344062
crossref_primary_10_1080_01431161_2025_2516691
crossref_primary_10_1016_j_neucom_2023_126611
crossref_primary_10_1109_LGRS_2024_3415819
crossref_primary_10_1117_1_JRS_18_024501
Cites_doi 10.1109/LGRS.2009.2025059
10.1109/LGRS.2011.2167211
10.3390/rs10081295
10.1109/LGRS.2016.2550666
10.1109/LGRS.2019.2895656
10.1109/TNNLS.2015.2435783
10.1016/j.rse.2013.08.050
10.1016/j.asoc.2018.07.021
10.1109/TGRS.2014.2352555
10.1016/j.isprsjprs.2020.06.020
10.1109/TGRS.2019.2901945
10.1109/LGRS.2019.2939208
10.1186/s40537-019-0197-0
10.1016/j.isprsjprs.2020.04.007
10.1109/JSTARS.2016.2547638
10.1109/LGRS.2013.2275738
10.1016/j.neucom.2018.09.013
10.1109/ACCESS.2019.2902613
10.1016/j.isprsjprs.2019.12.002
10.1016/j.asoc.2020.106510
10.1109/LGRS.2015.2484220
10.1109/TGRS.2007.893568
10.1016/j.isprsjprs.2017.05.001
10.1117/1.JRS.10.046019
10.1109/TIP.2011.2170702
10.3390/rs12121978
10.1016/j.patcog.2016.07.040
10.1109/TGRS.2009.2038274
10.1109/TPAMI.2012.120
10.1109/TGRS.2019.2913095
10.1109/LGRS.2019.2922198
10.3390/rs11091091
10.1016/j.patcog.2016.11.015
10.1109/LGRS.2018.2876616
10.1016/j.ins.2018.08.015
10.1109/TIP.2010.2040763
10.1109/LGRS.2016.2611001
ContentType Journal Article
Copyright 2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2021.01.004
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 94
ExternalDocumentID 10_1016_j_isprsjprs_2021_01_004
S0924271621000046
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c397t-167928c3b0619d7da3386014273b11413f46efac3d7f6a19f867899bdce89eb13
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640986100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-2716
IngestDate Sun Sep 28 06:19:25 EDT 2025
Sat Nov 29 07:14:12 EST 2025
Tue Nov 18 21:19:34 EST 2025
Fri Feb 23 02:44:54 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Fuzzy c-means algorithm
Change detection
Synthetic aperture radar
Difference image
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c397t-167928c3b0619d7da3386014273b11413f46efac3d7f6a19f867899bdce89eb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0924271621000046
PQID 2986449086
PQPubID 24069
PageCount 16
ParticipantIDs proquest_miscellaneous_2986449086
crossref_citationtrail_10_1016_j_isprsjprs_2021_01_004
crossref_primary_10_1016_j_isprsjprs_2021_01_004
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2021_01_004
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cao, Du, Zhao, Hu, Mo, Chen, Cai, Peng, Zhang (b0015) 2020; 167
Zhuang, Tan, Deng, Yao (b0215) 2020; 17
Pantze, Santoro, Fransson (b0160) 2014; 155
arXiv preprint arXiv:1511.06434.
Zheng, Zhang, Hou, Liu (b0205) 2014; 11
Gong, Zhao, Liu, Miao, Jiao (b0080) 2016; 27
Kim, Lee (b0115) 2020; 12
Gao, Wang, Gao, Dong, Wang (b0055) 2019; 16
Gong, Yang, Zhang (b0075) 2017; 129
Gong, Cao, Wu (b0070) 2012; 9
Frid-Adar, Diamant, Klang, Amitai, Goldberger, Greenspan (b0040) 2018; 321
Inglada, Mercier (b0100) 2007; 45
Tian, Gong (b0185) 2018; 467
Kalaiselvi, Gomathi (b0110) 2020; 95
Saha, Bovolo, Bruzzone (b0170) 2020
Geng, Ma, Zhou, Wang (b0060) 2019; 57
Huang, Cai, Chen, Liu (b0095) 2011; 13
Deledalle, Denis, Tupin, Reigber, Jager (b0030) 2015; 53
Brunner, Lemoine, Bruzzone (b0010) 2010; 48
Shorten, Khoshgoftaar (b0175) 2019; 6
Li, Peng, Chen, Jiao, Zhou, Shang (b0155) 2019; 57
Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks.
Zheng, Jiao, Liu, Zhang, Hou, Wang (b0200) 2017; 61
Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (b0005) 2012; 34
Krinidis, Chatzis (b0120) 2010; 19
Li, Li, Zhang, Wu, Song, An (b0150) 2019; 16
Jia, Li, Zhang, Wu, Zhu (b0105) 2016; 13
Duan, Liu, Jiao, Zhao, Zhang (b0035) 2017; 64
He, Bai, Garcia, Li (b0090) 2008
Cozzolino, Verdoliva, Scarpa, Poggi (b0025) 2020; 17
Gao, Dong, Li, Xu (b0045) 2016; 13
Gao, Dong, Li, Xu, Xie (b0050) 2016; 10
Celik (b0020) 2009; 6
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b0065) 2014
Li, Gong, Wang, Miao (b0130) 2018; 71
Sun, Zhang, Chen, Liu, Song (b0180) 2020; 17
Gong, Zhou, Ma (b0085) 2012; 21
.
Wang, Jiao, Yang (b0195) 2016; 9
Lei, Liu, Shi, Lei, Wang (b0125) 2019; 7
Li, Yang, Yang, Du, Emery (b0140) 2020; 160
Li, Wang, Zhang, Zhang, Wu (b0145) 2019; 11
Wang, Yang, Yang, Jia, Fang (b0190) 2020; 164
Li, Celik, Longbotham, Emery (b0135) 2015; 12
Zhuang, Fan, Deng, Yao (b0210) 2018; 10
Li (10.1016/j.isprsjprs.2021.01.004_b0135) 2015; 12
He (10.1016/j.isprsjprs.2021.01.004_b0090) 2008
Kalaiselvi (10.1016/j.isprsjprs.2021.01.004_b0110) 2020; 95
Gong (10.1016/j.isprsjprs.2021.01.004_b0070) 2012; 9
Li (10.1016/j.isprsjprs.2021.01.004_b0130) 2018; 71
Sun (10.1016/j.isprsjprs.2021.01.004_b0180) 2020; 17
Wang (10.1016/j.isprsjprs.2021.01.004_b0195) 2016; 9
Zhuang (10.1016/j.isprsjprs.2021.01.004_b0215) 2020; 17
Frid-Adar (10.1016/j.isprsjprs.2021.01.004_b0040) 2018; 321
Tian (10.1016/j.isprsjprs.2021.01.004_b0185) 2018; 467
Wang (10.1016/j.isprsjprs.2021.01.004_b0190) 2020; 164
Zheng (10.1016/j.isprsjprs.2021.01.004_b0200) 2017; 61
Cozzolino (10.1016/j.isprsjprs.2021.01.004_b0025) 2020; 17
Lei (10.1016/j.isprsjprs.2021.01.004_b0125) 2019; 7
Huang (10.1016/j.isprsjprs.2021.01.004_b0095) 2011; 13
Gong (10.1016/j.isprsjprs.2021.01.004_b0080) 2016; 27
Gong (10.1016/j.isprsjprs.2021.01.004_b0085) 2012; 21
Inglada (10.1016/j.isprsjprs.2021.01.004_b0100) 2007; 45
Krinidis (10.1016/j.isprsjprs.2021.01.004_b0120) 2010; 19
Duan (10.1016/j.isprsjprs.2021.01.004_b0035) 2017; 64
Brunner (10.1016/j.isprsjprs.2021.01.004_b0010) 2010; 48
Deledalle (10.1016/j.isprsjprs.2021.01.004_b0030) 2015; 53
Geng (10.1016/j.isprsjprs.2021.01.004_b0060) 2019; 57
Achanta (10.1016/j.isprsjprs.2021.01.004_b0005) 2012; 34
Saha (10.1016/j.isprsjprs.2021.01.004_b0170) 2020
Gao (10.1016/j.isprsjprs.2021.01.004_b0055) 2019; 16
Kim (10.1016/j.isprsjprs.2021.01.004_b0115) 2020; 12
Li (10.1016/j.isprsjprs.2021.01.004_b0150) 2019; 16
Li (10.1016/j.isprsjprs.2021.01.004_b0155) 2019; 57
Goodfellow (10.1016/j.isprsjprs.2021.01.004_b0065) 2014
Zhuang (10.1016/j.isprsjprs.2021.01.004_b0210) 2018; 10
Gao (10.1016/j.isprsjprs.2021.01.004_b0045) 2016; 13
Gong (10.1016/j.isprsjprs.2021.01.004_b0075) 2017; 129
Celik (10.1016/j.isprsjprs.2021.01.004_b0020) 2009; 6
10.1016/j.isprsjprs.2021.01.004_b0165
Zheng (10.1016/j.isprsjprs.2021.01.004_b0205) 2014; 11
Gao (10.1016/j.isprsjprs.2021.01.004_b0050) 2016; 10
Li (10.1016/j.isprsjprs.2021.01.004_b0140) 2020; 160
Pantze (10.1016/j.isprsjprs.2021.01.004_b0160) 2014; 155
Shorten (10.1016/j.isprsjprs.2021.01.004_b0175) 2019; 6
Li (10.1016/j.isprsjprs.2021.01.004_b0145) 2019; 11
Jia (10.1016/j.isprsjprs.2021.01.004_b0105) 2016; 13
Cao (10.1016/j.isprsjprs.2021.01.004_b0015) 2020; 167
References_xml – volume: 45
  start-page: 1432
  year: 2007
  end-page: 1445
  ident: b0100
  article-title: A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 160
  start-page: 167
  year: 2020
  end-page: 179
  ident: b0140
  article-title: Deep nonsmooth nonnegative matrix factorization network factorization network with semi-supervised learning for SAR image change detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  start-page: 1091
  year: 2019
  ident: b0145
  article-title: Urban building change detection in SAR images using combined differential image and residual U-Net network
  publication-title: Remote Sens.
– volume: 71
  start-page: 698
  year: 2018
  end-page: 714
  ident: b0130
  article-title: Self-paced stacked denoising autoencoders based on differential evolution for change detection
  publication-title: Appl. Soft Comput.
– volume: 16
  start-page: 1240
  year: 2019
  end-page: 1244
  ident: b0055
  article-title: Sea ice change detection in SAR images based on convolutional-wavelet neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks.
– year: 2020
  ident: b0170
  article-title: Building change detection in VHR SAR images via unsupervised deep tanscoding
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 34
  start-page: 2274
  year: 2012
  end-page: 2282
  ident: b0005
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1322
  year: 2008
  end-page: 1328
  ident: b0090
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: Proc. Int’l Joint Conf. Neural Netw.
– volume: 6
  year: 2019
  ident: b0175
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
– volume: 64
  start-page: 255
  year: 2017
  end-page: 267
  ident: b0035
  article-title: SAR Image segmentation based on convolutional-wavelet neural network and markov random field
  publication-title: Pattern Recognit.
– volume: 129
  start-page: 212
  year: 2017
  end-page: 225
  ident: b0075
  article-title: Feature learning and change feature classification based on deep learning for ternary change detection in SAR images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 27
  start-page: 125
  year: 2016
  end-page: 138
  ident: b0080
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
– volume: 17
  start-page: 1097
  year: 2020
  end-page: 1101
  ident: b0180
  article-title: Frost filtering algorithm of SAR images with adaptive windowing and adaptive tuning factor
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 53
  start-page: 2021
  year: 2015
  end-page: 2038
  ident: b0030
  article-title: NL-SAR: A unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising
  publication-title: IEEE Trans. Geosci. Remote Sensing
– volume: 48
  start-page: 2403
  year: 2010
  end-page: 2420
  ident: b0010
  article-title: Earthquake damage assessment of buildings using VHR optical and SAR imagery
  publication-title: IEEE Trans. Geosci. Remote Sensing
– volume: 57
  start-page: 5751
  year: 2019
  end-page: 5763
  ident: b0155
  article-title: A deep learning method for change detection in synthetic aperture radar images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: arXiv preprint arXiv:1511.06434.
– volume: 10
  start-page: 046019
  year: 2016
  ident: b0050
  article-title: Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine
  publication-title: J. Appl. Remote Sens
– volume: 9
  start-page: 307
  year: 2012
  end-page: 311
  ident: b0070
  article-title: A neighborhood-based ratio approach for change detection in SAR images
  publication-title: IEEE Geosci. Remote Sensing Lett.
– volume: 19
  start-page: 1328
  year: 2010
  end-page: 1337
  ident: b0120
  article-title: A robust fuzzy local information c-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
– volume: 17
  start-page: 1097
  year: 2020
  end-page: 1101
  ident: b0025
  article-title: Nonlocal CNN SAR image despeckling
  publication-title: Remote Sens.
– volume: 12
  start-page: 2458
  year: 2015
  end-page: 2462
  ident: b0135
  article-title: Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 16
  start-page: 402
  year: 2019
  end-page: 406
  ident: b0150
  article-title: SAR image change detection using PCANet guided by saliency detecion
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 21
  start-page: 2141
  year: 2012
  end-page: 2151
  ident: b0085
  article-title: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 856
  year: 2016
  end-page: 860
  ident: b0105
  article-title: SAR image change detection based on multiple kernel k-means clustering with local-neighborhood information
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 167
  start-page: 54
  year: 2020
  end-page: 70
  ident: b0015
  article-title: Multi-level monitoring of three-dimensional building changes for megacities: Trajectory, morphology, and landscape
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  start-page: 1978
  year: 2020
  ident: b0115
  article-title: Rapid change detection of flood affected area after collapse of the Laos Xe-Plain Xe-Namnoy dam using Sentinel GRD data
  publication-title: Remote Sens.
– volume: 7
  start-page: 36600
  year: 2019
  end-page: 36616
  ident: b0125
  article-title: Multiscale superpixel segmentation with deep features for change detection
  publication-title: IEEE Access.
– volume: 11
  start-page: 691
  year: 2014
  end-page: 695
  ident: b0205
  article-title: Using combined difference image and k-means clustering for SAR image change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 155
  start-page: 120
  year: 2014
  end-page: 128
  ident: b0160
  article-title: Change detection of boreal forest using bi-temporal ALOS PALSAR backscatter data
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1295
  year: 2018
  ident: b0210
  article-title: A spatial-temporal adaptive neighborhood-based ratio approach for change detection in SAR images
  publication-title: Remote Sens.
– volume: 95
  year: 2020
  ident: b0110
  article-title: α-cut induced fuzzy deep neural network for change detection of SAR images
  publication-title: Appl. Soft Comput.
– volume: 13
  start-page: 863
  year: 2011
  end-page: 872
  ident: b0095
  article-title: Change detection method based on fractal model and wavelet transform for multitemporal SAR images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 17
  start-page: 416
  year: 2020
  end-page: 420
  ident: b0215
  article-title: Adaptive generalized likelihood ratio test for change detection in SAR image
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: b0065
  article-title: Generative adversarial nets
  publication-title: Proc. NIPS.
– volume: 61
  start-page: 309
  year: 2017
  end-page: 326
  ident: b0200
  article-title: Unsupervised saliency-guided SAR image change detection
  publication-title: Pattern Recognit.
– volume: 164
  start-page: 61
  year: 2020
  end-page: 72
  ident: b0190
  article-title: Unsupervised change detection between SAR images based on hypergraphs
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 9
  start-page: 3452
  year: 2016
  end-page: 3466
  ident: b0195
  article-title: SAR Images Change detection based on spatial coding and nonlocal similarity pooling
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 321
  start-page: 321
  year: 2018
  end-page: 331
  ident: b0040
  article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification
  publication-title: Neurocomputing
– volume: 467
  start-page: 415
  year: 2018
  end-page: 430
  ident: b0185
  article-title: A novel edge-weight based fuzzy clustering method for change detection in SAR images
  publication-title: Inf. Sci.
– volume: 13
  start-page: 1792
  year: 2016
  end-page: 1796
  ident: b0045
  article-title: Automatic change detection in synthetic aperture radar images based on PCANet
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: .
– volume: 57
  start-page: 7365
  year: 2019
  end-page: 7377
  ident: b0060
  article-title: Saliency-guided deep neural networks for SAR image change detection
  publication-title: IEEE Trans. Geosci. Remote Sensing
– volume: 6
  start-page: 772
  year: 2009
  end-page: 776
  ident: b0020
  article-title: Unsupervised change detection in satellite images using principal component analysis and k-means clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 6
  start-page: 772
  issue: 4
  year: 2009
  ident: 10.1016/j.isprsjprs.2021.01.004_b0020
  article-title: Unsupervised change detection in satellite images using principal component analysis and k-means clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2025059
– volume: 9
  start-page: 307
  issue: 2
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.01.004_b0070
  article-title: A neighborhood-based ratio approach for change detection in SAR images
  publication-title: IEEE Geosci. Remote Sensing Lett.
  doi: 10.1109/LGRS.2011.2167211
– volume: 10
  start-page: 1295
  issue: 8
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.01.004_b0210
  article-title: A spatial-temporal adaptive neighborhood-based ratio approach for change detection in SAR images
  publication-title: Remote Sens.
  doi: 10.3390/rs10081295
– volume: 13
  start-page: 856
  issue: 6
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.01.004_b0105
  article-title: SAR image change detection based on multiple kernel k-means clustering with local-neighborhood information
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2550666
– volume: 16
  start-page: 1240
  issue: 8
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.01.004_b0055
  article-title: Sea ice change detection in SAR images based on convolutional-wavelet neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2895656
– volume: 27
  start-page: 125
  issue: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.01.004_b0080
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
  doi: 10.1109/TNNLS.2015.2435783
– ident: 10.1016/j.isprsjprs.2021.01.004_b0165
– year: 2020
  ident: 10.1016/j.isprsjprs.2021.01.004_b0170
  article-title: Building change detection in VHR SAR images via unsupervised deep tanscoding
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 155
  start-page: 120
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.01.004_b0160
  article-title: Change detection of boreal forest using bi-temporal ALOS PALSAR backscatter data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.050
– volume: 71
  start-page: 698
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.01.004_b0130
  article-title: Self-paced stacked denoising autoencoders based on differential evolution for change detection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.021
– volume: 53
  start-page: 2021
  issue: 4
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.01.004_b0030
  article-title: NL-SAR: A unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising
  publication-title: IEEE Trans. Geosci. Remote Sensing
  doi: 10.1109/TGRS.2014.2352555
– volume: 167
  start-page: 54
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.01.004_b0015
  article-title: Multi-level monitoring of three-dimensional building changes for megacities: Trajectory, morphology, and landscape
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.020
– volume: 57
  start-page: 5751
  issue: 8
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.01.004_b0155
  article-title: A deep learning method for change detection in synthetic aperture radar images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2901945
– start-page: 1322
  year: 2008
  ident: 10.1016/j.isprsjprs.2021.01.004_b0090
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: Proc. Int’l Joint Conf. Neural Netw.
– volume: 17
  start-page: 1097
  issue: 6
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.01.004_b0180
  article-title: Frost filtering algorithm of SAR images with adaptive windowing and adaptive tuning factor
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2939208
– volume: 6
  issue: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.01.004_b0175
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 164
  start-page: 61
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.01.004_b0190
  article-title: Unsupervised change detection between SAR images based on hypergraphs
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.04.007
– volume: 9
  start-page: 3452
  issue: 8
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.01.004_b0195
  article-title: SAR Images Change detection based on spatial coding and nonlocal similarity pooling
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2547638
– volume: 11
  start-page: 691
  issue: 3
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.01.004_b0205
  article-title: Using combined difference image and k-means clustering for SAR image change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2275738
– volume: 321
  start-page: 321
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.01.004_b0040
  article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– volume: 7
  start-page: 36600
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.01.004_b0125
  article-title: Multiscale superpixel segmentation with deep features for change detection
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2902613
– volume: 17
  start-page: 1097
  issue: 6
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.01.004_b0025
  article-title: Nonlocal CNN SAR image despeckling
  publication-title: Remote Sens.
– volume: 160
  start-page: 167
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.01.004_b0140
  article-title: Deep nonsmooth nonnegative matrix factorization network factorization network with semi-supervised learning for SAR image change detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.12.002
– volume: 95
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.01.004_b0110
  article-title: α-cut induced fuzzy deep neural network for change detection of SAR images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106510
– volume: 12
  start-page: 2458
  issue: 12
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.01.004_b0135
  article-title: Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2484220
– volume: 45
  start-page: 1432
  issue: 5
  year: 2007
  ident: 10.1016/j.isprsjprs.2021.01.004_b0100
  article-title: A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.893568
– volume: 129
  start-page: 212
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.01.004_b0075
  article-title: Feature learning and change feature classification based on deep learning for ternary change detection in SAR images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.05.001
– volume: 10
  start-page: 046019
  issue: 4
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.01.004_b0050
  article-title: Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine
  publication-title: J. Appl. Remote Sens
  doi: 10.1117/1.JRS.10.046019
– volume: 21
  start-page: 2141
  issue: 4
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.01.004_b0085
  article-title: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2170702
– volume: 12
  start-page: 1978
  issue: 12
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.01.004_b0115
  article-title: Rapid change detection of flood affected area after collapse of the Laos Xe-Plain Xe-Namnoy dam using Sentinel GRD data
  publication-title: Remote Sens.
  doi: 10.3390/rs12121978
– volume: 61
  start-page: 309
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.01.004_b0200
  article-title: Unsupervised saliency-guided SAR image change detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.040
– volume: 48
  start-page: 2403
  issue: 5
  year: 2010
  ident: 10.1016/j.isprsjprs.2021.01.004_b0010
  article-title: Earthquake damage assessment of buildings using VHR optical and SAR imagery
  publication-title: IEEE Trans. Geosci. Remote Sensing
  doi: 10.1109/TGRS.2009.2038274
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.01.004_b0005
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– volume: 57
  start-page: 7365
  issue: 10
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.01.004_b0060
  article-title: Saliency-guided deep neural networks for SAR image change detection
  publication-title: IEEE Trans. Geosci. Remote Sensing
  doi: 10.1109/TGRS.2019.2913095
– volume: 17
  start-page: 416
  issue: 3
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.01.004_b0215
  article-title: Adaptive generalized likelihood ratio test for change detection in SAR image
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2922198
– volume: 11
  start-page: 1091
  issue: 9
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.01.004_b0145
  article-title: Urban building change detection in SAR images using combined differential image and residual U-Net network
  publication-title: Remote Sens.
  doi: 10.3390/rs11091091
– volume: 64
  start-page: 255
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.01.004_b0035
  article-title: SAR Image segmentation based on convolutional-wavelet neural network and markov random field
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.11.015
– volume: 16
  start-page: 402
  issue: 3
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.01.004_b0150
  article-title: SAR image change detection using PCANet guided by saliency detecion
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2876616
– volume: 13
  start-page: 863
  issue: 6
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.01.004_b0095
  article-title: Change detection method based on fractal model and wavelet transform for multitemporal SAR images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 467
  start-page: 415
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.01.004_b0185
  article-title: A novel edge-weight based fuzzy clustering method for change detection in SAR images
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.08.015
– volume: 19
  start-page: 1328
  issue: 5
  year: 2010
  ident: 10.1016/j.isprsjprs.2021.01.004_b0120
  article-title: A robust fuzzy local information c-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2040763
– volume: 13
  start-page: 1792
  issue: 12
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.01.004_b0045
  article-title: Automatic change detection in synthetic aperture radar images based on PCANet
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2611001
– start-page: 2672
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.01.004_b0065
  article-title: Generative adversarial nets
  publication-title: Proc. NIPS.
SSID ssj0001568
Score 2.5521803
Snippet [Display omitted] •A multiscale superpixel reconstruction method was developed to generate the Difference Image.•A two-stage center-constrained FCM algorithm...
Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 79
SubjectTerms algorithms
Change detection
data collection
Deep learning
Difference image
Fuzzy c-means algorithm
photogrammetry
Synthetic aperture radar
wavelet
Title Robust unsupervised small area change detection from SAR imagery using deep learning
URI https://dx.doi.org/10.1016/j.isprsjprs.2021.01.004
https://www.proquest.com/docview/2986449086
Volume 173
WOSCitedRecordID wos000640986100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQ8IBggNi4yEuIl8pR7Yt6qqRtDU5naTOpb5CQOa7UmWS5j8MwP5zh2sgyGNh6Q2qhK7KTy-XL82eeG0Ht4fdzIcGLCOHOJbaQJoY5vEYf53LJhBky9uC024U2n_mJBj0ejn10szMWZl2X-5SUt_quo4RwIW4TO_oO4-5vCCfgNQocjiB2OdxL8LI-aqtaarGoKoQgqoJTVWligGRBEFemrJbzmskp4G2AyH8-05Vrks_iuNe32QcJ50dWU-DqksIfz49l8mHGiOM3r1slrzetSpnMqOSCAa5Xwjle9h5vTi2X245RfXZg37QzIbmi61wPvoJFdWf6NL4ebFebAW6vbdTRtYnoyvLJXwJ6lFbseJdQeqFJZY0ZNyvLKH-pe7jys4N5FWa3guyse2uZhlUWNryfYnn4J90-OjsJgsgg-FOdE1B4TNnpViOUe2jQ9h4Ju3BwfThaf-xndkCGV_Z-_5id447P_xnJ-m-9bEhM8QY_V6gOPJWqeohHPttCjQU7KLfTggKss5s9QILGEh1jCLZawwBKWWMI9lrDAEgYsYYUl3GIJCyzhDkvP0cn-JNj7RFQZDhIDWa2JMNSZfmxFQP1o4iXMsnxYxttAfCNYTRtWars8ZbGVeKnLDJr6QIAojZKY-xSogPUCbWR5xl8irPscNFfk0li37cSNIts0dcaYk7hcaIdt5HbDFsYqR70olXIWds6Iq7Af71CMd6jDR7e3kd53LGSaltu7fOzkEiq2KVlkCOi6vfO7TpIh6GNhZGMZzxtoJOodCGu6u3OHNq_Qw6vX5DXaqMuGv0H344t6WZVvFQ5_ASgXsew
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+unsupervised+small+area+change+detection+from+SAR+imagery+using+deep+learning&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Zhang%2C+Xinzheng&rft.au=Su%2C+Hang&rft.au=Zhang%2C+Ce&rft.au=Gu%2C+Xiaowei&rft.date=2021-03-01&rft.issn=0924-2716&rft.volume=173+p.79-94&rft.spage=79&rft.epage=94&rft_id=info:doi/10.1016%2Fj.isprsjprs.2021.01.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon