Algorithms by design with illustrations to solid and structural mechanics/dynamics
A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with emphasis on applications to the broad area of computational mechanics, but with focus on solid and structural mechanics/dynamics as an illustr...
Uložené v:
| Vydané v: | International journal for numerical methods in engineering Ročník 66; číslo 11; s. 1738 - 1790 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Ltd
11.06.2006
Wiley |
| Predmet: | |
| ISSN: | 0029-5981, 1097-0207 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with emphasis on applications to the broad area of computational mechanics, but with focus on solid and structural mechanics/dynamics as an illustration. The algorithms by design concepts capitalize upon: (i) the recently developed unified theory underlying computational algorithms (Int. J. Numer. Meth. Engng 2004; 59:597–668), and (ii) newly established design spaces and algorithmic measures for evaluating the quality of computational algorithms (Int. J. Numer. Meth. Engng 2005; 64:1841–1870). As a step in the forward direction, in this exposition we embark upon some challenging tasks with the objective to advance, tailor, and foster the design of computational algorithms for time‐dependent problems with desired and/or improved algorithmic attributes in the sense of accuracy, stability and other characteristics including algorithmic complexity in a well educated manner. The design process for computational algorithms is explained in the sense of the algorithms by design concepts via selected numerical illustrations of practical scenarios encountered in solid and structural mechanics/dynamics applications. Copyright © 2006 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with emphasis on applications to the broad area of computational mechanics, but with focus on solid and structural mechanics/dynamics as an illustration. The algorithms by design concepts capitalize upon: (i) the recently developed unified theory underlying computational algorithms (Int. J. Numer. Meth. Engng 2004; 59:597–668), and (ii) newly established design spaces and algorithmic measures for evaluating the quality of computational algorithms (Int. J. Numer. Meth. Engng 2005; 64:1841–1870). As a step in the forward direction, in this exposition we embark upon some challenging tasks with the objective to advance, tailor, and foster the design of computational algorithms for time‐dependent problems with desired and/or improved algorithmic attributes in the sense of accuracy, stability and other characteristics including algorithmic complexity in a well educated manner. The design process for computational algorithms is explained in the sense of the algorithms by design concepts via selected numerical illustrations of practical scenarios encountered in solid and structural mechanics/dynamics applications. Copyright © 2006 John Wiley & Sons, Ltd. A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with emphasis on applications to the broad area of computational mechanics, but with focus on solid and structural mechanics/dynamics as an illustration. The algorithms by design concepts capitalize upon: (i) the recently developed unified theory underlying computational algorithms (Int. J. Numer. Meth. Engng 2004; 59:597-668), and (ii) newly established design spaces and algorithmic measures for evaluating the quality of computational algorithms (Int. J. Numer. Meth. Engng 2005; 64:1841-1870). As a step in the forward direction, in this exposition we embark upon some challenging tasks with the objective to advance, tailor, and foster the design of computational algorithms for time-dependent problems with desired and/or improved algorithmic attributes in the sense of accuracy, stability and other characteristics including algorithmic complexity in a well educated manner. The design process for computational algorithms is explained in the sense of the algorithms by design concepts via selected numerical illustrations of practical scenarios encountered in solid and structural mechanics/dynamics applications. A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with emphasis on applications to the broad area of computational mechanics, but with focus on solid and structural mechanics/dynamics as an illustration. The algorithms by design concepts capitalize upon: (i) the recently developed unified theory underlying computational algorithms ( Int. J. Numer. Meth. Engng 2004; 59 :597–668), and (ii) newly established design spaces and algorithmic measures for evaluating the quality of computational algorithms ( Int. J. Numer. Meth. Engng 2005; 64 :1841–1870). As a step in the forward direction, in this exposition we embark upon some challenging tasks with the objective to advance, tailor, and foster the design of computational algorithms for time‐dependent problems with desired and/or improved algorithmic attributes in the sense of accuracy, stability and other characteristics including algorithmic complexity in a well educated manner. The design process for computational algorithms is explained in the sense of the algorithms by design concepts via selected numerical illustrations of practical scenarios encountered in solid and structural mechanics/dynamics applications. Copyright © 2006 John Wiley & Sons, Ltd. |
| Author | Tamma, K. K. Zhou, X. |
| Author_xml | – sequence: 1 givenname: X. surname: Zhou fullname: Zhou, X. email: xiangmin@msi.umn.edu organization: Department of Mechanical Engineering, University of Minnesota 111 Church St. S.E., Minneapolis, MN, 55455, U.S.A – sequence: 2 givenname: K. K. surname: Tamma fullname: Tamma, K. K. email: ktamma@tc.umn.edu organization: Department of Mechanical Engineering, University of Minnesota 111 Church St. S.E., Minneapolis, MN, 55455, U.S.A |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17843819$$DView record in Pascal Francis |
| BookMark | eNp90VFLHDEQB_AgFnpqoR8hL5W-7DlJdjebRxG9ip6iCH0M2SSrsdmsTXax9-2NnpyI2KeEyS9_hpkdtB2GYBH6TmBOAOhB6O2cVJXYQjMCghdAgW-jWX4SRSUa8hXtpHQPQEgFbIauD_3tEN141yfcrrCxyd0G_JgL2Hk_pTGq0Q0h4XHAafDOYBUMzuVJj1NUHvdW36ngdDowq6D6fNlDXzrlk_32eu6im5Pjm6Nfxfnl4vTo8LzQTHBRtKLlvARSU8GMAKN500LTdaZRTV0Ta6hqK0KpAG7AGqNAGKhbWndlVzLNdtH-OvYhDn8nm0bZu6St9yrYYUoyx7KyppDhz_9CAg0logRRZ_rjlaqkle-iCtol-RBdr-JKEt6UrCEiu_na6TikFG0ntRtfBpXn5XyOlM_LkHkZ8nkZbz1sPmwyP9JiTR-dt6tPnbxYHr_3Lo3238ar-EfWnPFK_r5YyLPlFVsuyJXk7AmQW6nY |
| CODEN | IJNMBH |
| CitedBy_id | crossref_primary_10_1002_nme_5934 crossref_primary_10_1007_s11071_023_09065_7 crossref_primary_10_1016_j_cma_2024_117522 crossref_primary_10_1002_cnm_1097 crossref_primary_10_1108_HFF_11_2022_0667 crossref_primary_10_1002_nme_2008 crossref_primary_10_1002_nme_4720 crossref_primary_10_1016_j_compstruc_2012_09_009 crossref_primary_10_1002_nme_7658 crossref_primary_10_1080_13632469_2024_2372814 crossref_primary_10_1007_s11831_023_09924_x crossref_primary_10_1108_HFF_10_2015_0427 crossref_primary_10_1002_nme_4806 crossref_primary_10_1080_15502280802575422 crossref_primary_10_1007_s00707_008_0101_z crossref_primary_10_1080_15502280802365873 crossref_primary_10_1007_s11831_021_09536_3 crossref_primary_10_1016_j_cma_2009_06_011 crossref_primary_10_1080_10407790_2012_702640 crossref_primary_10_1108_HFF_06_2022_0382 crossref_primary_10_1016_j_compstruc_2010_03_002 crossref_primary_10_1080_10407790_2012_702641 crossref_primary_10_1016_j_jcp_2020_110097 crossref_primary_10_1002_eqe_3133 crossref_primary_10_1080_13632469_2015_1009587 crossref_primary_10_1016_j_cma_2018_02_007 crossref_primary_10_1080_10407790_2023_2207734 crossref_primary_10_1002_nme_2592 crossref_primary_10_1002_nme_3228 crossref_primary_10_1002_nme_6956 crossref_primary_10_1007_s11071_014_1765_7 crossref_primary_10_1108_HFF_04_2015_0155 crossref_primary_10_1002_nme_4715 crossref_primary_10_1007_s11831_025_10262_3 crossref_primary_10_1002_nme_6955 crossref_primary_10_1080_15502287_2010_501323 crossref_primary_10_1016_j_cma_2024_117272 crossref_primary_10_1080_15502287_2010_501324 crossref_primary_10_1016_j_cma_2008_06_001 crossref_primary_10_1080_15502280802575430 crossref_primary_10_1016_j_cma_2021_113920 crossref_primary_10_1016_j_jcp_2020_109763 crossref_primary_10_1007_s00707_009_0203_2 crossref_primary_10_1016_j_compstruc_2022_106901 crossref_primary_10_1080_01495739_2019_1581720 crossref_primary_10_1007_s11831_011_9060_y crossref_primary_10_1016_j_cma_2020_113509 crossref_primary_10_1016_j_compstruc_2022_106789 |
| Cites_doi | 10.1016/0168-874X(95)00016-M 10.1016/0045-7825(94)90208-9 10.1002/cpa.3160090206 10.1002/nme.1019 10.1016/S0168-874X(03)00056-8 10.1002/nme.1620362302 10.1016/j.cma.2004.01.012 10.1016/0045-7825(92)90115-Z 10.1115/1.3422999 10.1115/1.2900803 10.1016/0045-7825(77)90014-7 10.1002/cnm.1640101202 10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3.0.CO;2-F 10.1016/S0168-874X(03)00059-3 10.1007/978-3-642-81589-8_30 10.1016/S0093-6413(98)00007-X 10.1007/BF00370131 10.1002/nme.873 10.1016/S0377-0427(00)00461-1 10.1007/BF01379008 10.1002/(SICI)1097-0207(19990720)45:8<971::AID-NME613>3.0.CO;2-M 10.2514/8.1722 10.1002/nme.1620200814 10.1002/nme.1620151210 10.1016/0045-7825(83)90125-1 10.1002/nme.878 10.1007/BF02736209 10.1016/S0045-7825(02)00516-9 10.1002/nme.1620310103 10.1002/nme.1405 10.1016/S0045-7825(99)00193-0 10.1016/0029-5493(77)90107-8 10.1002/nme.167 10.1007/BF01933119 10.1016/0168-874X(95)00015-L 10.1002/nme.1620090202 10.1243/PIME_PROC_1994_208_148_02 10.1002/eqe.4290050306 10.1016/0045-7825(89)90142-4 10.1016/0045-7825(87)90065-X 10.1007/BF01179540 10.2307/2041821 10.1007/BF01213020 10.1002/nme.1620111008 10.1016/S0020-7683(97)00267-9 10.1002/nme.89 10.1016/0045-7825(88)90082-5 10.1007/BF01963532 10.1080/104077902753541005 10.1016/0045-7825(88)90006-0 10.1016/S0045-7825(02)00515-7 10.1002/nme.1620361507 10.1016/0045-7825(94)90061-2 10.1016/S0045-7825(97)00056-X 10.1007/978-1-4612-1126-6 10.1002/nme.1620151011 10.1002/nme.1620201210 10.1002/nme.1620290705 10.1201/b10621 10.1016/0045-7825(88)90053-9 10.1016/0045-7949(90)90354-5 10.1090/S0025-5718-1972-0321301-2 10.1023/A:1007570827614 10.1016/0045-7825(73)90015-7 10.1016/0045-7825(73)90023-6 |
| ContentType | Journal Article |
| Copyright | Copyright © 2006 John Wiley & Sons, Ltd. 2006 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2006 John Wiley & Sons, Ltd. – notice: 2006 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/nme.1559 |
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics Physics Education |
| EISSN | 1097-0207 |
| EndPage | 1790 |
| ExternalDocumentID | 17843819 10_1002_nme_1559 NME1559 ark_67375_WNG_KMQ3MG1Q_7 |
| Genre | article |
| GrantInformation_xml | – fundername: Minnesota Supercomputer Institute (MSI) – fundername: Army High Performance Computing Research Center (AHPCRC) funderid: DAAD19‐01‐2‐0014 – fundername: Battelle/U.S. Army Research Office (ARO) funderid: DAAH04‐96‐C‐0086 |
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI RWS WRC AAYXX CITATION O8X .4S 6TJ ABDPE ABEML ACKIV ACSCC AGHNM AI. ARCSS GBZZK HF~ IQODW M6O PALCI RIWAO SAMSI TUS VH1 VOH ZY4 ~A~ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3979-b9b774016293d90dc78b08ffd8a8661ed2ab5122907d0edda09d06b26f4f43c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000238584800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5981 |
| IngestDate | Sun Nov 09 12:59:53 EST 2025 Thu Oct 02 05:52:22 EDT 2025 Mon Jul 21 09:15:42 EDT 2025 Sat Nov 29 06:43:35 EST 2025 Tue Nov 18 21:28:03 EST 2025 Wed Jan 22 16:24:21 EST 2025 Tue Nov 11 03:31:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Measurement time integration algorithms Numerical integration Vibration first and second order systems Algorithmics computational algorithms Modeling Engineering design Design process solid mechanics Time domain method structural dynamics time operators Structural analysis |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3979-b9b774016293d90dc78b08ffd8a8661ed2ab5122907d0edda09d06b26f4f43c3 |
| Notes | ark:/67375/WNG-KMQ3MG1Q-7 Minnesota Supercomputer Institute (MSI) Army High Performance Computing Research Center (AHPCRC) - No. DAAD19-01-2-0014 Battelle/U.S. Army Research Office (ARO) - No. DAAH04-96-C-0086 ArticleID:NME1559 istex:95468FBD3D4F792E8D5FCFAE1CE6AD2DA8C64EFD Research Associate, Army High Performance Computing Research Center (AHPCRC). Professor/Technical Director, Army High Performance Computing Research Center (AHPCRC). ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1082194096 |
| PQPubID | 23500 |
| PageCount | 53 |
| ParticipantIDs | proquest_miscellaneous_29334620 proquest_miscellaneous_1082194096 pascalfrancis_primary_17843819 crossref_citationtrail_10_1002_nme_1559 crossref_primary_10_1002_nme_1559 wiley_primary_10_1002_nme_1559_NME1559 istex_primary_ark_67375_WNG_KMQ3MG1Q_7 |
| PublicationCentury | 2000 |
| PublicationDate | 11 June 2006 |
| PublicationDateYYYYMMDD | 2006-06-11 |
| PublicationDate_xml | – month: 06 year: 2006 text: 11 June 2006 day: 11 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
| PublicationYear | 2006 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Hoff C, Hughes TJR, Hulbert G, Pahl PJ. Comparison of the HHT-α-Method and the Θ1-method. Computer Methods in Applied Mechanics and Engineering 1989; 76:87-93. Hughes TJR, Hulbert GM. Space-time finite element methods for elastodynamics: formulation and error estimates. Computer Methods in Applied Mechanics and Engineering 1988; 66:339-363. Chen X, Tamma KK, Sha D. Virtual-pulse time integral methodology: a new approach for computational dynamics. Part 2: theory for nonlinear structural dynamics. Finite Elements in Analysis and Design 1995; 20:195-204. Möller PW. High-order hierarchical A- and L-stable integration methods. International Journal for Numerical Methods in Engineering 1993; 36:2607-2624. Chen W, Saleeb AF. Constitutive Equations for Engineering Materials Volume 1: Elasticity and Modeling. Elsevier: New York, 1994. Hughes TJR, Winget J. Finite rotation effects in numerical integration of rate constitutive equations. International Journal for Numerical Methods in Engineering 1980; 15:1862-1867. Wood WL. A unified set of single-step algorithms. Part 2. International Journal for Numerical Methods in Engineering 1984; 20:2303-2309. Kanapady R, Tamma KK. A mathematical framework towards a unified set of discontinuous state-phase hierarchical time operators for computational dynamics. Computer Modeling in Engineering and Sciences 2003; 4:103-118. Argyris JH, Dunne PC, Angelopoulos T. Nonlinear oscillations using the finite element technique. Computer Methods in Applied Mechanics and Engineering 1973; 2:203-250. Xiao H, Bruhns OT, Meyers A. Direct relationship between the Lagrangian logarithmic strain and the Lagrangian stretching and the Lagrangian Kirchoff stress. Mechanics Research Communications 1998; 25:59-67. Fung TC. Complex-time-step Newmark methods with controllable numerical dissipation. International Journal for Numerical Methods in Engineering 1998; 41:65-93. Dienes JK. On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica 1979; 32:217-232. Zhou X, Tamma KK. A new unified theory underlying time dependent linear first-order systems: a prelude to algorithms by design. International Journal for Numerical Methods in Engineering 2004; 60:1699-1740. Wilson EL. A Computer Program for Dynamic Stress Analysis of Underground Structures. SESM, University of California, Berkeley, 1968. Goudreau GL, Taylor RL. Evaluation of numerical methods in elastodynamics. Computer Methods in Applied Mechanics and Engineering 1973; 2:69-97. Tamma KK, Namburu RR. A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 71:137-150. Rashid MM. Incremental kinematics for finite element applications. International Journal for Numerical Methods in Engineering 1993; 36:3937-3956. Krysl P, Lall S, Marsden JE. Dimensional model reduction in nonlinear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 2001; 51:479-504. Zhou X, Tamma KK. Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. International Journal for Numerical Methods in Engineering 2004; 59:597-668. Newmark NM. A method of computation for structural dynamics. Journal for American Society of Civil Engineers 1959; 1:67-94. Ball JM. Short notes: strong continuous semigroups, weak solutions, and the variation of constants formula. Proceedings of the American Mathematical Society 1977; 63:370-373. Xiao H, Bruhns OT, Meyers A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica 1997; 124:89-105. Zienkiewicz OC, Taylor RL. The Finite Element Method, vol. 1. McGraw-Hill: New York, 1994. Tamma KK, Chen X, Sha D. Further developments towards a new virtual-pulse time integral methodology for general non-linear transient thermal analysis. Communications in Applied Numerical Methods in Engineering 1994; 10:961-970. Argyris JH, Vaz LE, Willam KJ. Higher order methods for transient diffusion analysis. Computer Methods in Applied Mechanics and Engineering 1977; 12:243-278. Tamma KK, Namburu RR. Applicability and evaluation of an implicit self-starting unconditionally stable methodology for dynamics of structures. Computers and Structures 1990; 34:835-842. Hulbert GM. A unified set of single-step asymptotic annihilation algorithms for structural dynamics. Computer Methods in Applied Mechanics and Engineering 1994; 113:1-9. Flanagan DP, Taylor LM. An accurate numerical algorithm for stress integration with finite rotations. Computer Methods in Applied Mechanics and Engineering 1987; 62:305-320. Xiao H, Bruhns OT, Meyer A. On objective corotational rates and their defining spin tensors. International Journal of Solids and Structures 1998; 30:4001-4014. Hughes TJR. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1987. Lax PD, Richmyer RD. Survey of the stability of linear difference equations. Communications on Pure and Applied Mathematics 1956; 9:267-293. Varadarajan VS. Lie Groups, Lie Algebras, and Their Representations. GTM 102. Springer: New York, 1984. Romero I. Stability analysis of linear multistep methods for classical elastodynamics. Computer Methods in Applied Mechanics and Engineering 2004; 193:2169-2189. Simo JC, Wong KK. Unconditional stable algorithm for rigid body dynamics that exactly preserve energy and momentum. International Journal for Numerical Methods in Engineering 1991; 31:19. Borri M, Bottasso C. A general framework for interpreting time finite element formulations. Computational Mechanics 1993; 13:133-142. Wilf HS. Algorithms and Complexity (2nd edn). A K Peters Ltd.: Wellesley, MA, 2002. Tamma KK, Zhou X, Sha D. A theory of development and design of generalized integration operators for computational structural dynamics. International Journal for Numerical Methods in Engineering 2001; 50:1619-1664. Dahlquist G. A special stability problem for linear multistep methods. BIT 1963; 3:27-43. Simo JC, Hughes TJR. Computational Inelasticity. Springer: New York, 1998. Trujillo DM. An unconditionally stable explicit algorithm for structural dynamics. International Journal for Numerical Methods in Engineering 1977; 11:1579-1592. Krieg RD. Unconditional stability of numerical time integration methods. Journal of Applied Mechanics 1973; 40:417-421. Traub JF. Iterative Methods for the Solution of Equations. Prentice-Hall: Englewood Cliffs, NJ, 1964. Sha D, Zhou X, Tamma KK. Time discretized operators. Part 2: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Computer Methods in Applied Mechanics and Engineering 2003; 192:291-329. Wood WL, Bossak M, Zienkiewicz OC. An alpha modification of Newmark's method. International Journal for Numerical Methods in Engineering 1980; 15:1562-1566. Zhou X, Tamma KK. Algorithms by design with illustrations to solid and structural mechanics/dynamics. International Journal for Numerical Methods in Engineering 2005, in press. Nørsett SP. One-step methods of Hermite type for numerical integration of stiff systems. BIT 1974; 14:63-77. Hoff C, Pahl PJ. Development of an implicit method with numerical dissipation from a generalized single step algorithm for structural dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 67:367-385. Kanapady R, Tamma KK. On the novel design of a new unified variational framework of discontinuous/continuous time operators of high order and equivalence. Finite Elements in Analysis and Design 2003; 39:600-727. Chung J, Hulbert G. A time integration method for structural dynamics with improved numerical dissipation: the generalized α-method. Journal of Applied Mechanics 1993; 30:371-375. Zhong W, Williams FW. A precise time step integration method. Proceedings of the Institution of Mechanical Engineers 1994; 208:427-436. Hulme BL. One-step piecewise polynomial Galerkin methods for initial value problems. Mathematics of Computation 1972; 26:415-426. Donea J, Roig B, Huerta A. High-order accurate time-stepping schemes for convection-diffusion problems. Computer Methods in Applied Mechanics and Engineering 2000; 182:249-275. Rubinstein R, Atluri SN. Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analysis. Computer Methods in Applied Mechanics and Engineering 1982; 36:277-290. Hughes TJR. Theoretical Foundations for Large Scale Computations of Nonlinear Material Behavior. Numerical Implementation of Constitutive Models: Rate Independent Deviatoric Plasticity (Chapter). Martinus Nijhoff: Dordrecht, The Netherlands, 1984. Tamma KK, Zhou X, Valasutean R. Computational algorithms for transient analysis: the burden of weight and consequences towards formalizing discrete numerically assigned [DNA] algorithmic markers: Wp-family. Computer Methods in Applied Mechanics and Engineering 1997; 149:153-188. Trujillo DM. The direct numerical integration of linear matrix differential equations using Padé approximations. International Journal for Numerical Methods in Engineering 1975; 9:259-270. Hairer E, Wanner G. Order stars and stiff integrators. Journal of Computational and Applied Mathematics 2000; 125:93-105. Sha D, Chen X, Tamma KK. Virtual-pulse time integral methodology: a new approach for computational dynamics. Part 1: Theory for linear structural dynamics. Finite Elements in Analysis and Design (Also, see Erratum (1996): parts 1 and 2) 1995; 20 and 22:179-194. Tamma KK, Zhou X, Kanapady R. The time dimension and a unified mathematical framework for first-order parabolic systems. Numerical Heat Transfer: Part B: Fundamentals 2002; 50:239-262. Zhou X, Tamma KK, Sha D. Design spaces, measures and metrics for evaluating quality of time operators and consequences leading to improved algorithms by design-illustration to structural dynamics. 1974; 14 1984; 20 2001; 50 2004; 60 2002; 50 2000; 7 1999; 45 2005; 64 1977; 63 2003; 192 1998; 41 1959; 1 1988; 71 1979; 32 1977 1995; 20 1993; 36 1997; 149 1973; 40 1989; 76 2000 2000; 125 1993; 30 1987 1986 2003; 4 1984 1981 1998; 52 1975; 9 1999; 138 2001; 51 1994; 113 1982; 36 1990; 34 1953; I 1994; 115 1992; 100 1991; 31 1998 1995 2003; 39 2005 1994 1977; 44 2002 1998; 25 1972; 26 1997; 124 1980; 15 1993; 13 1950; 17 1987; 62 1990; 29 2004; 59 1963; 3 2004; 193 2000; 182 1988; 66 1964 1988; 67 1956; 9 1977; 11 1977; 12 1994; 1 1994; 208 1998; 30 1969 1968 1973; 2 1977; 5 1994; 10 e_1_2_1_81_2 e_1_2_1_41_2 e_1_2_1_64_2 e_1_2_1_66_2 Hughes TJR (e_1_2_1_19_2) 1987 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_60_2 e_1_2_1_83_2 e_1_2_1_43_2 e_1_2_1_62_2 Traub JF (e_1_2_1_63_2) 1964 e_1_2_1_26_2 e_1_2_1_49_2 e_1_2_1_47_2 e_1_2_1_28_2 Hulme BL (e_1_2_1_56_2) 1972; 26 Desai CS (e_1_2_1_75_2) 1984 e_1_2_1_6_2 e_1_2_1_54_2 e_1_2_1_4_2 e_1_2_1_77_2 e_1_2_1_2_2 Chen W (e_1_2_1_76_2) 1994 e_1_2_1_33_2 e_1_2_1_50_2 e_1_2_1_71_2 e_1_2_1_31_2 e_1_2_1_52_2 Wilson EL (e_1_2_1_12_2) 1968 e_1_2_1_16_2 e_1_2_1_37_2 Newmark NM (e_1_2_1_10_2) 1959; 1 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_58_2 e_1_2_1_79_2 e_1_2_1_39_2 e_1_2_1_80_2 e_1_2_1_40_2 e_1_2_1_65_2 McVerry G (e_1_2_1_20_2) 2000 e_1_2_1_67_2 e_1_2_1_23_2 e_1_2_1_44_2 e_1_2_1_61_2 e_1_2_1_82_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_27_2 e_1_2_1_48_2 Zienkiewicz OC (e_1_2_1_24_2) 1994 e_1_2_1_25_2 e_1_2_1_46_2 e_1_2_1_69_2 Heppler GR (e_1_2_1_18_2) 1986 e_1_2_1_29_2 Kanapady R (e_1_2_1_57_2) 2003; 4 Courant R (e_1_2_1_68_2) 1953 e_1_2_1_70_2 Zhou X (e_1_2_1_8_2) 2005 Hughes TJR (e_1_2_1_72_2) 1984 e_1_2_1_30_2 e_1_2_1_53_2 e_1_2_1_7_2 e_1_2_1_55_2 e_1_2_1_78_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_32_2 e_1_2_1_51_2 e_1_2_1_74_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_17_2 e_1_2_1_59_2 Simo JC (e_1_2_1_73_2) 1998 e_1_2_1_9_2 |
| References_xml | – reference: Tarnow N, Simo JC. How to render second-order accurate time stepping algorithms fourth-order accurate while retaining the stability and conservation properties. Computer Methods in Applied Mechanics and Engineering 1994; 115:233-253. – reference: Rashid MM. Incremental kinematics for finite element applications. International Journal for Numerical Methods in Engineering 1993; 36:3937-3956. – reference: Newmark NM. A method of computation for structural dynamics. Journal for American Society of Civil Engineers 1959; 1:67-94. – reference: Xiao H, Bruhns OT, Meyer A. Strain rates and material spins. Journal of Elasticity 1998; 52:1-41. – reference: Houbolt JC. A recurrence matrix solution for the dynamic response of elastic aircraft. Journal of Aeronautical Science 1950; 17:540-550. – reference: Fung TC. Weighted parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 2-Second-order equations. International Journal for Numerical Methods in Engineering 1999; 45:971-1006. – reference: Dahlquist G. A special stability problem for linear multistep methods. BIT 1963; 3:27-43. – reference: Sha D, Chen X, Tamma KK. Virtual-pulse time integral methodology: a new approach for computational dynamics. Part 1: Theory for linear structural dynamics. Finite Elements in Analysis and Design (Also, see Erratum (1996): parts 1 and 2) 1995; 20 and 22:179-194. – reference: Hulme BL. One-step piecewise polynomial Galerkin methods for initial value problems. Mathematics of Computation 1972; 26:415-426. – reference: Hughes TJR, Winget J. Finite rotation effects in numerical integration of rate constitutive equations. International Journal for Numerical Methods in Engineering 1980; 15:1862-1867. – reference: Xiao H, Bruhns OT, Meyers A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica 1997; 124:89-105. – reference: Tamma KK, Zhou X, Sha D. The time dimension: a theory of development/evolution, classification, characterization and design of computational algorithms for transient/dynamic applications. Archives in Computational Mechanics 2000; 7(2):67-290. – reference: Lax PD, Richmyer RD. Survey of the stability of linear difference equations. Communications on Pure and Applied Mathematics 1956; 9:267-293. – reference: Hoff C, Hughes TJR, Hulbert G, Pahl PJ. Comparison of the HHT-α-Method and the Θ1-method. Computer Methods in Applied Mechanics and Engineering 1989; 76:87-93. – reference: Traub JF. Iterative Methods for the Solution of Equations. Prentice-Hall: Englewood Cliffs, NJ, 1964. – reference: Hoff C, Pahl PJ. Development of an implicit method with numerical dissipation from a generalized single step algorithm for structural dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 67:367-385. – reference: Varadarajan VS. Lie Groups, Lie Algebras, and Their Representations. GTM 102. Springer: New York, 1984. – reference: Sha D, Zhou X, Tamma KK. Time discretized operators. Part 2: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Computer Methods in Applied Mechanics and Engineering 2003; 192:291-329. – reference: Simo JC, Hughes TJR. Computational Inelasticity. Springer: New York, 1998. – reference: Rubinstein R, Atluri SN. Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analysis. Computer Methods in Applied Mechanics and Engineering 1982; 36:277-290. – reference: Hughes TJR, Hulbert GM. Space-time finite element methods for elastodynamics: formulation and error estimates. Computer Methods in Applied Mechanics and Engineering 1988; 66:339-363. – reference: Zhong W, Williams FW. A precise time step integration method. Proceedings of the Institution of Mechanical Engineers 1994; 208:427-436. – reference: Möller PW. High-order hierarchical A- and L-stable integration methods. International Journal for Numerical Methods in Engineering 1993; 36:2607-2624. – reference: Hulbert GM. A unified set of single-step asymptotic annihilation algorithms for structural dynamics. Computer Methods in Applied Mechanics and Engineering 1994; 113:1-9. – reference: Zhou X, Sha D, Tamma KK. A novel non-linearly explicit second-order accurate l-stable methodology for finite deformation: hypoelastic/hypoelasto-plastic structural dynamics problems. International Journal for Numerical Methods in Engineering 2004; 59:795-823. – reference: Romero I. Stability analysis of linear multistep methods for classical elastodynamics. Computer Methods in Applied Mechanics and Engineering 2004; 193:2169-2189. – reference: Trujillo DM. An unconditionally stable explicit algorithm for finite element heat conduction analysis. Nuclear Engineering and Design 1977; 44(99):175-180. – reference: Hairer E, Wanner G. Order stars and stiff integrators. Journal of Computational and Applied Mathematics 2000; 125:93-105. – reference: Kanapady R, Tamma KK. On the novel design of a new unified variational framework of discontinuous/continuous time operators of high order and equivalence. Finite Elements in Analysis and Design 2003; 39:600-727. – reference: Hughes TJR. Theoretical Foundations for Large Scale Computations of Nonlinear Material Behavior. Numerical Implementation of Constitutive Models: Rate Independent Deviatoric Plasticity (Chapter). Martinus Nijhoff: Dordrecht, The Netherlands, 1984. – reference: Zhou X, Tamma KK, Sha D. Design spaces, measures and metrics for evaluating quality of time operators and consequences leading to improved algorithms by design-illustration to structural dynamics. International Journal for Numerical Methods in Engineering 2005; 64:1841-1870. – reference: Tamma KK, Namburu RR. Applicability and evaluation of an implicit self-starting unconditionally stable methodology for dynamics of structures. Computers and Structures 1990; 34:835-842. – reference: Tamma KK, Zhou X, Sha D. A theory of development and design of generalized integration operators for computational structural dynamics. International Journal for Numerical Methods in Engineering 2001; 50:1619-1664. – reference: Tamma KK, Namburu RR. A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 71:137-150. – reference: Tamma KK, Sha D, Zhou X. Time discretized operators. Part 1: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Computer Methods in Applied Mechanics and Engineering 2003; 192:257-290. – reference: Zhou X, Tamma KK. Algorithms by design with illustrations to solid and structural mechanics/dynamics. International Journal for Numerical Methods in Engineering 2005, in press. – reference: Simo JC, Tarnow N, Wang KK. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering 1992; 100:63. – reference: Desai CS, Siriwardane HJ. Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials. Prentice-Hall: Englewood Cliffs, NJ, 1984. – reference: Xiao H, Bruhns OT, Meyer A. On objective corotational rates and their defining spin tensors. International Journal of Solids and Structures 1998; 30:4001-4014. – reference: Goudreau GL, Taylor RL. Evaluation of numerical methods in elastodynamics. Computer Methods in Applied Mechanics and Engineering 1973; 2:69-97. – reference: Courant R, Hilbert D. Methods of Mathematical Physics, vol. I. Interscience: New York, 1953. – reference: Simo JC, Wong KK. Unconditional stable algorithm for rigid body dynamics that exactly preserve energy and momentum. International Journal for Numerical Methods in Engineering 1991; 31:19. – reference: Borri M, Bottasso C. A general framework for interpreting time finite element formulations. Computational Mechanics 1993; 13:133-142. – reference: Nørsett SP. One-step methods of Hermite type for numerical integration of stiff systems. BIT 1974; 14:63-77. – reference: Tamma KK, Zhou X, Kanapady R. The time dimension and a unified mathematical framework for first-order parabolic systems. Numerical Heat Transfer: Part B: Fundamentals 2002; 50:239-262. – reference: Donea J, Roig B, Huerta A. High-order accurate time-stepping schemes for convection-diffusion problems. Computer Methods in Applied Mechanics and Engineering 2000; 182:249-275. – reference: Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics 1977; 5:283-292. – reference: Zienkiewicz OC, Taylor RL. The Finite Element Method, vol. 1. McGraw-Hill: New York, 1994. – reference: Ball JM. Short notes: strong continuous semigroups, weak solutions, and the variation of constants formula. Proceedings of the American Mathematical Society 1977; 63:370-373. – reference: Krysl P, Lall S, Marsden JE. Dimensional model reduction in nonlinear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 2001; 51:479-504. – reference: Wilson EL. A Computer Program for Dynamic Stress Analysis of Underground Structures. SESM, University of California, Berkeley, 1968. – reference: Xiao H, Bruhns OT, Meyer A. On the existence and uniqueness of the integrable-exactly hypoelastic equation of grade zero and its significance to finite inelasticity. Acta Mechanica 1999; 138:31-50. – reference: Tamma KK, Chen X, Sha D. Further developments towards a new virtual-pulse time integral methodology for general non-linear transient thermal analysis. Communications in Applied Numerical Methods in Engineering 1994; 10:961-970. – reference: Flanagan DP, Taylor LM. An accurate numerical algorithm for stress integration with finite rotations. Computer Methods in Applied Mechanics and Engineering 1987; 62:305-320. – reference: Trujillo DM. An unconditionally stable explicit algorithm for structural dynamics. International Journal for Numerical Methods in Engineering 1977; 11:1579-1592. – reference: Tamma KK, Zhou X, Valasutean R. Computational algorithms for transient analysis: the burden of weight and consequences towards formalizing discrete numerically assigned [DNA] algorithmic markers: Wp-family. Computer Methods in Applied Mechanics and Engineering 1997; 149:153-188. – reference: Zhou X, Tamma KK. Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. International Journal for Numerical Methods in Engineering 2004; 59:597-668. – reference: Chen X, Tamma KK, Sha D. Virtual-pulse time integral methodology: a new approach for computational dynamics. Part 2: theory for nonlinear structural dynamics. Finite Elements in Analysis and Design 1995; 20:195-204. – reference: Krieg RD. Unconditional stability of numerical time integration methods. Journal of Applied Mechanics 1973; 40:417-421. – reference: Chung J, Hulbert G. A time integration method for structural dynamics with improved numerical dissipation: the generalized α-method. Journal of Applied Mechanics 1993; 30:371-375. – reference: Hughes TJR. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1987. – reference: Argyris JH, Dunne PC, Angelopoulos T. Nonlinear oscillations using the finite element technique. Computer Methods in Applied Mechanics and Engineering 1973; 2:203-250. – reference: Dienes JK. On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica 1979; 32:217-232. – reference: Zhou X, Tamma KK. A new unified theory underlying time dependent linear first-order systems: a prelude to algorithms by design. International Journal for Numerical Methods in Engineering 2004; 60:1699-1740. – reference: Chen W, Saleeb AF. Constitutive Equations for Engineering Materials Volume 1: Elasticity and Modeling. Elsevier: New York, 1994. – reference: Zienkiewicz OC, Wood WL, Hine NW, Taylor RL. A unified set of single-step algorithms. Part 1: general formulations and applications. International Journal for Numerical Methods in Engineering 1984; 20:1529-1552. – reference: Fung TC. Complex-time-step Newmark methods with controllable numerical dissipation. International Journal for Numerical Methods in Engineering 1998; 41:65-93. – reference: Wood WL, Bossak M, Zienkiewicz OC. An alpha modification of Newmark's method. International Journal for Numerical Methods in Engineering 1980; 15:1562-1566. – reference: Xiao H, Bruhns OT, Meyers A. Direct relationship between the Lagrangian logarithmic strain and the Lagrangian stretching and the Lagrangian Kirchoff stress. Mechanics Research Communications 1998; 25:59-67. – reference: Wood WL. A unified set of single-step algorithms. Part 2. International Journal for Numerical Methods in Engineering 1984; 20:2303-2309. – reference: Zhou X, Tamma KK. On the applicability and stress update formulation for corotational stress rate hypoelasticity constitutive models. Finite Elements in Analysis and Design 2003; 39:783-816. – reference: Trujillo DM. The direct numerical integration of linear matrix differential equations using Padé approximations. International Journal for Numerical Methods in Engineering 1975; 9:259-270. – reference: Tamma KK, Namburu RR. A robust self-starting explicit computational methodology for structural dynamic applications: architecture and representations. International Journal for Numerical Methods in Engineering 1990; 29:1441-1454. – reference: Kanapady R, Tamma KK. A mathematical framework towards a unified set of discontinuous state-phase hierarchical time operators for computational dynamics. Computer Modeling in Engineering and Sciences 2003; 4:103-118. – reference: Argyris JH, Vaz LE, Willam KJ. Higher order methods for transient diffusion analysis. Computer Methods in Applied Mechanics and Engineering 1977; 12:243-278. – reference: Wilf HS. Algorithms and Complexity (2nd edn). A K Peters Ltd.: Wellesley, MA, 2002. – volume: 124 start-page: 89 year: 1997 end-page: 105 article-title: Logarithmic strain, logarithmic spin and logarithmic rate publication-title: Acta Mechanica – volume: 36 start-page: 277 year: 1982 end-page: 290 article-title: Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analysis publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 52 start-page: 1 year: 1998 end-page: 41 article-title: Strain rates and material spins publication-title: Journal of Elasticity – volume: 2 start-page: 69 year: 1973 end-page: 97 article-title: Evaluation of numerical methods in elastodynamics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 50 start-page: 1619 year: 2001 end-page: 1664 article-title: A theory of development and design of generalized integration operators for computational structural dynamics publication-title: International Journal for Numerical Methods in Engineering – volume: 5 start-page: 283 year: 1977 end-page: 292 article-title: Improved numerical dissipation for time integration algorithms in structural dynamics publication-title: Earthquake Engineering and Structural Dynamics – volume: 20 start-page: 1529 year: 1984 end-page: 1552 article-title: A unified set of single‐step algorithms. Part 1: general formulations and applications publication-title: International Journal for Numerical Methods in Engineering – volume: 59 start-page: 795 year: 2004 end-page: 823 article-title: A novel non‐linearly explicit second‐order accurate l‐stable methodology for finite deformation: hypoelastic/hypoelasto‐plastic structural dynamics problems publication-title: International Journal for Numerical Methods in Engineering – volume: 14 start-page: 63 year: 1974 end-page: 77 article-title: One‐step methods of Hermite type for numerical integration of stiff systems publication-title: BIT – volume: 36 start-page: 3937 year: 1993 end-page: 3956 article-title: Incremental kinematics for finite element applications publication-title: International Journal for Numerical Methods in Engineering – volume: 12 start-page: 243 year: 1977 end-page: 278 article-title: Higher order methods for transient diffusion analysis publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 34 start-page: 835 year: 1990 end-page: 842 article-title: Applicability and evaluation of an implicit self‐starting unconditionally stable methodology for dynamics of structures publication-title: Computers and Structures – volume: 39 start-page: 600 year: 2003 end-page: 727 article-title: On the novel design of a new unified variational framework of discontinuous/continuous time operators of high order and equivalence publication-title: Finite Elements in Analysis and Design – volume: 15 start-page: 1862 year: 1980 end-page: 1867 article-title: Finite rotation effects in numerical integration of rate constitutive equations publication-title: International Journal for Numerical Methods in Engineering – volume: 45 start-page: 971 year: 1999 end-page: 1006 article-title: Weighted parameters for unconditionally stable higher‐order accurate time step integration algorithms. Part 2—Second‐order equations publication-title: International Journal for Numerical Methods in Engineering – year: 1994 – volume: 51 start-page: 479 year: 2001 end-page: 504 article-title: Dimensional model reduction in nonlinear finite element dynamics of solids and structures publication-title: International Journal for Numerical Methods in Engineering – start-page: 585 year: 1981 end-page: 621 – year: 1998 – volume: 149 start-page: 153 year: 1997 end-page: 188 article-title: Computational algorithms for transient analysis: the burden of weight and consequences towards formalizing discrete numerically assigned [DNA] algorithmic markers: Wp‐family publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 67 start-page: 367 year: 1988 end-page: 385 article-title: Development of an implicit method with numerical dissipation from a generalized single step algorithm for structural dynamics publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 12 year: 1994 end-page: 17 – year: 1986 – volume: 20 start-page: 2303 year: 1984 end-page: 2309 article-title: A unified set of single‐step algorithms. Part 2 publication-title: International Journal for Numerical Methods in Engineering – volume: 62 start-page: 305 year: 1987 end-page: 320 article-title: An accurate numerical algorithm for stress integration with finite rotations publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 76 start-page: 87 year: 1989 end-page: 93 article-title: Comparison of the HHT‐α‐Method and the Θ ‐method publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 3 start-page: 27 year: 1963 end-page: 43 article-title: A special stability problem for linear multistep methods publication-title: BIT – volume: 40 start-page: 417 year: 1973 end-page: 421 article-title: Unconditional stability of numerical time integration methods publication-title: Journal of Applied Mechanics – year: 1969 – volume: 30 start-page: 4001 year: 1998 end-page: 4014 article-title: On objective corotational rates and their defining spin tensors publication-title: International Journal of Solids and Structures – volume: 66 start-page: 339 year: 1988 end-page: 363 article-title: Space‐time finite element methods for elastodynamics: formulation and error estimates publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 39 start-page: 783 year: 2003 end-page: 816 article-title: On the applicability and stress update formulation for corotational stress rate hypoelasticity constitutive models publication-title: Finite Elements in Analysis and Design – volume: 115 start-page: 233 year: 1994 end-page: 253 article-title: How to render second‐order accurate time stepping algorithms fourth‐order accurate while retaining the stability and conservation properties publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 4 start-page: 103 year: 2003 end-page: 118 article-title: A mathematical framework towards a unified set of discontinuous state‐phase hierarchical time operators for computational dynamics publication-title: Computer Modeling in Engineering and Sciences – volume: 36 start-page: 2607 year: 1993 end-page: 2624 article-title: High‐order hierarchical A‐ and L‐stable integration methods publication-title: International Journal for Numerical Methods in Engineering – volume: 7 start-page: 67 issue: 2 year: 2000 end-page: 290 article-title: The time dimension: a theory of development/evolution, classification, characterization and design of computational algorithms for transient/dynamic applications publication-title: Archives in Computational Mechanics – volume: 31 start-page: 19 year: 1991 article-title: Unconditional stable algorithm for rigid body dynamics that exactly preserve energy and momentum publication-title: International Journal for Numerical Methods in Engineering – volume: 25 start-page: 59 year: 1998 end-page: 67 article-title: Direct relationship between the Lagrangian logarithmic strain and the Lagrangian stretching and the Lagrangian Kirchoff stress publication-title: Mechanics Research Communications – volume: 9 start-page: 267 year: 1956 end-page: 293 article-title: Survey of the stability of linear difference equations publication-title: Communications on Pure and Applied Mathematics – volume: 59 start-page: 597 year: 2004 end-page: 668 article-title: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics publication-title: International Journal for Numerical Methods in Engineering – volume: 20 start-page: 195 year: 1995 end-page: 204 article-title: Virtual‐pulse time integral methodology: a new approach for computational dynamics. Part 2: theory for nonlinear structural dynamics publication-title: Finite Elements in Analysis and Design – volume: 50 start-page: 239 year: 2002 end-page: 262 article-title: The time dimension and a unified mathematical framework for first‐order parabolic systems publication-title: Numerical Heat Transfer: Part B: Fundamentals – year: 1964 – volume: 44 start-page: 175 issue: 99 year: 1977 end-page: 180 article-title: An unconditionally stable explicit algorithm for finite element heat conduction analysis publication-title: Nuclear Engineering and Design – volume: 30 start-page: 371 year: 1993 end-page: 375 article-title: A time integration method for structural dynamics with improved numerical dissipation: the generalized α‐method publication-title: Journal of Applied Mechanics – year: 1968 – year: 1987 – volume: 13 start-page: 133 year: 1993 end-page: 142 article-title: A general framework for interpreting time finite element formulations publication-title: Computational Mechanics – volume: 11 start-page: 1579 year: 1977 end-page: 1592 article-title: An unconditionally stable explicit algorithm for structural dynamics publication-title: International Journal for Numerical Methods in Engineering – year: 2000 – volume: 32 start-page: 217 year: 1979 end-page: 232 article-title: On the analysis of rotation and stress rate in deforming bodies publication-title: Acta Mechanica – volume: 125 start-page: 93 year: 2000 end-page: 105 article-title: Order stars and stiff integrators publication-title: Journal of Computational and Applied Mathematics – volume: 138 start-page: 31 year: 1999 end-page: 50 article-title: On the existence and uniqueness of the integrable‐exactly hypoelastic equation of grade zero and its significance to finite inelasticity publication-title: Acta Mechanica – volume: 71 start-page: 137 year: 1988 end-page: 150 article-title: A new finite element based Lax‐Wendroff/Taylor–Galerkin methodology for computational dynamics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 17 start-page: 540 year: 1950 end-page: 550 article-title: A recurrence matrix solution for the dynamic response of elastic aircraft publication-title: Journal of Aeronautical Science – year: 1977 – volume: 64 start-page: 1841 year: 2005 end-page: 1870 article-title: Design spaces, measures and metrics for evaluating quality of time operators and consequences leading to improved algorithms by design—illustration to structural dynamics publication-title: International Journal for Numerical Methods in Engineering – volume: 182 start-page: 249 year: 2000 end-page: 275 article-title: High‐order accurate time‐stepping schemes for convection–diffusion problems publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 26 start-page: 415 year: 1972 end-page: 426 article-title: One‐step piecewise polynomial Galerkin methods for initial value problems publication-title: Mathematics of Computation – volume: 15 start-page: 1562 year: 1980 end-page: 1566 article-title: An alpha modification of Newmark's method publication-title: International Journal for Numerical Methods in Engineering – volume: I year: 1953 – year: 1984 – volume: 1 year: 1994 – volume: 60 start-page: 1699 year: 2004 end-page: 1740 article-title: A new unified theory underlying time dependent linear first‐order systems: a prelude to algorithms by design publication-title: International Journal for Numerical Methods in Engineering – volume: 9 start-page: 259 year: 1975 end-page: 270 article-title: The direct numerical integration of linear matrix differential equations using Padé approximations publication-title: International Journal for Numerical Methods in Engineering – volume: 1 start-page: 67 year: 1959 end-page: 94 article-title: A method of computation for structural dynamics publication-title: Journal for American Society of Civil Engineers – year: 2002 – volume: 192 start-page: 291 year: 2003 end-page: 329 article-title: Time discretized operators. Part 2: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 193 start-page: 2169 year: 2004 end-page: 2189 article-title: Stability analysis of linear multistep methods for classical elastodynamics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 63 start-page: 370 year: 1977 end-page: 373 article-title: Short notes: strong continuous semigroups, weak solutions, and the variation of constants formula publication-title: Proceedings of the American Mathematical Society – volume: 208 start-page: 427 year: 1994 end-page: 436 article-title: A precise time step integration method publication-title: Proceedings of the Institution of Mechanical Engineers – start-page: 179 year: 1995 end-page: 194 article-title: Virtual‐pulse time integral methodology: a new approach for computational dynamics. Part 1: Theory for linear structural dynamics publication-title: Finite Elements in Analysis and Design – volume: 29 start-page: 1441 year: 1990 end-page: 1454 article-title: A robust self‐starting explicit computational methodology for structural dynamic applications: architecture and representations publication-title: International Journal for Numerical Methods in Engineering – volume: 100 start-page: 63 year: 1992 article-title: Exact energy‐momentum conserving algorithms and symplectic schemes for nonlinear dynamics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 113 start-page: 1 year: 1994 end-page: 9 article-title: A unified set of single‐step asymptotic annihilation algorithms for structural dynamics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 192 start-page: 257 year: 2003 end-page: 290 article-title: Time discretized operators. Part 1: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2005 article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics publication-title: International Journal for Numerical Methods in Engineering – volume: 2 start-page: 203 year: 1973 end-page: 250 article-title: Nonlinear oscillations using the finite element technique publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 10 start-page: 961 year: 1994 end-page: 970 article-title: Further developments towards a new virtual‐pulse time integral methodology for general non‐linear transient thermal analysis publication-title: Communications in Applied Numerical Methods in Engineering – volume: 41 start-page: 65 year: 1998 end-page: 93 article-title: Complex‐time‐step Newmark methods with controllable numerical dissipation publication-title: International Journal for Numerical Methods in Engineering – ident: e_1_2_1_37_2 doi: 10.1016/0168-874X(95)00016-M – ident: e_1_2_1_53_2 doi: 10.1016/0045-7825(94)90208-9 – volume-title: Technical Report year: 1986 ident: e_1_2_1_18_2 – ident: e_1_2_1_62_2 doi: 10.1002/cpa.3160090206 – ident: e_1_2_1_2_2 doi: 10.1002/nme.1019 – volume-title: The Finite Element Method year: 2000 ident: e_1_2_1_20_2 – volume: 1 start-page: 67 year: 1959 ident: e_1_2_1_10_2 article-title: A method of computation for structural dynamics publication-title: Journal for American Society of Civil Engineers – ident: e_1_2_1_55_2 doi: 10.1016/S0168-874X(03)00056-8 – ident: e_1_2_1_65_2 doi: 10.1002/nme.1620362302 – volume-title: Constitutive Equations for Engineering Materials Volume 1: Elasticity and Modeling year: 1994 ident: e_1_2_1_76_2 – ident: e_1_2_1_83_2 doi: 10.1016/j.cma.2004.01.012 – ident: e_1_2_1_29_2 doi: 10.1016/0045-7825(92)90115-Z – ident: e_1_2_1_17_2 doi: 10.1115/1.3422999 – ident: e_1_2_1_32_2 doi: 10.1115/1.2900803 – ident: e_1_2_1_41_2 doi: 10.1016/0045-7825(77)90014-7 – ident: e_1_2_1_38_2 doi: 10.1002/cnm.1640101202 – ident: e_1_2_1_46_2 doi: 10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3.0.CO;2-F – ident: e_1_2_1_5_2 doi: 10.1016/S0168-874X(03)00059-3 – ident: e_1_2_1_69_2 doi: 10.1007/978-3-642-81589-8_30 – ident: e_1_2_1_71_2 doi: 10.1016/S0093-6413(98)00007-X – ident: e_1_2_1_52_2 doi: 10.1007/BF00370131 – ident: e_1_2_1_6_2 doi: 10.1002/nme.873 – ident: e_1_2_1_61_2 doi: 10.1016/S0377-0427(00)00461-1 – ident: e_1_2_1_80_2 doi: 10.1007/BF01379008 – volume-title: A Computer Program for Dynamic Stress Analysis of Underground Structures year: 1968 ident: e_1_2_1_12_2 – ident: e_1_2_1_50_2 doi: 10.1002/(SICI)1097-0207(19990720)45:8<971::AID-NME613>3.0.CO;2-M – ident: e_1_2_1_9_2 doi: 10.2514/8.1722 – ident: e_1_2_1_22_2 doi: 10.1002/nme.1620200814 – ident: e_1_2_1_66_2 doi: 10.1002/nme.1620151210 – ident: e_1_2_1_67_2 doi: 10.1016/0045-7825(83)90125-1 – ident: e_1_2_1_7_2 doi: 10.1002/nme.878 – ident: e_1_2_1_4_2 doi: 10.1007/BF02736209 – ident: e_1_2_1_44_2 doi: 10.1016/S0045-7825(02)00516-9 – ident: e_1_2_1_28_2 doi: 10.1002/nme.1620310103 – ident: e_1_2_1_3_2 doi: 10.1002/nme.1405 – ident: e_1_2_1_47_2 doi: 10.1016/S0045-7825(99)00193-0 – volume: 4 start-page: 103 year: 2003 ident: e_1_2_1_57_2 article-title: A mathematical framework towards a unified set of discontinuous state‐phase hierarchical time operators for computational dynamics publication-title: Computer Modeling in Engineering and Sciences – ident: e_1_2_1_59_2 doi: 10.1016/0029-5493(77)90107-8 – ident: e_1_2_1_15_2 – ident: e_1_2_1_82_2 doi: 10.1002/nme.167 – ident: e_1_2_1_39_2 doi: 10.1007/BF01933119 – ident: e_1_2_1_36_2 doi: 10.1016/0168-874X(95)00015-L – ident: e_1_2_1_40_2 doi: 10.1002/nme.1620090202 – volume-title: The Finite Element Method year: 1994 ident: e_1_2_1_24_2 – ident: e_1_2_1_42_2 doi: 10.1243/PIME_PROC_1994_208_148_02 – volume-title: The Finite Element Method, Linear Static and Dynamic Finite Element Analysis year: 1987 ident: e_1_2_1_19_2 – ident: e_1_2_1_16_2 doi: 10.1002/eqe.4290050306 – volume-title: Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials year: 1984 ident: e_1_2_1_75_2 – ident: e_1_2_1_31_2 doi: 10.1016/0045-7825(89)90142-4 – ident: e_1_2_1_70_2 doi: 10.1016/0045-7825(87)90065-X – ident: e_1_2_1_74_2 doi: 10.1007/BF01179540 – ident: e_1_2_1_34_2 doi: 10.2307/2041821 – ident: e_1_2_1_78_2 doi: 10.1007/BF01213020 – ident: e_1_2_1_58_2 doi: 10.1002/nme.1620111008 – ident: e_1_2_1_77_2 doi: 10.1016/S0020-7683(97)00267-9 – ident: e_1_2_1_33_2 doi: 10.1002/nme.89 – ident: e_1_2_1_25_2 doi: 10.1016/0045-7825(88)90082-5 – ident: e_1_2_1_11_2 doi: 10.1007/BF01963532 – ident: e_1_2_1_54_2 doi: 10.1080/104077902753541005 – ident: e_1_2_1_51_2 doi: 10.1016/0045-7825(88)90006-0 – ident: e_1_2_1_43_2 doi: 10.1016/S0045-7825(02)00515-7 – ident: e_1_2_1_48_2 doi: 10.1002/nme.1620361507 – ident: e_1_2_1_45_2 doi: 10.1016/0045-7825(94)90061-2 – ident: e_1_2_1_60_2 – year: 2005 ident: e_1_2_1_8_2 article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics publication-title: International Journal for Numerical Methods in Engineering – ident: e_1_2_1_35_2 doi: 10.1016/S0045-7825(97)00056-X – ident: e_1_2_1_81_2 doi: 10.1007/978-1-4612-1126-6 – ident: e_1_2_1_49_2 – volume-title: Computational Inelasticity year: 1998 ident: e_1_2_1_73_2 – ident: e_1_2_1_21_2 doi: 10.1002/nme.1620151011 – ident: e_1_2_1_23_2 doi: 10.1002/nme.1620201210 – ident: e_1_2_1_26_2 doi: 10.1002/nme.1620290705 – ident: e_1_2_1_64_2 doi: 10.1201/b10621 – volume-title: Methods of Mathematical Physics year: 1953 ident: e_1_2_1_68_2 – ident: e_1_2_1_30_2 doi: 10.1016/0045-7825(88)90053-9 – volume-title: Theoretical Foundations for Large Scale Computations of Nonlinear Material Behavior year: 1984 ident: e_1_2_1_72_2 – ident: e_1_2_1_27_2 doi: 10.1016/0045-7949(90)90354-5 – volume-title: Iterative Methods for the Solution of Equations year: 1964 ident: e_1_2_1_63_2 – volume: 26 start-page: 415 year: 1972 ident: e_1_2_1_56_2 article-title: One‐step piecewise polynomial Galerkin methods for initial value problems publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-1972-0321301-2 – ident: e_1_2_1_79_2 doi: 10.1023/A:1007570827614 – ident: e_1_2_1_14_2 doi: 10.1016/0045-7825(73)90015-7 – ident: e_1_2_1_13_2 doi: 10.1016/0045-7825(73)90023-6 |
| SSID | ssj0011503 |
| Score | 2.0841877 |
| Snippet | A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with... A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1738 |
| SubjectTerms | Algorithms Applied sciences Computation computational algorithms Computational techniques Dynamics Education Exact sciences and technology Exposure first and second order systems Fundamental areas of phenomenology (including applications) Illustrations INT Mathematical methods in physics Mechanical engineering. Machine design Physics Solid mechanics Structural and continuum mechanics structural dynamics Tasks time integration algorithms time operators Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
| Title | Algorithms by design with illustrations to solid and structural mechanics/dynamics |
| URI | https://api.istex.fr/ark:/67375/WNG-KMQ3MG1Q-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.1559 https://www.proquest.com/docview/1082194096 https://www.proquest.com/docview/29334620 |
| Volume | 66 |
| WOSCitedRecordID | wos000238584800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 issn: 0029-5981 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BywM8bDCY6GDDSAieQh0nc-LHia1DglZsGmJvlhPbUNGmqOmm7b_nLl-0EpOQeEoinR3rPuyz7_w7gDcqkpJ7gcprnA1i4X1AqGOBMopnJkqdiGxVbCKZTNLLS_WlyaqkuzA1PkR34EaWUc3XZOAmK4droKFz955iavehL1Bt4x70j89HXz93MQR0daI2weNQpWELPcvFsG27sRj1ia83lBxpSuSPrwtbbHie6_5rtQCNtv9n6I9hq3E72VGtJ0_gnit2YLtxQVlj4OUOPFrDJ8SvcQfqWj6F86PZ98VyuvoxL1l2y2yV-8HoIJdNZ7OrFoC3ZKsFQ42eWmYKy2qAWgL3YHNH14yxr6G9LcwcX57Bxejk4sPHoCnJEOQUAAwylSVUw0-il2AVt3mSZjz13qYmxZXeWWEydCEEbrktd9YariyXmZA-9nGUR7vQKxaFew4s9hRWNiE2yGLjJNF5qUxoCYMsTgbwrhWNzhu4cqqaMdM10LLQyEVNXBzA647yVw3R8Reat5V0OwKz_Ekpbcmh_jY51Z_GZ9H4NDzT-NuDDfH_6TFJCQ2N_tbqg0ZLpPCKKdziqiSoVZz-cb8sB_DqDhpkWxRLwXE8lYLcOWA9GZ_Qc-9fCV_Aw_p0SAZh-BJ6KFy3Dw_y69W0XB40tvEbmWYTEw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFgl4YDBAlI_NSAiesuarTiyeJlg3tCZiUxF7s5zYhoo2RU2H2H_PXb5oJSYh8ZREOn_ofBef786_A3gtAs5d66PwKqOd0LfWIdQxRyjhZiqIjR_oqthElKbx5aX4tAPv2rswNT5E53Ajzaj-16Tg5JAebqCGLswhBdVuQT9EKRr1oP_hYvx50gUR0NYJ2gyPkYi9FnvW9Ydt263dqE-M_UXZkapEBtm6ssWW6blpwFY70Hj3v-b-AO43hic7qiXlIeyYYg92GyOUNSpe7sG9DYRC_Eo6WNfyEVwczb8uV7P1t0XJsmumq-wPRq5cNpvPr1oI3pKtlwxleqaZKjSrIWoJ3oMtDF00xr6G-rpQC3x5DNPx8fT9qdMUZXByCgE6mcgiquLH0U7QwtV5FGdubK2OVYx7vdG-ytCI8PHQrV2jtXKFdnnmcxvaMMiDJ9ArloV5Ciy0FFhWHjbIQmU40VkulKcJhSyMBvC2XRuZN4DlVDdjLmuoZV8iFyVxcQCvOsofNUjHX2jeVMvbEajVd0pqi0byS3oiz5LzIDnxziUOu7-1_n96jGLCQ6PRWoGQqIsUYFGFWV6VBLaKGwCemPkADm6gQbYFIfddnE8lITdOWKbJMT2f_SvhAdw5nSYTOfmYnj2Hu7WviDue9wJ6uNDmJdzOf65n5Wq_UZTfAbUXAw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED-NFSH4wGCAKI_NSAg-ZXUedWLxaWLrQFujbRpi3ywntqGiTaemQ-y_5y4vWolJSHxKIp0fukd89p1_B_BWhkJwF6Dyamu8KHDOI9QxT2rJMx0mNghNVWwiTtPk8lKebsCH9i5MjQ_RHbiRZVT_azJwe2XcYAU1dGb3KKh2B3rRUAq0yt7B-ejLSRdEQF8nbDM8hjLxW-xZHgzatmurUY8Y-4uyI3WJDHJ1ZYs113PVga1WoNHWf839ETxsHE-2X2vKY9iwxTZsNU4oa0y83IYHKwiF-DXuYF3LJ3C-P_02X0yW32cly26YqbI_GB3lssl0et1C8JZsOWeo0xPDdGFYDVFL8B5sZumiMfY1MDeFnuHLU7gYHV58_OQ1RRm8nEKAXiazmKr4CfQTjOQmj5OMJ86ZRCe41lsT6AydiAA33YZbYzSXhossEC5yUZiHz2CzmBf2ObDIUWBZ-9ggi7QVROeE1L4hFLIo7sP7VjYqbwDLqW7GVNVQy4FCLiriYh_edJRXNUjHX2jeVeLtCPTiByW1xUP1NT1Sx-OzcHzknykcdmdN_n96jBPCQ6PRWoVQaIsUYNGFnV-XBLaKCwDumEUfdm-hQbaFkQg4zqfSkFsnrNLxIT1f_CvhLtw7PRipk8_p8Uu4Xx8VCc_3X8Emytm-hrv5z-WkXOw0dvIbbM4Wfg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+by+design+with+illustrations+to+solid+and+structural+mechanics%2Fdynamics&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Zhou%2C+X.&rft.au=Tamma%2C+K.+K.&rft.date=2006-06-11&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=66&rft.issue=11&rft.spage=1738&rft.epage=1790&rft_id=info:doi/10.1002%2Fnme.1559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_1559 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |