Algorithms by design with illustrations to solid and structural mechanics/dynamics

A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with emphasis on applications to the broad area of computational mechanics, but with focus on solid and structural mechanics/dynamics as an illustr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal for numerical methods in engineering Ročník 66; číslo 11; s. 1738 - 1790
Hlavní autori: Zhou, X., Tamma, K. K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 11.06.2006
Wiley
Predmet:
ISSN:0029-5981, 1097-0207
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with emphasis on applications to the broad area of computational mechanics, but with focus on solid and structural mechanics/dynamics as an illustration. The algorithms by design concepts capitalize upon: (i) the recently developed unified theory underlying computational algorithms (Int. J. Numer. Meth. Engng 2004; 59:597–668), and (ii) newly established design spaces and algorithmic measures for evaluating the quality of computational algorithms (Int. J. Numer. Meth. Engng 2005; 64:1841–1870). As a step in the forward direction, in this exposition we embark upon some challenging tasks with the objective to advance, tailor, and foster the design of computational algorithms for time‐dependent problems with desired and/or improved algorithmic attributes in the sense of accuracy, stability and other characteristics including algorithmic complexity in a well educated manner. The design process for computational algorithms is explained in the sense of the algorithms by design concepts via selected numerical illustrations of practical scenarios encountered in solid and structural mechanics/dynamics applications. Copyright © 2006 John Wiley & Sons, Ltd.
AbstractList A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with emphasis on applications to the broad area of computational mechanics, but with focus on solid and structural mechanics/dynamics as an illustration. The algorithms by design concepts capitalize upon: (i) the recently developed unified theory underlying computational algorithms (Int. J. Numer. Meth. Engng 2004; 59:597–668), and (ii) newly established design spaces and algorithmic measures for evaluating the quality of computational algorithms (Int. J. Numer. Meth. Engng 2005; 64:1841–1870). As a step in the forward direction, in this exposition we embark upon some challenging tasks with the objective to advance, tailor, and foster the design of computational algorithms for time‐dependent problems with desired and/or improved algorithmic attributes in the sense of accuracy, stability and other characteristics including algorithmic complexity in a well educated manner. The design process for computational algorithms is explained in the sense of the algorithms by design concepts via selected numerical illustrations of practical scenarios encountered in solid and structural mechanics/dynamics applications. Copyright © 2006 John Wiley & Sons, Ltd.
A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with emphasis on applications to the broad area of computational mechanics, but with focus on solid and structural mechanics/dynamics as an illustration. The algorithms by design concepts capitalize upon: (i) the recently developed unified theory underlying computational algorithms (Int. J. Numer. Meth. Engng 2004; 59:597-668), and (ii) newly established design spaces and algorithmic measures for evaluating the quality of computational algorithms (Int. J. Numer. Meth. Engng 2005; 64:1841-1870). As a step in the forward direction, in this exposition we embark upon some challenging tasks with the objective to advance, tailor, and foster the design of computational algorithms for time-dependent problems with desired and/or improved algorithmic attributes in the sense of accuracy, stability and other characteristics including algorithmic complexity in a well educated manner. The design process for computational algorithms is explained in the sense of the algorithms by design concepts via selected numerical illustrations of practical scenarios encountered in solid and structural mechanics/dynamics applications.
A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with emphasis on applications to the broad area of computational mechanics, but with focus on solid and structural mechanics/dynamics as an illustration. The algorithms by design concepts capitalize upon: (i) the recently developed unified theory underlying computational algorithms ( Int. J. Numer. Meth. Engng 2004; 59 :597–668), and (ii) newly established design spaces and algorithmic measures for evaluating the quality of computational algorithms ( Int. J. Numer. Meth. Engng 2005; 64 :1841–1870). As a step in the forward direction, in this exposition we embark upon some challenging tasks with the objective to advance, tailor, and foster the design of computational algorithms for time‐dependent problems with desired and/or improved algorithmic attributes in the sense of accuracy, stability and other characteristics including algorithmic complexity in a well educated manner. The design process for computational algorithms is explained in the sense of the algorithms by design concepts via selected numerical illustrations of practical scenarios encountered in solid and structural mechanics/dynamics applications. Copyright © 2006 John Wiley & Sons, Ltd.
Author Tamma, K. K.
Zhou, X.
Author_xml – sequence: 1
  givenname: X.
  surname: Zhou
  fullname: Zhou, X.
  email: xiangmin@msi.umn.edu
  organization: Department of Mechanical Engineering, University of Minnesota 111 Church St. S.E., Minneapolis, MN, 55455, U.S.A
– sequence: 2
  givenname: K. K.
  surname: Tamma
  fullname: Tamma, K. K.
  email: ktamma@tc.umn.edu
  organization: Department of Mechanical Engineering, University of Minnesota 111 Church St. S.E., Minneapolis, MN, 55455, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17843819$$DView record in Pascal Francis
BookMark eNp90VFLHDEQB_AgFnpqoR8hL5W-7DlJdjebRxG9ip6iCH0M2SSrsdmsTXax9-2NnpyI2KeEyS9_hpkdtB2GYBH6TmBOAOhB6O2cVJXYQjMCghdAgW-jWX4SRSUa8hXtpHQPQEgFbIauD_3tEN141yfcrrCxyd0G_JgL2Hk_pTGq0Q0h4XHAafDOYBUMzuVJj1NUHvdW36ngdDowq6D6fNlDXzrlk_32eu6im5Pjm6Nfxfnl4vTo8LzQTHBRtKLlvARSU8GMAKN500LTdaZRTV0Ta6hqK0KpAG7AGqNAGKhbWndlVzLNdtH-OvYhDn8nm0bZu6St9yrYYUoyx7KyppDhz_9CAg0logRRZ_rjlaqkle-iCtol-RBdr-JKEt6UrCEiu_na6TikFG0ntRtfBpXn5XyOlM_LkHkZ8nkZbz1sPmwyP9JiTR-dt6tPnbxYHr_3Lo3238ar-EfWnPFK_r5YyLPlFVsuyJXk7AmQW6nY
CODEN IJNMBH
CitedBy_id crossref_primary_10_1002_nme_5934
crossref_primary_10_1007_s11071_023_09065_7
crossref_primary_10_1016_j_cma_2024_117522
crossref_primary_10_1002_cnm_1097
crossref_primary_10_1108_HFF_11_2022_0667
crossref_primary_10_1002_nme_2008
crossref_primary_10_1002_nme_4720
crossref_primary_10_1016_j_compstruc_2012_09_009
crossref_primary_10_1002_nme_7658
crossref_primary_10_1080_13632469_2024_2372814
crossref_primary_10_1007_s11831_023_09924_x
crossref_primary_10_1108_HFF_10_2015_0427
crossref_primary_10_1002_nme_4806
crossref_primary_10_1080_15502280802575422
crossref_primary_10_1007_s00707_008_0101_z
crossref_primary_10_1080_15502280802365873
crossref_primary_10_1007_s11831_021_09536_3
crossref_primary_10_1016_j_cma_2009_06_011
crossref_primary_10_1080_10407790_2012_702640
crossref_primary_10_1108_HFF_06_2022_0382
crossref_primary_10_1016_j_compstruc_2010_03_002
crossref_primary_10_1080_10407790_2012_702641
crossref_primary_10_1016_j_jcp_2020_110097
crossref_primary_10_1002_eqe_3133
crossref_primary_10_1080_13632469_2015_1009587
crossref_primary_10_1016_j_cma_2018_02_007
crossref_primary_10_1080_10407790_2023_2207734
crossref_primary_10_1002_nme_2592
crossref_primary_10_1002_nme_3228
crossref_primary_10_1002_nme_6956
crossref_primary_10_1007_s11071_014_1765_7
crossref_primary_10_1108_HFF_04_2015_0155
crossref_primary_10_1002_nme_4715
crossref_primary_10_1007_s11831_025_10262_3
crossref_primary_10_1002_nme_6955
crossref_primary_10_1080_15502287_2010_501323
crossref_primary_10_1016_j_cma_2024_117272
crossref_primary_10_1080_15502287_2010_501324
crossref_primary_10_1016_j_cma_2008_06_001
crossref_primary_10_1080_15502280802575430
crossref_primary_10_1016_j_cma_2021_113920
crossref_primary_10_1016_j_jcp_2020_109763
crossref_primary_10_1007_s00707_009_0203_2
crossref_primary_10_1016_j_compstruc_2022_106901
crossref_primary_10_1080_01495739_2019_1581720
crossref_primary_10_1007_s11831_011_9060_y
crossref_primary_10_1016_j_cma_2020_113509
crossref_primary_10_1016_j_compstruc_2022_106789
Cites_doi 10.1016/0168-874X(95)00016-M
10.1016/0045-7825(94)90208-9
10.1002/cpa.3160090206
10.1002/nme.1019
10.1016/S0168-874X(03)00056-8
10.1002/nme.1620362302
10.1016/j.cma.2004.01.012
10.1016/0045-7825(92)90115-Z
10.1115/1.3422999
10.1115/1.2900803
10.1016/0045-7825(77)90014-7
10.1002/cnm.1640101202
10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3.0.CO;2-F
10.1016/S0168-874X(03)00059-3
10.1007/978-3-642-81589-8_30
10.1016/S0093-6413(98)00007-X
10.1007/BF00370131
10.1002/nme.873
10.1016/S0377-0427(00)00461-1
10.1007/BF01379008
10.1002/(SICI)1097-0207(19990720)45:8<971::AID-NME613>3.0.CO;2-M
10.2514/8.1722
10.1002/nme.1620200814
10.1002/nme.1620151210
10.1016/0045-7825(83)90125-1
10.1002/nme.878
10.1007/BF02736209
10.1016/S0045-7825(02)00516-9
10.1002/nme.1620310103
10.1002/nme.1405
10.1016/S0045-7825(99)00193-0
10.1016/0029-5493(77)90107-8
10.1002/nme.167
10.1007/BF01933119
10.1016/0168-874X(95)00015-L
10.1002/nme.1620090202
10.1243/PIME_PROC_1994_208_148_02
10.1002/eqe.4290050306
10.1016/0045-7825(89)90142-4
10.1016/0045-7825(87)90065-X
10.1007/BF01179540
10.2307/2041821
10.1007/BF01213020
10.1002/nme.1620111008
10.1016/S0020-7683(97)00267-9
10.1002/nme.89
10.1016/0045-7825(88)90082-5
10.1007/BF01963532
10.1080/104077902753541005
10.1016/0045-7825(88)90006-0
10.1016/S0045-7825(02)00515-7
10.1002/nme.1620361507
10.1016/0045-7825(94)90061-2
10.1016/S0045-7825(97)00056-X
10.1007/978-1-4612-1126-6
10.1002/nme.1620151011
10.1002/nme.1620201210
10.1002/nme.1620290705
10.1201/b10621
10.1016/0045-7825(88)90053-9
10.1016/0045-7949(90)90354-5
10.1090/S0025-5718-1972-0321301-2
10.1023/A:1007570827614
10.1016/0045-7825(73)90015-7
10.1016/0045-7825(73)90023-6
ContentType Journal Article
Copyright Copyright © 2006 John Wiley & Sons, Ltd.
2006 INIST-CNRS
Copyright_xml – notice: Copyright © 2006 John Wiley & Sons, Ltd.
– notice: 2006 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.1559
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
Education
EISSN 1097-0207
EndPage 1790
ExternalDocumentID 17843819
10_1002_nme_1559
NME1559
ark_67375_WNG_KMQ3MG1Q_7
Genre article
GrantInformation_xml – fundername: Minnesota Supercomputer Institute (MSI)
– fundername: Army High Performance Computing Research Center (AHPCRC)
  funderid: DAAD19‐01‐2‐0014
– fundername: Battelle/U.S. Army Research Office (ARO)
  funderid: DAAH04‐96‐C‐0086
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWS
WRC
AAYXX
CITATION
O8X
.4S
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
ARCSS
GBZZK
HF~
IQODW
M6O
PALCI
RIWAO
SAMSI
TUS
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3979-b9b774016293d90dc78b08ffd8a8661ed2ab5122907d0edda09d06b26f4f43c3
IEDL.DBID DRFUL
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000238584800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Sun Nov 09 12:59:53 EST 2025
Thu Oct 02 05:52:22 EDT 2025
Mon Jul 21 09:15:42 EDT 2025
Sat Nov 29 06:43:35 EST 2025
Tue Nov 18 21:28:03 EST 2025
Wed Jan 22 16:24:21 EST 2025
Tue Nov 11 03:31:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Measurement
time integration algorithms
Numerical integration
Vibration
first and second order systems
Algorithmics
computational algorithms
Modeling
Engineering design
Design process
solid mechanics
Time domain method
structural dynamics
time operators
Structural analysis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3979-b9b774016293d90dc78b08ffd8a8661ed2ab5122907d0edda09d06b26f4f43c3
Notes ark:/67375/WNG-KMQ3MG1Q-7
Minnesota Supercomputer Institute (MSI)
Army High Performance Computing Research Center (AHPCRC) - No. DAAD19-01-2-0014
Battelle/U.S. Army Research Office (ARO) - No. DAAH04-96-C-0086
ArticleID:NME1559
istex:95468FBD3D4F792E8D5FCFAE1CE6AD2DA8C64EFD
Research Associate, Army High Performance Computing Research Center (AHPCRC).
Professor/Technical Director, Army High Performance Computing Research Center (AHPCRC).
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1082194096
PQPubID 23500
PageCount 53
ParticipantIDs proquest_miscellaneous_29334620
proquest_miscellaneous_1082194096
pascalfrancis_primary_17843819
crossref_citationtrail_10_1002_nme_1559
crossref_primary_10_1002_nme_1559
wiley_primary_10_1002_nme_1559_NME1559
istex_primary_ark_67375_WNG_KMQ3MG1Q_7
PublicationCentury 2000
PublicationDate 11 June 2006
PublicationDateYYYYMMDD 2006-06-11
PublicationDate_xml – month: 06
  year: 2006
  text: 11 June 2006
  day: 11
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2006
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Hoff C, Hughes TJR, Hulbert G, Pahl PJ. Comparison of the HHT-α-Method and the Θ1-method. Computer Methods in Applied Mechanics and Engineering 1989; 76:87-93.
Hughes TJR, Hulbert GM. Space-time finite element methods for elastodynamics: formulation and error estimates. Computer Methods in Applied Mechanics and Engineering 1988; 66:339-363.
Chen X, Tamma KK, Sha D. Virtual-pulse time integral methodology: a new approach for computational dynamics. Part 2: theory for nonlinear structural dynamics. Finite Elements in Analysis and Design 1995; 20:195-204.
Möller PW. High-order hierarchical A- and L-stable integration methods. International Journal for Numerical Methods in Engineering 1993; 36:2607-2624.
Chen W, Saleeb AF. Constitutive Equations for Engineering Materials Volume 1: Elasticity and Modeling. Elsevier: New York, 1994.
Hughes TJR, Winget J. Finite rotation effects in numerical integration of rate constitutive equations. International Journal for Numerical Methods in Engineering 1980; 15:1862-1867.
Wood WL. A unified set of single-step algorithms. Part 2. International Journal for Numerical Methods in Engineering 1984; 20:2303-2309.
Kanapady R, Tamma KK. A mathematical framework towards a unified set of discontinuous state-phase hierarchical time operators for computational dynamics. Computer Modeling in Engineering and Sciences 2003; 4:103-118.
Argyris JH, Dunne PC, Angelopoulos T. Nonlinear oscillations using the finite element technique. Computer Methods in Applied Mechanics and Engineering 1973; 2:203-250.
Xiao H, Bruhns OT, Meyers A. Direct relationship between the Lagrangian logarithmic strain and the Lagrangian stretching and the Lagrangian Kirchoff stress. Mechanics Research Communications 1998; 25:59-67.
Fung TC. Complex-time-step Newmark methods with controllable numerical dissipation. International Journal for Numerical Methods in Engineering 1998; 41:65-93.
Dienes JK. On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica 1979; 32:217-232.
Zhou X, Tamma KK. A new unified theory underlying time dependent linear first-order systems: a prelude to algorithms by design. International Journal for Numerical Methods in Engineering 2004; 60:1699-1740.
Wilson EL. A Computer Program for Dynamic Stress Analysis of Underground Structures. SESM, University of California, Berkeley, 1968.
Goudreau GL, Taylor RL. Evaluation of numerical methods in elastodynamics. Computer Methods in Applied Mechanics and Engineering 1973; 2:69-97.
Tamma KK, Namburu RR. A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 71:137-150.
Rashid MM. Incremental kinematics for finite element applications. International Journal for Numerical Methods in Engineering 1993; 36:3937-3956.
Krysl P, Lall S, Marsden JE. Dimensional model reduction in nonlinear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 2001; 51:479-504.
Zhou X, Tamma KK. Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. International Journal for Numerical Methods in Engineering 2004; 59:597-668.
Newmark NM. A method of computation for structural dynamics. Journal for American Society of Civil Engineers 1959; 1:67-94.
Ball JM. Short notes: strong continuous semigroups, weak solutions, and the variation of constants formula. Proceedings of the American Mathematical Society 1977; 63:370-373.
Xiao H, Bruhns OT, Meyers A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica 1997; 124:89-105.
Zienkiewicz OC, Taylor RL. The Finite Element Method, vol. 1. McGraw-Hill: New York, 1994.
Tamma KK, Chen X, Sha D. Further developments towards a new virtual-pulse time integral methodology for general non-linear transient thermal analysis. Communications in Applied Numerical Methods in Engineering 1994; 10:961-970.
Argyris JH, Vaz LE, Willam KJ. Higher order methods for transient diffusion analysis. Computer Methods in Applied Mechanics and Engineering 1977; 12:243-278.
Tamma KK, Namburu RR. Applicability and evaluation of an implicit self-starting unconditionally stable methodology for dynamics of structures. Computers and Structures 1990; 34:835-842.
Hulbert GM. A unified set of single-step asymptotic annihilation algorithms for structural dynamics. Computer Methods in Applied Mechanics and Engineering 1994; 113:1-9.
Flanagan DP, Taylor LM. An accurate numerical algorithm for stress integration with finite rotations. Computer Methods in Applied Mechanics and Engineering 1987; 62:305-320.
Xiao H, Bruhns OT, Meyer A. On objective corotational rates and their defining spin tensors. International Journal of Solids and Structures 1998; 30:4001-4014.
Hughes TJR. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1987.
Lax PD, Richmyer RD. Survey of the stability of linear difference equations. Communications on Pure and Applied Mathematics 1956; 9:267-293.
Varadarajan VS. Lie Groups, Lie Algebras, and Their Representations. GTM 102. Springer: New York, 1984.
Romero I. Stability analysis of linear multistep methods for classical elastodynamics. Computer Methods in Applied Mechanics and Engineering 2004; 193:2169-2189.
Simo JC, Wong KK. Unconditional stable algorithm for rigid body dynamics that exactly preserve energy and momentum. International Journal for Numerical Methods in Engineering 1991; 31:19.
Borri M, Bottasso C. A general framework for interpreting time finite element formulations. Computational Mechanics 1993; 13:133-142.
Wilf HS. Algorithms and Complexity (2nd edn). A K Peters Ltd.: Wellesley, MA, 2002.
Tamma KK, Zhou X, Sha D. A theory of development and design of generalized integration operators for computational structural dynamics. International Journal for Numerical Methods in Engineering 2001; 50:1619-1664.
Dahlquist G. A special stability problem for linear multistep methods. BIT 1963; 3:27-43.
Simo JC, Hughes TJR. Computational Inelasticity. Springer: New York, 1998.
Trujillo DM. An unconditionally stable explicit algorithm for structural dynamics. International Journal for Numerical Methods in Engineering 1977; 11:1579-1592.
Krieg RD. Unconditional stability of numerical time integration methods. Journal of Applied Mechanics 1973; 40:417-421.
Traub JF. Iterative Methods for the Solution of Equations. Prentice-Hall: Englewood Cliffs, NJ, 1964.
Sha D, Zhou X, Tamma KK. Time discretized operators. Part 2: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Computer Methods in Applied Mechanics and Engineering 2003; 192:291-329.
Wood WL, Bossak M, Zienkiewicz OC. An alpha modification of Newmark's method. International Journal for Numerical Methods in Engineering 1980; 15:1562-1566.
Zhou X, Tamma KK. Algorithms by design with illustrations to solid and structural mechanics/dynamics. International Journal for Numerical Methods in Engineering 2005, in press.
Nørsett SP. One-step methods of Hermite type for numerical integration of stiff systems. BIT 1974; 14:63-77.
Hoff C, Pahl PJ. Development of an implicit method with numerical dissipation from a generalized single step algorithm for structural dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 67:367-385.
Kanapady R, Tamma KK. On the novel design of a new unified variational framework of discontinuous/continuous time operators of high order and equivalence. Finite Elements in Analysis and Design 2003; 39:600-727.
Chung J, Hulbert G. A time integration method for structural dynamics with improved numerical dissipation: the generalized α-method. Journal of Applied Mechanics 1993; 30:371-375.
Zhong W, Williams FW. A precise time step integration method. Proceedings of the Institution of Mechanical Engineers 1994; 208:427-436.
Hulme BL. One-step piecewise polynomial Galerkin methods for initial value problems. Mathematics of Computation 1972; 26:415-426.
Donea J, Roig B, Huerta A. High-order accurate time-stepping schemes for convection-diffusion problems. Computer Methods in Applied Mechanics and Engineering 2000; 182:249-275.
Rubinstein R, Atluri SN. Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analysis. Computer Methods in Applied Mechanics and Engineering 1982; 36:277-290.
Hughes TJR. Theoretical Foundations for Large Scale Computations of Nonlinear Material Behavior. Numerical Implementation of Constitutive Models: Rate Independent Deviatoric Plasticity (Chapter). Martinus Nijhoff: Dordrecht, The Netherlands, 1984.
Tamma KK, Zhou X, Valasutean R. Computational algorithms for transient analysis: the burden of weight and consequences towards formalizing discrete numerically assigned [DNA] algorithmic markers: Wp-family. Computer Methods in Applied Mechanics and Engineering 1997; 149:153-188.
Trujillo DM. The direct numerical integration of linear matrix differential equations using Padé approximations. International Journal for Numerical Methods in Engineering 1975; 9:259-270.
Hairer E, Wanner G. Order stars and stiff integrators. Journal of Computational and Applied Mathematics 2000; 125:93-105.
Sha D, Chen X, Tamma KK. Virtual-pulse time integral methodology: a new approach for computational dynamics. Part 1: Theory for linear structural dynamics. Finite Elements in Analysis and Design (Also, see Erratum (1996): parts 1 and 2) 1995; 20 and 22:179-194.
Tamma KK, Zhou X, Kanapady R. The time dimension and a unified mathematical framework for first-order parabolic systems. Numerical Heat Transfer: Part B: Fundamentals 2002; 50:239-262.
Zhou X, Tamma KK, Sha D. Design spaces, measures and metrics for evaluating quality of time operators and consequences leading to improved algorithms by design-illustration to structural dynamics.
1974; 14
1984; 20
2001; 50
2004; 60
2002; 50
2000; 7
1999; 45
2005; 64
1977; 63
2003; 192
1998; 41
1959; 1
1988; 71
1979; 32
1977
1995; 20
1993; 36
1997; 149
1973; 40
1989; 76
2000
2000; 125
1993; 30
1987
1986
2003; 4
1984
1981
1998; 52
1975; 9
1999; 138
2001; 51
1994; 113
1982; 36
1990; 34
1953; I
1994; 115
1992; 100
1991; 31
1998
1995
2003; 39
2005
1994
1977; 44
2002
1998; 25
1972; 26
1997; 124
1980; 15
1993; 13
1950; 17
1987; 62
1990; 29
2004; 59
1963; 3
2004; 193
2000; 182
1988; 66
1964
1988; 67
1956; 9
1977; 11
1977; 12
1994; 1
1994; 208
1998; 30
1969
1968
1973; 2
1977; 5
1994; 10
e_1_2_1_81_2
e_1_2_1_41_2
e_1_2_1_64_2
e_1_2_1_66_2
Hughes TJR (e_1_2_1_19_2) 1987
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_60_2
e_1_2_1_83_2
e_1_2_1_43_2
e_1_2_1_62_2
Traub JF (e_1_2_1_63_2) 1964
e_1_2_1_26_2
e_1_2_1_49_2
e_1_2_1_47_2
e_1_2_1_28_2
Hulme BL (e_1_2_1_56_2) 1972; 26
Desai CS (e_1_2_1_75_2) 1984
e_1_2_1_6_2
e_1_2_1_54_2
e_1_2_1_4_2
e_1_2_1_77_2
e_1_2_1_2_2
Chen W (e_1_2_1_76_2) 1994
e_1_2_1_33_2
e_1_2_1_50_2
e_1_2_1_71_2
e_1_2_1_31_2
e_1_2_1_52_2
Wilson EL (e_1_2_1_12_2) 1968
e_1_2_1_16_2
e_1_2_1_37_2
Newmark NM (e_1_2_1_10_2) 1959; 1
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_58_2
e_1_2_1_79_2
e_1_2_1_39_2
e_1_2_1_80_2
e_1_2_1_40_2
e_1_2_1_65_2
McVerry G (e_1_2_1_20_2) 2000
e_1_2_1_67_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_61_2
e_1_2_1_82_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_27_2
e_1_2_1_48_2
Zienkiewicz OC (e_1_2_1_24_2) 1994
e_1_2_1_25_2
e_1_2_1_46_2
e_1_2_1_69_2
Heppler GR (e_1_2_1_18_2) 1986
e_1_2_1_29_2
Kanapady R (e_1_2_1_57_2) 2003; 4
Courant R (e_1_2_1_68_2) 1953
e_1_2_1_70_2
Zhou X (e_1_2_1_8_2) 2005
Hughes TJR (e_1_2_1_72_2) 1984
e_1_2_1_30_2
e_1_2_1_53_2
e_1_2_1_7_2
e_1_2_1_55_2
e_1_2_1_78_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_32_2
e_1_2_1_51_2
e_1_2_1_74_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_17_2
e_1_2_1_59_2
Simo JC (e_1_2_1_73_2) 1998
e_1_2_1_9_2
References_xml – reference: Tarnow N, Simo JC. How to render second-order accurate time stepping algorithms fourth-order accurate while retaining the stability and conservation properties. Computer Methods in Applied Mechanics and Engineering 1994; 115:233-253.
– reference: Rashid MM. Incremental kinematics for finite element applications. International Journal for Numerical Methods in Engineering 1993; 36:3937-3956.
– reference: Newmark NM. A method of computation for structural dynamics. Journal for American Society of Civil Engineers 1959; 1:67-94.
– reference: Xiao H, Bruhns OT, Meyer A. Strain rates and material spins. Journal of Elasticity 1998; 52:1-41.
– reference: Houbolt JC. A recurrence matrix solution for the dynamic response of elastic aircraft. Journal of Aeronautical Science 1950; 17:540-550.
– reference: Fung TC. Weighted parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 2-Second-order equations. International Journal for Numerical Methods in Engineering 1999; 45:971-1006.
– reference: Dahlquist G. A special stability problem for linear multistep methods. BIT 1963; 3:27-43.
– reference: Sha D, Chen X, Tamma KK. Virtual-pulse time integral methodology: a new approach for computational dynamics. Part 1: Theory for linear structural dynamics. Finite Elements in Analysis and Design (Also, see Erratum (1996): parts 1 and 2) 1995; 20 and 22:179-194.
– reference: Hulme BL. One-step piecewise polynomial Galerkin methods for initial value problems. Mathematics of Computation 1972; 26:415-426.
– reference: Hughes TJR, Winget J. Finite rotation effects in numerical integration of rate constitutive equations. International Journal for Numerical Methods in Engineering 1980; 15:1862-1867.
– reference: Xiao H, Bruhns OT, Meyers A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica 1997; 124:89-105.
– reference: Tamma KK, Zhou X, Sha D. The time dimension: a theory of development/evolution, classification, characterization and design of computational algorithms for transient/dynamic applications. Archives in Computational Mechanics 2000; 7(2):67-290.
– reference: Lax PD, Richmyer RD. Survey of the stability of linear difference equations. Communications on Pure and Applied Mathematics 1956; 9:267-293.
– reference: Hoff C, Hughes TJR, Hulbert G, Pahl PJ. Comparison of the HHT-α-Method and the Θ1-method. Computer Methods in Applied Mechanics and Engineering 1989; 76:87-93.
– reference: Traub JF. Iterative Methods for the Solution of Equations. Prentice-Hall: Englewood Cliffs, NJ, 1964.
– reference: Hoff C, Pahl PJ. Development of an implicit method with numerical dissipation from a generalized single step algorithm for structural dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 67:367-385.
– reference: Varadarajan VS. Lie Groups, Lie Algebras, and Their Representations. GTM 102. Springer: New York, 1984.
– reference: Sha D, Zhou X, Tamma KK. Time discretized operators. Part 2: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Computer Methods in Applied Mechanics and Engineering 2003; 192:291-329.
– reference: Simo JC, Hughes TJR. Computational Inelasticity. Springer: New York, 1998.
– reference: Rubinstein R, Atluri SN. Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analysis. Computer Methods in Applied Mechanics and Engineering 1982; 36:277-290.
– reference: Hughes TJR, Hulbert GM. Space-time finite element methods for elastodynamics: formulation and error estimates. Computer Methods in Applied Mechanics and Engineering 1988; 66:339-363.
– reference: Zhong W, Williams FW. A precise time step integration method. Proceedings of the Institution of Mechanical Engineers 1994; 208:427-436.
– reference: Möller PW. High-order hierarchical A- and L-stable integration methods. International Journal for Numerical Methods in Engineering 1993; 36:2607-2624.
– reference: Hulbert GM. A unified set of single-step asymptotic annihilation algorithms for structural dynamics. Computer Methods in Applied Mechanics and Engineering 1994; 113:1-9.
– reference: Zhou X, Sha D, Tamma KK. A novel non-linearly explicit second-order accurate l-stable methodology for finite deformation: hypoelastic/hypoelasto-plastic structural dynamics problems. International Journal for Numerical Methods in Engineering 2004; 59:795-823.
– reference: Romero I. Stability analysis of linear multistep methods for classical elastodynamics. Computer Methods in Applied Mechanics and Engineering 2004; 193:2169-2189.
– reference: Trujillo DM. An unconditionally stable explicit algorithm for finite element heat conduction analysis. Nuclear Engineering and Design 1977; 44(99):175-180.
– reference: Hairer E, Wanner G. Order stars and stiff integrators. Journal of Computational and Applied Mathematics 2000; 125:93-105.
– reference: Kanapady R, Tamma KK. On the novel design of a new unified variational framework of discontinuous/continuous time operators of high order and equivalence. Finite Elements in Analysis and Design 2003; 39:600-727.
– reference: Hughes TJR. Theoretical Foundations for Large Scale Computations of Nonlinear Material Behavior. Numerical Implementation of Constitutive Models: Rate Independent Deviatoric Plasticity (Chapter). Martinus Nijhoff: Dordrecht, The Netherlands, 1984.
– reference: Zhou X, Tamma KK, Sha D. Design spaces, measures and metrics for evaluating quality of time operators and consequences leading to improved algorithms by design-illustration to structural dynamics. International Journal for Numerical Methods in Engineering 2005; 64:1841-1870.
– reference: Tamma KK, Namburu RR. Applicability and evaluation of an implicit self-starting unconditionally stable methodology for dynamics of structures. Computers and Structures 1990; 34:835-842.
– reference: Tamma KK, Zhou X, Sha D. A theory of development and design of generalized integration operators for computational structural dynamics. International Journal for Numerical Methods in Engineering 2001; 50:1619-1664.
– reference: Tamma KK, Namburu RR. A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 71:137-150.
– reference: Tamma KK, Sha D, Zhou X. Time discretized operators. Part 1: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Computer Methods in Applied Mechanics and Engineering 2003; 192:257-290.
– reference: Zhou X, Tamma KK. Algorithms by design with illustrations to solid and structural mechanics/dynamics. International Journal for Numerical Methods in Engineering 2005, in press.
– reference: Simo JC, Tarnow N, Wang KK. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering 1992; 100:63.
– reference: Desai CS, Siriwardane HJ. Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials. Prentice-Hall: Englewood Cliffs, NJ, 1984.
– reference: Xiao H, Bruhns OT, Meyer A. On objective corotational rates and their defining spin tensors. International Journal of Solids and Structures 1998; 30:4001-4014.
– reference: Goudreau GL, Taylor RL. Evaluation of numerical methods in elastodynamics. Computer Methods in Applied Mechanics and Engineering 1973; 2:69-97.
– reference: Courant R, Hilbert D. Methods of Mathematical Physics, vol. I. Interscience: New York, 1953.
– reference: Simo JC, Wong KK. Unconditional stable algorithm for rigid body dynamics that exactly preserve energy and momentum. International Journal for Numerical Methods in Engineering 1991; 31:19.
– reference: Borri M, Bottasso C. A general framework for interpreting time finite element formulations. Computational Mechanics 1993; 13:133-142.
– reference: Nørsett SP. One-step methods of Hermite type for numerical integration of stiff systems. BIT 1974; 14:63-77.
– reference: Tamma KK, Zhou X, Kanapady R. The time dimension and a unified mathematical framework for first-order parabolic systems. Numerical Heat Transfer: Part B: Fundamentals 2002; 50:239-262.
– reference: Donea J, Roig B, Huerta A. High-order accurate time-stepping schemes for convection-diffusion problems. Computer Methods in Applied Mechanics and Engineering 2000; 182:249-275.
– reference: Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics 1977; 5:283-292.
– reference: Zienkiewicz OC, Taylor RL. The Finite Element Method, vol. 1. McGraw-Hill: New York, 1994.
– reference: Ball JM. Short notes: strong continuous semigroups, weak solutions, and the variation of constants formula. Proceedings of the American Mathematical Society 1977; 63:370-373.
– reference: Krysl P, Lall S, Marsden JE. Dimensional model reduction in nonlinear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 2001; 51:479-504.
– reference: Wilson EL. A Computer Program for Dynamic Stress Analysis of Underground Structures. SESM, University of California, Berkeley, 1968.
– reference: Xiao H, Bruhns OT, Meyer A. On the existence and uniqueness of the integrable-exactly hypoelastic equation of grade zero and its significance to finite inelasticity. Acta Mechanica 1999; 138:31-50.
– reference: Tamma KK, Chen X, Sha D. Further developments towards a new virtual-pulse time integral methodology for general non-linear transient thermal analysis. Communications in Applied Numerical Methods in Engineering 1994; 10:961-970.
– reference: Flanagan DP, Taylor LM. An accurate numerical algorithm for stress integration with finite rotations. Computer Methods in Applied Mechanics and Engineering 1987; 62:305-320.
– reference: Trujillo DM. An unconditionally stable explicit algorithm for structural dynamics. International Journal for Numerical Methods in Engineering 1977; 11:1579-1592.
– reference: Tamma KK, Zhou X, Valasutean R. Computational algorithms for transient analysis: the burden of weight and consequences towards formalizing discrete numerically assigned [DNA] algorithmic markers: Wp-family. Computer Methods in Applied Mechanics and Engineering 1997; 149:153-188.
– reference: Zhou X, Tamma KK. Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. International Journal for Numerical Methods in Engineering 2004; 59:597-668.
– reference: Chen X, Tamma KK, Sha D. Virtual-pulse time integral methodology: a new approach for computational dynamics. Part 2: theory for nonlinear structural dynamics. Finite Elements in Analysis and Design 1995; 20:195-204.
– reference: Krieg RD. Unconditional stability of numerical time integration methods. Journal of Applied Mechanics 1973; 40:417-421.
– reference: Chung J, Hulbert G. A time integration method for structural dynamics with improved numerical dissipation: the generalized α-method. Journal of Applied Mechanics 1993; 30:371-375.
– reference: Hughes TJR. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1987.
– reference: Argyris JH, Dunne PC, Angelopoulos T. Nonlinear oscillations using the finite element technique. Computer Methods in Applied Mechanics and Engineering 1973; 2:203-250.
– reference: Dienes JK. On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica 1979; 32:217-232.
– reference: Zhou X, Tamma KK. A new unified theory underlying time dependent linear first-order systems: a prelude to algorithms by design. International Journal for Numerical Methods in Engineering 2004; 60:1699-1740.
– reference: Chen W, Saleeb AF. Constitutive Equations for Engineering Materials Volume 1: Elasticity and Modeling. Elsevier: New York, 1994.
– reference: Zienkiewicz OC, Wood WL, Hine NW, Taylor RL. A unified set of single-step algorithms. Part 1: general formulations and applications. International Journal for Numerical Methods in Engineering 1984; 20:1529-1552.
– reference: Fung TC. Complex-time-step Newmark methods with controllable numerical dissipation. International Journal for Numerical Methods in Engineering 1998; 41:65-93.
– reference: Wood WL, Bossak M, Zienkiewicz OC. An alpha modification of Newmark's method. International Journal for Numerical Methods in Engineering 1980; 15:1562-1566.
– reference: Xiao H, Bruhns OT, Meyers A. Direct relationship between the Lagrangian logarithmic strain and the Lagrangian stretching and the Lagrangian Kirchoff stress. Mechanics Research Communications 1998; 25:59-67.
– reference: Wood WL. A unified set of single-step algorithms. Part 2. International Journal for Numerical Methods in Engineering 1984; 20:2303-2309.
– reference: Zhou X, Tamma KK. On the applicability and stress update formulation for corotational stress rate hypoelasticity constitutive models. Finite Elements in Analysis and Design 2003; 39:783-816.
– reference: Trujillo DM. The direct numerical integration of linear matrix differential equations using Padé approximations. International Journal for Numerical Methods in Engineering 1975; 9:259-270.
– reference: Tamma KK, Namburu RR. A robust self-starting explicit computational methodology for structural dynamic applications: architecture and representations. International Journal for Numerical Methods in Engineering 1990; 29:1441-1454.
– reference: Kanapady R, Tamma KK. A mathematical framework towards a unified set of discontinuous state-phase hierarchical time operators for computational dynamics. Computer Modeling in Engineering and Sciences 2003; 4:103-118.
– reference: Argyris JH, Vaz LE, Willam KJ. Higher order methods for transient diffusion analysis. Computer Methods in Applied Mechanics and Engineering 1977; 12:243-278.
– reference: Wilf HS. Algorithms and Complexity (2nd edn). A K Peters Ltd.: Wellesley, MA, 2002.
– volume: 124
  start-page: 89
  year: 1997
  end-page: 105
  article-title: Logarithmic strain, logarithmic spin and logarithmic rate
  publication-title: Acta Mechanica
– volume: 36
  start-page: 277
  year: 1982
  end-page: 290
  article-title: Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analysis
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 52
  start-page: 1
  year: 1998
  end-page: 41
  article-title: Strain rates and material spins
  publication-title: Journal of Elasticity
– volume: 2
  start-page: 69
  year: 1973
  end-page: 97
  article-title: Evaluation of numerical methods in elastodynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 50
  start-page: 1619
  year: 2001
  end-page: 1664
  article-title: A theory of development and design of generalized integration operators for computational structural dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 5
  start-page: 283
  year: 1977
  end-page: 292
  article-title: Improved numerical dissipation for time integration algorithms in structural dynamics
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 20
  start-page: 1529
  year: 1984
  end-page: 1552
  article-title: A unified set of single‐step algorithms. Part 1: general formulations and applications
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 59
  start-page: 795
  year: 2004
  end-page: 823
  article-title: A novel non‐linearly explicit second‐order accurate l‐stable methodology for finite deformation: hypoelastic/hypoelasto‐plastic structural dynamics problems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 14
  start-page: 63
  year: 1974
  end-page: 77
  article-title: One‐step methods of Hermite type for numerical integration of stiff systems
  publication-title: BIT
– volume: 36
  start-page: 3937
  year: 1993
  end-page: 3956
  article-title: Incremental kinematics for finite element applications
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 12
  start-page: 243
  year: 1977
  end-page: 278
  article-title: Higher order methods for transient diffusion analysis
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 34
  start-page: 835
  year: 1990
  end-page: 842
  article-title: Applicability and evaluation of an implicit self‐starting unconditionally stable methodology for dynamics of structures
  publication-title: Computers and Structures
– volume: 39
  start-page: 600
  year: 2003
  end-page: 727
  article-title: On the novel design of a new unified variational framework of discontinuous/continuous time operators of high order and equivalence
  publication-title: Finite Elements in Analysis and Design
– volume: 15
  start-page: 1862
  year: 1980
  end-page: 1867
  article-title: Finite rotation effects in numerical integration of rate constitutive equations
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 45
  start-page: 971
  year: 1999
  end-page: 1006
  article-title: Weighted parameters for unconditionally stable higher‐order accurate time step integration algorithms. Part 2—Second‐order equations
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1994
– volume: 51
  start-page: 479
  year: 2001
  end-page: 504
  article-title: Dimensional model reduction in nonlinear finite element dynamics of solids and structures
  publication-title: International Journal for Numerical Methods in Engineering
– start-page: 585
  year: 1981
  end-page: 621
– year: 1998
– volume: 149
  start-page: 153
  year: 1997
  end-page: 188
  article-title: Computational algorithms for transient analysis: the burden of weight and consequences towards formalizing discrete numerically assigned [DNA] algorithmic markers: Wp‐family
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 67
  start-page: 367
  year: 1988
  end-page: 385
  article-title: Development of an implicit method with numerical dissipation from a generalized single step algorithm for structural dynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 12
  year: 1994
  end-page: 17
– year: 1986
– volume: 20
  start-page: 2303
  year: 1984
  end-page: 2309
  article-title: A unified set of single‐step algorithms. Part 2
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 62
  start-page: 305
  year: 1987
  end-page: 320
  article-title: An accurate numerical algorithm for stress integration with finite rotations
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 76
  start-page: 87
  year: 1989
  end-page: 93
  article-title: Comparison of the HHT‐α‐Method and the Θ ‐method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 3
  start-page: 27
  year: 1963
  end-page: 43
  article-title: A special stability problem for linear multistep methods
  publication-title: BIT
– volume: 40
  start-page: 417
  year: 1973
  end-page: 421
  article-title: Unconditional stability of numerical time integration methods
  publication-title: Journal of Applied Mechanics
– year: 1969
– volume: 30
  start-page: 4001
  year: 1998
  end-page: 4014
  article-title: On objective corotational rates and their defining spin tensors
  publication-title: International Journal of Solids and Structures
– volume: 66
  start-page: 339
  year: 1988
  end-page: 363
  article-title: Space‐time finite element methods for elastodynamics: formulation and error estimates
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 39
  start-page: 783
  year: 2003
  end-page: 816
  article-title: On the applicability and stress update formulation for corotational stress rate hypoelasticity constitutive models
  publication-title: Finite Elements in Analysis and Design
– volume: 115
  start-page: 233
  year: 1994
  end-page: 253
  article-title: How to render second‐order accurate time stepping algorithms fourth‐order accurate while retaining the stability and conservation properties
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 4
  start-page: 103
  year: 2003
  end-page: 118
  article-title: A mathematical framework towards a unified set of discontinuous state‐phase hierarchical time operators for computational dynamics
  publication-title: Computer Modeling in Engineering and Sciences
– volume: 36
  start-page: 2607
  year: 1993
  end-page: 2624
  article-title: High‐order hierarchical A‐ and L‐stable integration methods
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 7
  start-page: 67
  issue: 2
  year: 2000
  end-page: 290
  article-title: The time dimension: a theory of development/evolution, classification, characterization and design of computational algorithms for transient/dynamic applications
  publication-title: Archives in Computational Mechanics
– volume: 31
  start-page: 19
  year: 1991
  article-title: Unconditional stable algorithm for rigid body dynamics that exactly preserve energy and momentum
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 25
  start-page: 59
  year: 1998
  end-page: 67
  article-title: Direct relationship between the Lagrangian logarithmic strain and the Lagrangian stretching and the Lagrangian Kirchoff stress
  publication-title: Mechanics Research Communications
– volume: 9
  start-page: 267
  year: 1956
  end-page: 293
  article-title: Survey of the stability of linear difference equations
  publication-title: Communications on Pure and Applied Mathematics
– volume: 59
  start-page: 597
  year: 2004
  end-page: 668
  article-title: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 20
  start-page: 195
  year: 1995
  end-page: 204
  article-title: Virtual‐pulse time integral methodology: a new approach for computational dynamics. Part 2: theory for nonlinear structural dynamics
  publication-title: Finite Elements in Analysis and Design
– volume: 50
  start-page: 239
  year: 2002
  end-page: 262
  article-title: The time dimension and a unified mathematical framework for first‐order parabolic systems
  publication-title: Numerical Heat Transfer: Part B: Fundamentals
– year: 1964
– volume: 44
  start-page: 175
  issue: 99
  year: 1977
  end-page: 180
  article-title: An unconditionally stable explicit algorithm for finite element heat conduction analysis
  publication-title: Nuclear Engineering and Design
– volume: 30
  start-page: 371
  year: 1993
  end-page: 375
  article-title: A time integration method for structural dynamics with improved numerical dissipation: the generalized α‐method
  publication-title: Journal of Applied Mechanics
– year: 1968
– year: 1987
– volume: 13
  start-page: 133
  year: 1993
  end-page: 142
  article-title: A general framework for interpreting time finite element formulations
  publication-title: Computational Mechanics
– volume: 11
  start-page: 1579
  year: 1977
  end-page: 1592
  article-title: An unconditionally stable explicit algorithm for structural dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– year: 2000
– volume: 32
  start-page: 217
  year: 1979
  end-page: 232
  article-title: On the analysis of rotation and stress rate in deforming bodies
  publication-title: Acta Mechanica
– volume: 125
  start-page: 93
  year: 2000
  end-page: 105
  article-title: Order stars and stiff integrators
  publication-title: Journal of Computational and Applied Mathematics
– volume: 138
  start-page: 31
  year: 1999
  end-page: 50
  article-title: On the existence and uniqueness of the integrable‐exactly hypoelastic equation of grade zero and its significance to finite inelasticity
  publication-title: Acta Mechanica
– volume: 71
  start-page: 137
  year: 1988
  end-page: 150
  article-title: A new finite element based Lax‐Wendroff/Taylor–Galerkin methodology for computational dynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 17
  start-page: 540
  year: 1950
  end-page: 550
  article-title: A recurrence matrix solution for the dynamic response of elastic aircraft
  publication-title: Journal of Aeronautical Science
– year: 1977
– volume: 64
  start-page: 1841
  year: 2005
  end-page: 1870
  article-title: Design spaces, measures and metrics for evaluating quality of time operators and consequences leading to improved algorithms by design—illustration to structural dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 182
  start-page: 249
  year: 2000
  end-page: 275
  article-title: High‐order accurate time‐stepping schemes for convection–diffusion problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 26
  start-page: 415
  year: 1972
  end-page: 426
  article-title: One‐step piecewise polynomial Galerkin methods for initial value problems
  publication-title: Mathematics of Computation
– volume: 15
  start-page: 1562
  year: 1980
  end-page: 1566
  article-title: An alpha modification of Newmark's method
  publication-title: International Journal for Numerical Methods in Engineering
– volume: I
  year: 1953
– year: 1984
– volume: 1
  year: 1994
– volume: 60
  start-page: 1699
  year: 2004
  end-page: 1740
  article-title: A new unified theory underlying time dependent linear first‐order systems: a prelude to algorithms by design
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 9
  start-page: 259
  year: 1975
  end-page: 270
  article-title: The direct numerical integration of linear matrix differential equations using Padé approximations
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 1
  start-page: 67
  year: 1959
  end-page: 94
  article-title: A method of computation for structural dynamics
  publication-title: Journal for American Society of Civil Engineers
– year: 2002
– volume: 192
  start-page: 291
  year: 2003
  end-page: 329
  article-title: Time discretized operators. Part 2: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 193
  start-page: 2169
  year: 2004
  end-page: 2189
  article-title: Stability analysis of linear multistep methods for classical elastodynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 63
  start-page: 370
  year: 1977
  end-page: 373
  article-title: Short notes: strong continuous semigroups, weak solutions, and the variation of constants formula
  publication-title: Proceedings of the American Mathematical Society
– volume: 208
  start-page: 427
  year: 1994
  end-page: 436
  article-title: A precise time step integration method
  publication-title: Proceedings of the Institution of Mechanical Engineers
– start-page: 179
  year: 1995
  end-page: 194
  article-title: Virtual‐pulse time integral methodology: a new approach for computational dynamics. Part 1: Theory for linear structural dynamics
  publication-title: Finite Elements in Analysis and Design
– volume: 29
  start-page: 1441
  year: 1990
  end-page: 1454
  article-title: A robust self‐starting explicit computational methodology for structural dynamic applications: architecture and representations
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 100
  start-page: 63
  year: 1992
  article-title: Exact energy‐momentum conserving algorithms and symplectic schemes for nonlinear dynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 113
  start-page: 1
  year: 1994
  end-page: 9
  article-title: A unified set of single‐step asymptotic annihilation algorithms for structural dynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 192
  start-page: 257
  year: 2003
  end-page: 290
  article-title: Time discretized operators. Part 1: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2005
  article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 2
  start-page: 203
  year: 1973
  end-page: 250
  article-title: Nonlinear oscillations using the finite element technique
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 10
  start-page: 961
  year: 1994
  end-page: 970
  article-title: Further developments towards a new virtual‐pulse time integral methodology for general non‐linear transient thermal analysis
  publication-title: Communications in Applied Numerical Methods in Engineering
– volume: 41
  start-page: 65
  year: 1998
  end-page: 93
  article-title: Complex‐time‐step Newmark methods with controllable numerical dissipation
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_1_37_2
  doi: 10.1016/0168-874X(95)00016-M
– ident: e_1_2_1_53_2
  doi: 10.1016/0045-7825(94)90208-9
– volume-title: Technical Report
  year: 1986
  ident: e_1_2_1_18_2
– ident: e_1_2_1_62_2
  doi: 10.1002/cpa.3160090206
– ident: e_1_2_1_2_2
  doi: 10.1002/nme.1019
– volume-title: The Finite Element Method
  year: 2000
  ident: e_1_2_1_20_2
– volume: 1
  start-page: 67
  year: 1959
  ident: e_1_2_1_10_2
  article-title: A method of computation for structural dynamics
  publication-title: Journal for American Society of Civil Engineers
– ident: e_1_2_1_55_2
  doi: 10.1016/S0168-874X(03)00056-8
– ident: e_1_2_1_65_2
  doi: 10.1002/nme.1620362302
– volume-title: Constitutive Equations for Engineering Materials Volume 1: Elasticity and Modeling
  year: 1994
  ident: e_1_2_1_76_2
– ident: e_1_2_1_83_2
  doi: 10.1016/j.cma.2004.01.012
– ident: e_1_2_1_29_2
  doi: 10.1016/0045-7825(92)90115-Z
– ident: e_1_2_1_17_2
  doi: 10.1115/1.3422999
– ident: e_1_2_1_32_2
  doi: 10.1115/1.2900803
– ident: e_1_2_1_41_2
  doi: 10.1016/0045-7825(77)90014-7
– ident: e_1_2_1_38_2
  doi: 10.1002/cnm.1640101202
– ident: e_1_2_1_46_2
  doi: 10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3.0.CO;2-F
– ident: e_1_2_1_5_2
  doi: 10.1016/S0168-874X(03)00059-3
– ident: e_1_2_1_69_2
  doi: 10.1007/978-3-642-81589-8_30
– ident: e_1_2_1_71_2
  doi: 10.1016/S0093-6413(98)00007-X
– ident: e_1_2_1_52_2
  doi: 10.1007/BF00370131
– ident: e_1_2_1_6_2
  doi: 10.1002/nme.873
– ident: e_1_2_1_61_2
  doi: 10.1016/S0377-0427(00)00461-1
– ident: e_1_2_1_80_2
  doi: 10.1007/BF01379008
– volume-title: A Computer Program for Dynamic Stress Analysis of Underground Structures
  year: 1968
  ident: e_1_2_1_12_2
– ident: e_1_2_1_50_2
  doi: 10.1002/(SICI)1097-0207(19990720)45:8<971::AID-NME613>3.0.CO;2-M
– ident: e_1_2_1_9_2
  doi: 10.2514/8.1722
– ident: e_1_2_1_22_2
  doi: 10.1002/nme.1620200814
– ident: e_1_2_1_66_2
  doi: 10.1002/nme.1620151210
– ident: e_1_2_1_67_2
  doi: 10.1016/0045-7825(83)90125-1
– ident: e_1_2_1_7_2
  doi: 10.1002/nme.878
– ident: e_1_2_1_4_2
  doi: 10.1007/BF02736209
– ident: e_1_2_1_44_2
  doi: 10.1016/S0045-7825(02)00516-9
– ident: e_1_2_1_28_2
  doi: 10.1002/nme.1620310103
– ident: e_1_2_1_3_2
  doi: 10.1002/nme.1405
– ident: e_1_2_1_47_2
  doi: 10.1016/S0045-7825(99)00193-0
– volume: 4
  start-page: 103
  year: 2003
  ident: e_1_2_1_57_2
  article-title: A mathematical framework towards a unified set of discontinuous state‐phase hierarchical time operators for computational dynamics
  publication-title: Computer Modeling in Engineering and Sciences
– ident: e_1_2_1_59_2
  doi: 10.1016/0029-5493(77)90107-8
– ident: e_1_2_1_15_2
– ident: e_1_2_1_82_2
  doi: 10.1002/nme.167
– ident: e_1_2_1_39_2
  doi: 10.1007/BF01933119
– ident: e_1_2_1_36_2
  doi: 10.1016/0168-874X(95)00015-L
– ident: e_1_2_1_40_2
  doi: 10.1002/nme.1620090202
– volume-title: The Finite Element Method
  year: 1994
  ident: e_1_2_1_24_2
– ident: e_1_2_1_42_2
  doi: 10.1243/PIME_PROC_1994_208_148_02
– volume-title: The Finite Element Method, Linear Static and Dynamic Finite Element Analysis
  year: 1987
  ident: e_1_2_1_19_2
– ident: e_1_2_1_16_2
  doi: 10.1002/eqe.4290050306
– volume-title: Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials
  year: 1984
  ident: e_1_2_1_75_2
– ident: e_1_2_1_31_2
  doi: 10.1016/0045-7825(89)90142-4
– ident: e_1_2_1_70_2
  doi: 10.1016/0045-7825(87)90065-X
– ident: e_1_2_1_74_2
  doi: 10.1007/BF01179540
– ident: e_1_2_1_34_2
  doi: 10.2307/2041821
– ident: e_1_2_1_78_2
  doi: 10.1007/BF01213020
– ident: e_1_2_1_58_2
  doi: 10.1002/nme.1620111008
– ident: e_1_2_1_77_2
  doi: 10.1016/S0020-7683(97)00267-9
– ident: e_1_2_1_33_2
  doi: 10.1002/nme.89
– ident: e_1_2_1_25_2
  doi: 10.1016/0045-7825(88)90082-5
– ident: e_1_2_1_11_2
  doi: 10.1007/BF01963532
– ident: e_1_2_1_54_2
  doi: 10.1080/104077902753541005
– ident: e_1_2_1_51_2
  doi: 10.1016/0045-7825(88)90006-0
– ident: e_1_2_1_43_2
  doi: 10.1016/S0045-7825(02)00515-7
– ident: e_1_2_1_48_2
  doi: 10.1002/nme.1620361507
– ident: e_1_2_1_45_2
  doi: 10.1016/0045-7825(94)90061-2
– ident: e_1_2_1_60_2
– year: 2005
  ident: e_1_2_1_8_2
  article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_1_35_2
  doi: 10.1016/S0045-7825(97)00056-X
– ident: e_1_2_1_81_2
  doi: 10.1007/978-1-4612-1126-6
– ident: e_1_2_1_49_2
– volume-title: Computational Inelasticity
  year: 1998
  ident: e_1_2_1_73_2
– ident: e_1_2_1_21_2
  doi: 10.1002/nme.1620151011
– ident: e_1_2_1_23_2
  doi: 10.1002/nme.1620201210
– ident: e_1_2_1_26_2
  doi: 10.1002/nme.1620290705
– ident: e_1_2_1_64_2
  doi: 10.1201/b10621
– volume-title: Methods of Mathematical Physics
  year: 1953
  ident: e_1_2_1_68_2
– ident: e_1_2_1_30_2
  doi: 10.1016/0045-7825(88)90053-9
– volume-title: Theoretical Foundations for Large Scale Computations of Nonlinear Material Behavior
  year: 1984
  ident: e_1_2_1_72_2
– ident: e_1_2_1_27_2
  doi: 10.1016/0045-7949(90)90354-5
– volume-title: Iterative Methods for the Solution of Equations
  year: 1964
  ident: e_1_2_1_63_2
– volume: 26
  start-page: 415
  year: 1972
  ident: e_1_2_1_56_2
  article-title: One‐step piecewise polynomial Galerkin methods for initial value problems
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1972-0321301-2
– ident: e_1_2_1_79_2
  doi: 10.1023/A:1007570827614
– ident: e_1_2_1_14_2
  doi: 10.1016/0045-7825(73)90015-7
– ident: e_1_2_1_13_2
  doi: 10.1016/0045-7825(73)90023-6
SSID ssj0011503
Score 2.0841877
Snippet A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with...
A novel procedure, concepts, and new ideas to tailor and design time operators under the notion of algorithms by design is formulated in this exposition with...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1738
SubjectTerms Algorithms
Applied sciences
Computation
computational algorithms
Computational techniques
Dynamics
Education
Exact sciences and technology
Exposure
first and second order systems
Fundamental areas of phenomenology (including applications)
Illustrations
INT
Mathematical methods in physics
Mechanical engineering. Machine design
Physics
Solid mechanics
Structural and continuum mechanics
structural dynamics
Tasks
time integration algorithms
time operators
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Title Algorithms by design with illustrations to solid and structural mechanics/dynamics
URI https://api.istex.fr/ark:/67375/WNG-KMQ3MG1Q-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.1559
https://www.proquest.com/docview/1082194096
https://www.proquest.com/docview/29334620
Volume 66
WOSCitedRecordID wos000238584800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BywM8bDCY6GDDSAieQh0nc-LHia1DglZsGmJvlhPbUNGmqOmm7b_nLl-0EpOQeEoinR3rPuyz7_w7gDcqkpJ7gcprnA1i4X1AqGOBMopnJkqdiGxVbCKZTNLLS_WlyaqkuzA1PkR34EaWUc3XZOAmK4droKFz955iavehL1Bt4x70j89HXz93MQR0daI2weNQpWELPcvFsG27sRj1ia83lBxpSuSPrwtbbHie6_5rtQCNtv9n6I9hq3E72VGtJ0_gnit2YLtxQVlj4OUOPFrDJ8SvcQfqWj6F86PZ98VyuvoxL1l2y2yV-8HoIJdNZ7OrFoC3ZKsFQ42eWmYKy2qAWgL3YHNH14yxr6G9LcwcX57Bxejk4sPHoCnJEOQUAAwylSVUw0-il2AVt3mSZjz13qYmxZXeWWEydCEEbrktd9YariyXmZA-9nGUR7vQKxaFew4s9hRWNiE2yGLjJNF5qUxoCYMsTgbwrhWNzhu4cqqaMdM10LLQyEVNXBzA647yVw3R8Reat5V0OwKz_Ekpbcmh_jY51Z_GZ9H4NDzT-NuDDfH_6TFJCQ2N_tbqg0ZLpPCKKdziqiSoVZz-cb8sB_DqDhpkWxRLwXE8lYLcOWA9GZ_Qc-9fCV_Aw_p0SAZh-BJ6KFy3Dw_y69W0XB40tvEbmWYTEw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFgl4YDBAlI_NSAiesuarTiyeJlg3tCZiUxF7s5zYhoo2RU2H2H_PXb5oJSYh8ZREOn_ofBef786_A3gtAs5d66PwKqOd0LfWIdQxRyjhZiqIjR_oqthElKbx5aX4tAPv2rswNT5E53Ajzaj-16Tg5JAebqCGLswhBdVuQT9EKRr1oP_hYvx50gUR0NYJ2gyPkYi9FnvW9Ydt263dqE-M_UXZkapEBtm6ssWW6blpwFY70Hj3v-b-AO43hic7qiXlIeyYYg92GyOUNSpe7sG9DYRC_Eo6WNfyEVwczb8uV7P1t0XJsmumq-wPRq5cNpvPr1oI3pKtlwxleqaZKjSrIWoJ3oMtDF00xr6G-rpQC3x5DNPx8fT9qdMUZXByCgE6mcgiquLH0U7QwtV5FGdubK2OVYx7vdG-ytCI8PHQrV2jtXKFdnnmcxvaMMiDJ9ArloV5Ciy0FFhWHjbIQmU40VkulKcJhSyMBvC2XRuZN4DlVDdjLmuoZV8iFyVxcQCvOsofNUjHX2jeVMvbEajVd0pqi0byS3oiz5LzIDnxziUOu7-1_n96jGLCQ6PRWoGQqIsUYFGFWV6VBLaKGwCemPkADm6gQbYFIfddnE8lITdOWKbJMT2f_SvhAdw5nSYTOfmYnj2Hu7WviDue9wJ6uNDmJdzOf65n5Wq_UZTfAbUXAw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED-NFSH4wGCAKI_NSAg-ZXUedWLxaWLrQFujbRpi3ywntqGiTaemQ-y_5y4vWolJSHxKIp0fukd89p1_B_BWhkJwF6Dyamu8KHDOI9QxT2rJMx0mNghNVWwiTtPk8lKebsCH9i5MjQ_RHbiRZVT_azJwe2XcYAU1dGb3KKh2B3rRUAq0yt7B-ejLSRdEQF8nbDM8hjLxW-xZHgzatmurUY8Y-4uyI3WJDHJ1ZYs113PVga1WoNHWf839ETxsHE-2X2vKY9iwxTZsNU4oa0y83IYHKwiF-DXuYF3LJ3C-P_02X0yW32cly26YqbI_GB3lssl0et1C8JZsOWeo0xPDdGFYDVFL8B5sZumiMfY1MDeFnuHLU7gYHV58_OQ1RRm8nEKAXiazmKr4CfQTjOQmj5OMJ86ZRCe41lsT6AydiAA33YZbYzSXhossEC5yUZiHz2CzmBf2ObDIUWBZ-9ggi7QVROeE1L4hFLIo7sP7VjYqbwDLqW7GVNVQy4FCLiriYh_edJRXNUjHX2jeVeLtCPTiByW1xUP1NT1Sx-OzcHzknykcdmdN_n96jBPCQ6PRWoVQaIsUYNGFnV-XBLaKCwDumEUfdm-hQbaFkQg4zqfSkFsnrNLxIT1f_CvhLtw7PRipk8_p8Uu4Xx8VCc_3X8Emytm-hrv5z-WkXOw0dvIbbM4Wfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+by+design+with+illustrations+to+solid+and+structural+mechanics%2Fdynamics&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Zhou%2C+X.&rft.au=Tamma%2C+K.+K.&rft.date=2006-06-11&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=66&rft.issue=11&rft.spage=1738&rft.epage=1790&rft_id=info:doi/10.1002%2Fnme.1559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_1559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon