A parallel monolithic algorithm for the numerical simulation of large-scale fluid structure interaction problems
Summary A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐...
Saved in:
| Published in: | International journal for numerical methods in fluids Vol. 80; no. 12; pp. 687 - 714 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bognor Regis
Blackwell Publishing Ltd
30.04.2016
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0271-2091, 1097-0363 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Summary
A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant–Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large‐scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one‐level restricted additive Schwarz preconditioner with a block‐incomplete factorization within each partitioned sub‐domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd.
A novel FSI algorithm is proposed for the large‐scale simulation of fluid‐structure interaction problems in a fully coupled form. A special attention is given to satisfy both the local and global discrete geometric conservation law (DGCL) in order to conserve the total fluid volume/mass in machine precision. Large‐scale numerical results are presented for several classical FSI benchmark problems. |
|---|---|
| AbstractList | A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant–Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large‐scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one‐level restricted additive Schwarz preconditioner with a block‐incomplete factorization within each partitioned sub‐domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd. Summary A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant–Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large‐scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one‐level restricted additive Schwarz preconditioner with a block‐incomplete factorization within each partitioned sub‐domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd. A novel FSI algorithm is proposed for the large‐scale simulation of fluid‐structure interaction problems in a fully coupled form. A special attention is given to satisfy both the local and global discrete geometric conservation law (DGCL) in order to conserve the total fluid volume/mass in machine precision. Large‐scale numerical results are presented for several classical FSI benchmark problems. Summary A novel parallel monolithic algorithm has been developed for the numerical simulation of large-scale fluid structure interaction problems. The governing incompressible Navier-Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian-Eulerian formulation-based side-centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large-scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one-level restricted additive Schwarz preconditioner with a block-incomplete factorization within each partitioned sub-domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd. A novel parallel monolithic algorithm has been developed for the numerical simulation of large-scale fluid structure interaction problems. The governing incompressible Navier-Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian-Eulerian formulation-based side-centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large-scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one-level restricted additive Schwarz preconditioner with a block-incomplete factorization within each partitioned sub-domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd. A novel FSI algorithm is proposed for the large-scale simulation of fluid-structure interaction problems in a fully coupled form. A special attention is given to satisfy both the local and global discrete geometric conservation law (DGCL) in order to conserve the total fluid volume/mass in machine precision. Large-scale numerical results are presented for several classical FSI benchmark problems. |
| Author | Sahin, Mehmet Eken, Ali |
| Author_xml | – sequence: 1 givenname: Ali surname: Eken fullname: Eken, Ali organization: Astronautical Engineering Department, Faculty of Aeronautics and Astronautics, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey – sequence: 2 givenname: Mehmet surname: Sahin fullname: Sahin, Mehmet email: Correspondence to: Mehmet Sahin, Astronautical Engineering Department, Faculty of Aeronautics and Astronautics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey., msahin.ae00@gtalumni.org organization: Astronautical Engineering Department, Faculty of Aeronautics and Astronautics, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey |
| BookMark | eNqF0VFvFCEQB3Bi2sRrNfEjkPjiy57Dwi7w2FR7trlom2j6SLjdoaWyywlsar99tz1To9H0iUn4MTD8D8jeGEck5A2DJQOo37vQLwVr9QuyYKBlBbzle2QBtWRVDZq9JAc53wCArhVfkO0R3dpkQ8BAhzjG4Mu176gNVzHN5UBdTLRcIx2nAZPvbKDZD1OwxceRRkeDTVdY5XkDqQuT72kuaerKlJD6sWCy3SPdprgJOORXZN_ZkPH1r_WQfDv5-PX4U7X-sjo9PlpXHddSV22PWtlWb1wDKEDrptko0UsnVK1r2-uWt5Ip5P08rLPaikZxx1FZQAZ9zQ_Ju13f-eIfE-ZiBp87DMGOGKdsmAIQuhVcPE-lgqZWINVM3_5Fb-KUxnmQWUkhecuUnNVyp7oUc07oTOfL44-VZH0wDMxDVmbOyjxk9fsFTwe2yQ823f2LVjt66wPe_deZk_WHP73PBX8-eZu-m1Zy2ZjLzytzdqHX52J1ac74PRBGtFA |
| CODEN | IJNFDW |
| CitedBy_id | crossref_primary_10_1016_j_cjche_2022_07_018 crossref_primary_10_1002_fld_5057 crossref_primary_10_1016_j_jtice_2022_104284 crossref_primary_10_1515_rnam_2022_0014 crossref_primary_10_1002_fld_5159 crossref_primary_10_1016_j_compfluid_2015_08_024 crossref_primary_10_1002_fld_4786 crossref_primary_10_1016_j_cma_2025_118211 crossref_primary_10_1007_s00162_019_00492_0 crossref_primary_10_1007_s11804_017_1436_4 crossref_primary_10_1016_j_camwa_2023_01_029 crossref_primary_10_1016_j_jcp_2020_109894 crossref_primary_10_1007_s00366_019_00880_4 crossref_primary_10_3389_fbioe_2024_1433811 crossref_primary_10_1016_j_compfluid_2018_11_004 crossref_primary_10_1016_j_jfluidstructs_2020_103050 crossref_primary_10_1007_s12206_023_0418_5 crossref_primary_10_1002_nme_7626 crossref_primary_10_1007_s10915_021_01748_w crossref_primary_10_1016_j_compfluid_2017_05_005 crossref_primary_10_3390_bioengineering11030269 crossref_primary_10_3390_w11051048 crossref_primary_10_1007_s00466_020_01860_y crossref_primary_10_1002_cnm_3171 crossref_primary_10_1002_nme_5598 |
| Cites_doi | 10.1017/CBO9780511546792 10.1137/S1064827595287997 10.1007/s00466-010-0544-7 10.1016/j.jcp.2012.08.047 10.1016/0045-7930(94)90023-X 10.1002/0470091355.ecm063 10.1016/0021-9991(74)90051-5 10.1061/JMCEA3.0000098 10.1016/j.cma.2010.04.016 10.1016/j.cma.2007.07.002 10.1007/978-3-540-74460-3_20 10.1016/S0045-7825(98)00207-2 10.1007/s00466-006-0066-5 10.1016/j.cma.2012.09.004 10.1016/j.jcp.2013.08.038 10.1017/jfm.2011.543 10.1016/0045-7825(82)90128-1 10.1016/j.jcp.2012.07.001 10.1016/j.jcp.2009.03.027 10.1002/cnm.1281 10.1007/3-540-27206-2_8 10.1016/j.jcp.2009.10.001 10.1016/j.cma.2011.03.015 10.2514/3.61273 10.1002/(SICI)1097-0363(19970930)25:6<697::AID-FLD583>3.0.CO;2-R 10.1007/s00466-008-0270-6 10.1016/j.jcp.2005.02.012 10.1051/m2an:2003049 10.1016/j.cma.2006.09.002 10.1016/0045-7825(94)00077-8 10.1016/S0045-7825(98)00151-0 10.1016/S0045-7949(02)00409-1 10.1002/fld.1650040606 10.1002/fld.1650080906 10.1063/1.1761178 10.1016/j.jcp.2003.11.031 10.1007/3-540-34596-5_15 10.2514/3.25229 10.1137/090779425 10.1007/s004660050393 10.1016/j.jnnfm.2011.03.010 10.1006/jcph.2001.6973 10.1016/0045-7825(81)90049-9 10.1051/m2an/197307R300331 10.1002/num.1690080202 10.1007/s00466-008-0255-5 10.1016/j.compstruc.2007.01.013 10.1016/j.jnnfm.2012.11.011 10.1016/S0045-7825(01)00302-4 10.1080/10407799508914960 10.1115/1.2900803 10.1137/0914028 10.1016/j.compstruc.2009.12.006 10.1016/j.cam.2012.10.006 10.1007/s00466-014-1071-8 10.1016/j.cma.2008.04.018 10.1002/nme.3001 10.1016/S0021-9991(03)00311-5 10.1016/j.cma.2004.09.014 |
| ContentType | Journal Article |
| Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D |
| DOI | 10.1002/fld.4169 |
| DatabaseName | Istex CrossRef Aqualine Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1097-0363 |
| EndPage | 714 |
| ExternalDocumentID | 3992482691 10_1002_fld_4169 FLD4169 ark_67375_WNG_JQ9LP4GW_J |
| Genre | article |
| GrantInformation_xml | – fundername: Turkish National Scientific and Technical Research Council (TUBITAK) funderid: 112M107 – fundername: National Center for High Performance Computing of Turkey (UYBHM) funderid: 10752009 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI RWS WRC AAYXX CITATION O8X 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c3979-6de98a69bf50e409955b84d7f48292ad9636718e3d416fa9a4583f3e8a0e10d23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373065100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0271-2091 |
| IngestDate | Sun Nov 09 11:20:31 EST 2025 Tue Oct 07 09:31:50 EDT 2025 Fri Jul 25 12:15:02 EDT 2025 Tue Nov 18 22:32:18 EST 2025 Sat Nov 29 03:27:51 EST 2025 Wed Jan 22 16:21:47 EST 2025 Tue Nov 11 03:32:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3979-6de98a69bf50e409955b84d7f48292ad9636718e3d416fa9a4583f3e8a0e10d23 |
| Notes | Turkish National Scientific and Technical Research Council (TUBITAK) - No. 112M107 National Center for High Performance Computing of Turkey (UYBHM) - No. 10752009 ark:/67375/WNG-JQ9LP4GW-J ArticleID:FLD4169 istex:3FF695A0CFD5DA1AB0E41D5082BD781B9F419C69 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1774736187 |
| PQPubID | 996375 |
| PageCount | 28 |
| ParticipantIDs | proquest_miscellaneous_1800496434 proquest_miscellaneous_1780528078 proquest_journals_1774736187 crossref_citationtrail_10_1002_fld_4169 crossref_primary_10_1002_fld_4169 wiley_primary_10_1002_fld_4169_FLD4169 istex_primary_ark_67375_WNG_JQ9LP4GW_J |
| PublicationCentury | 2000 |
| PublicationDate | 30 April 2016 |
| PublicationDateYYYYMMDD | 2016-04-30 |
| PublicationDate_xml | – month: 04 year: 2016 text: 30 April 2016 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal for numerical methods in fluids |
| PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Koobus B, Farhat C. Second-order time-accurate and geometricaly conservative implicit schemes for flow computations on unstructured dynamic meshes. Computer Methods in Applied Mechanics and Engineering. 1999; 170: 103-129. Blom FJ. A monolithical fluid-structure interaction algorithm applied to the piston problem. Computer Methods in Applied Mechanics and Engineering. 1998; 167(3- 4): 369-391. Crouzeix M, Raviart PA. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Analyse Numérique. 1973; 7: 33-76. Farhat C. CFD-Based Nonlinear Computational Aeroelasticity, Encyclopedia of Computational Mechanics. John Wiley & Sons, Ltd, 2004. Küttler U, Gee M, Förster C, Comerford A, Wall WA. Coupling strategies for biomedical fluid-structure interaction problems. International Journal for Numerical Methods in Biomedical. 2010; 26(3- 4): 305-321. Demirdz̆ić I, Perić M. Space conservation law in finite volume calculations of fluid flow. International Journal for Numerical Methods in Fluids. 1988; 8: 1037-1050. Badia S, Quaini A, Quarteroni A. Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect. Computer Methods in Applied Mechanics and Engineering. 2008; 197: 4216-4232. Newmark NM. A method of computation for structural dynamics. Journal of Engineering Mechanics Division-ASCE. 1959; 85(3): 67-94. Hughes TJ, Liu WK, Zimmermann TK. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering. 1981; 29(3): 329-349. Küttler U, Förster C, Wall WA. A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure Dirichlet fluid domains. Computational Mechanics. 2006; 38(4- 5): 417-429. Donea J, Giuliani S, Halleux J. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering. 1982; 33(13): 689-723. Hwang YH. Calculations of incompressible flow on a staggered triangle grid, Part I: mathematical formulation. Numerical Heat Transfer Part B-Fundamentals. 1995; 27(3): 323-336. Erzincanli B, Sahin M. An arbitrary Lagrangian-Eulerian formulation for solving moving boundary problems with large displacement and rotations. Journal of Computational Physics. 2013; 255: 660-679. Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. John Willey & Sons: New York, 2001. Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids. 1965; 8: 2182-2189. Gee MW, Küttler U, Wall WA. Truly monolithic algebraic multigrid for fluid-structure interaction. International Journal for Numerical Methods in Engineering. 2011; 85(8): 987-1016. Mahesh K, Constantinescu G, Moin P. A numerical method for large-eddy simulation in complex geometries. Journal Computational Physics. 2004; 197: 215-240. von Scheven M. Effiziente algorithmen für die fluid-struktur-wechselwirkung. Bericht: Institut für Baustatik und Baudynamik, 2009. Deville MO, Fischer PF, Mund EH. High-Order Methods for Incompressible Fluid Flow. Cambridge University Press: Cambridge, 2002. Brighi B, Bousselsal M. On the rank-one-convexity domain of the Saint Venant-Kirchhoff stored energy function. Rendiconti del Seminario Matematico della Università di Padova. 1995; 94: 25-45. Gerstenberger A, Wall WA. An extended finite element method/lagrange multiplier based approach for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering. 2008; 197: 1699-1714. Sahin M, Mohseni K. An arbitrary Lagrangian-Eulerian formulation for the numerical simulation of flow patterns generated by the Hydromedusa Aequorea Victoria. Journal of Computational Physics. 2009; 228(12): 4588-4605. Gerbeau J-F, Vidrascu M. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. ESAIM-Mathematical Modeling and Numerical Analysis Journal. 20036; 37: 631-647. Matthies HG, Steindorf J. Partitioned strong coupling algorithms for fluid-structure interaction. Computers & Structures. 2003; 81(8- 11): 805-812. Kabel M, Böhlke T, Schneider M. Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations. Computational Mechanics. 2014; 54: 1497-1514. Richter T, Wick T. Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Computer Methods in Applied Mechanics Engineering. 2010; 199(41- 44): 2633-2642. Maliska CR, Raithby GD. A method for computing three dimensional flows using non-orthogonal boundary-fitted co-ordinates. International Journal for Numerical Methods in Fluids. 1984; 4(6): 519-537. Sahin M. A stable unstructured finite volume method for parallel large-scale viscoelastic fluid flow calculations. Journal of Non-Newtonian Fluid Mechanics. 2011; 166(14- 15): 779-791. Tezduyar TE, Sathe S, Keedy R, Stein K. Space-time finite element techniques for computation of fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering. 2006; 195: 2002-2027. de Boer A, van der Schoot MS, Bijl H. Mesh deformation based on radial basis function interpolation. Computers & Structures. 2007; 85: 784-795. Formaggia L, Gerbeau JF, Nobile F, Quarteroni A. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics Engineering. 2001; 191(6- 7): 561-582. Hirt C, Amsden A, Cook J. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics. 1974; 14(3): 227-253. Dai M, Schmidt DP. Adaptive tetrahedral meshing in free-surface flow. Journal of Computational Physics. 2005; 208(1): 228-252. Rida S, McKenty F, Meng FL, Reggio M. A staggered control volume scheme for unstructured triangular grids. International Journal for Numerical Methods in Fluids. 1997; 25(6): 697-717. Dai H, Luo H, Doyle JF. Dynamic pitching of an elastic rectangular wing in hovering motion. Journal of Fluid Mechanics. 2012; 693: 473-499. Barker AT, Cai X-C. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling. Journal of Computational Physics. 2010; 229: 642-659. Richter T. A fully Eulerian formulation for fluid-structure interaction problems. Journal of Computational Physics. 2013; 233(0): 227-240. Geuzaine P, Grandmont C, Farhat C. Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. Journal of Computational Physics. 2003; 191(1): 206-227. Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG. Nonlinear fluid-structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples. Computational Mechanics. 2011; 47: 335-357. Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. Journal of Applied Mechanics. 1993; 60: 371-375. Zhang X, Schmidt D, Perot B. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics. Journal Computational Physics. 2002; 175: 764-791. Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing. March 1993; 14(2): 461-469. Sahin M. Parallel large-scale numerical simulations of purely-elastic instabilities behind a confined circular cylinder in a rectangular channel. Journal of Non-Newtonian Fluid Mechanics. 2013; 195(0): 46-56. Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing. 1998; 20(1): 359-392. Chabannes V, Pena G, Prudhomme C. High-order fluid-structure interaction in 2D and 3D application to blood flow in arteries. Journal of Computational and Applied Mathematics. 2013; 246: 1-9. Thomas PD, Lombard CK. Geometric conservation law and its application to flow computations on moving grids. AIAA Journal. 1979; 17: 1030-1037. Degroote J, Vierendeels J. Multi-solver algorithms for the partitioned simulation of fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering. 2011; 200(25- 28): 2195-2210. Barker AT, Cai X-C. Two-level Newton and hybrid Schwarz preconditioners for fluid-structure interaction. SIAM Journal on Scientific Computing. 2010; 32(4): 2395-2417. Anderson WK, Bonhaus DL. An implicit upwind algorithm for computing turbulent flows on unstructured grids. Computers & Fluids. 1994; 23: 1-21. Batina JT. Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA Journal. 1990; 28(8): 1381-1388. Förster C, Wall WA, Ramm E. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering. 2007; 196: 1278-1293. Johnson AA, Tezduyar TE. Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics. 1999; 23: 130-143. Malan AG, Oxtoby OF. An accelerated, fully-coupled, parallel 3D hybrid finite-volume fluid-structure interaction scheme. Computer Methods in Applied Mechanics Engineering. 2013; 253(0): 426-438. Muddle RL, Mihajlovic M, Heil M. An efficient preconditioner for monolithically-coupled large-displacement fluid-structure interaction problems with pseudo-solid mesh updates. Journal Computational Physics. 2012; 231(21): 7315-7334. Küttler U, Wall WA. Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics. 2008; 43: 61-72. Degroote J, Haelterman R, Annerel S, Bruggeman P, Vierendeels J. Performance of partitioned procedures in fluid-structure interaction. Computers & Structures. 2010; 88(7- 8): 446-457. Johnson A, Tezduyar T. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfa 1974; 14 2010; 229 1993; 60 2006; 38 1999; 170 1994; 23 March 1993; 14 2013; 246 2003; 191 1977 1992; 8 2012; 693 2010; 26 2001 1995; 27 1965; 8 2013; 233 2010; 199 2013; 195 2008; 197 1998; 167 2011; 200 2011; 166 2014; 54 1988 1979; 17 2010; 32 1959; 85 1995; 94 2003; 81 2012 2002; 175 2010 1997; 25 1982; 33 2009 2008 2006; 195 1999; 23 2003; 37 2006 1981; 29 2005 2004 2002 1994; 119 1998; 20 1999 2010; 88 2004; 197 2012; 231 1984; 4 2001; 191 1990; 28 1988; 8 2007; 196 2013; 255 2011; 85 2005; 208 2008; 43 2013; 253 2007; 85 2011; 47 2009; 228 1973; 7 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Park KC (e_1_2_6_25_1) 1977 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 Turek S (e_1_2_6_57_1) 2010 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_60_1 Brighi B (e_1_2_6_41_1) 1995; 94 Newmark NM (e_1_2_6_47_1) 1959; 85 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Scheven M (e_1_2_6_66_1) 2009 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_61_1 e_1_2_6_8_1 Belytschko T (e_1_2_6_40_1) 2001 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – reference: Küttler U, Förster C, Wall WA. A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure Dirichlet fluid domains. Computational Mechanics. 2006; 38(4- 5): 417-429. – reference: Heil M, Hazel AL, Boyle J. Solvers for large-displacement fluid structure interaction problems: segregated versus monolithic approaches. Computational Mechanics. 2008; 43: 91-101. – reference: Erzincanli B, Sahin M. An arbitrary Lagrangian-Eulerian formulation for solving moving boundary problems with large displacement and rotations. Journal of Computational Physics. 2013; 255: 660-679. – reference: Gee MW, Küttler U, Wall WA. Truly monolithic algebraic multigrid for fluid-structure interaction. International Journal for Numerical Methods in Engineering. 2011; 85(8): 987-1016. – reference: Chabannes V, Pena G, Prudhomme C. High-order fluid-structure interaction in 2D and 3D application to blood flow in arteries. Journal of Computational and Applied Mathematics. 2013; 246: 1-9. – reference: Geuzaine P, Grandmont C, Farhat C. Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. Journal of Computational Physics. 2003; 191(1): 206-227. – reference: Muddle RL, Mihajlovic M, Heil M. An efficient preconditioner for monolithically-coupled large-displacement fluid-structure interaction problems with pseudo-solid mesh updates. Journal Computational Physics. 2012; 231(21): 7315-7334. – reference: Farhat C. CFD-Based Nonlinear Computational Aeroelasticity, Encyclopedia of Computational Mechanics. John Wiley & Sons, Ltd, 2004. – reference: Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. John Willey & Sons: New York, 2001. – reference: Johnson AA, Tezduyar TE. Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics. 1999; 23: 130-143. – reference: Maliska CR, Raithby GD. A method for computing three dimensional flows using non-orthogonal boundary-fitted co-ordinates. International Journal for Numerical Methods in Fluids. 1984; 4(6): 519-537. – reference: Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. Journal of Applied Mechanics. 1993; 60: 371-375. – reference: Dai H, Luo H, Doyle JF. Dynamic pitching of an elastic rectangular wing in hovering motion. Journal of Fluid Mechanics. 2012; 693: 473-499. – reference: Newmark NM. A method of computation for structural dynamics. Journal of Engineering Mechanics Division-ASCE. 1959; 85(3): 67-94. – reference: Degroote J, Haelterman R, Annerel S, Bruggeman P, Vierendeels J. Performance of partitioned procedures in fluid-structure interaction. Computers & Structures. 2010; 88(7- 8): 446-457. – reference: Formaggia L, Gerbeau JF, Nobile F, Quarteroni A. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics Engineering. 2001; 191(6- 7): 561-582. – reference: de Boer A, van der Schoot MS, Bijl H. Mesh deformation based on radial basis function interpolation. Computers & Structures. 2007; 85: 784-795. – reference: Badia S, Quaini A, Quarteroni A. Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect. Computer Methods in Applied Mechanics and Engineering. 2008; 197: 4216-4232. – reference: Zhang X, Schmidt D, Perot B. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics. Journal Computational Physics. 2002; 175: 764-791. – reference: Donea J, Giuliani S, Halleux J. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering. 1982; 33(13): 689-723. – reference: Deville MO, Fischer PF, Mund EH. High-Order Methods for Incompressible Fluid Flow. Cambridge University Press: Cambridge, 2002. – reference: Barker AT, Cai X-C. Two-level Newton and hybrid Schwarz preconditioners for fluid-structure interaction. SIAM Journal on Scientific Computing. 2010; 32(4): 2395-2417. – reference: Matthies HG, Steindorf J. Partitioned strong coupling algorithms for fluid-structure interaction. Computers & Structures. 2003; 81(8- 11): 805-812. – reference: Johnson A, Tezduyar T. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Computer Methods in Applied Mechanics Engineering. 1994; 119(1- 2): 73-94. – reference: Gerbeau J-F, Vidrascu M. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. ESAIM-Mathematical Modeling and Numerical Analysis Journal. 20036; 37: 631-647. – reference: Demirdz̆ić I, Perić M. Space conservation law in finite volume calculations of fluid flow. International Journal for Numerical Methods in Fluids. 1988; 8: 1037-1050. – reference: Mahesh K, Constantinescu G, Moin P. A numerical method for large-eddy simulation in complex geometries. Journal Computational Physics. 2004; 197: 215-240. – reference: Malan AG, Oxtoby OF. An accelerated, fully-coupled, parallel 3D hybrid finite-volume fluid-structure interaction scheme. Computer Methods in Applied Mechanics Engineering. 2013; 253(0): 426-438. – reference: Förster C, Wall WA, Ramm E. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering. 2007; 196: 1278-1293. – reference: Tezduyar TE, Sathe S, Keedy R, Stein K. Space-time finite element techniques for computation of fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering. 2006; 195: 2002-2027. – reference: Anderson WK, Bonhaus DL. An implicit upwind algorithm for computing turbulent flows on unstructured grids. Computers & Fluids. 1994; 23: 1-21. – reference: Küttler U, Wall WA. Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics. 2008; 43: 61-72. – reference: Küttler U, Gee M, Förster C, Comerford A, Wall WA. Coupling strategies for biomedical fluid-structure interaction problems. International Journal for Numerical Methods in Biomedical. 2010; 26(3- 4): 305-321. – reference: Degroote J, Vierendeels J. Multi-solver algorithms for the partitioned simulation of fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering. 2011; 200(25- 28): 2195-2210. – reference: von Scheven M. Effiziente algorithmen für die fluid-struktur-wechselwirkung. Bericht: Institut für Baustatik und Baudynamik, 2009. – reference: Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG. Nonlinear fluid-structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples. Computational Mechanics. 2011; 47: 335-357. – reference: Crouzeix M, Raviart PA. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Analyse Numérique. 1973; 7: 33-76. – reference: Gerstenberger A, Wall WA. An extended finite element method/lagrange multiplier based approach for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering. 2008; 197: 1699-1714. – reference: Brighi B, Bousselsal M. On the rank-one-convexity domain of the Saint Venant-Kirchhoff stored energy function. Rendiconti del Seminario Matematico della Università di Padova. 1995; 94: 25-45. – reference: Richter T, Wick T. Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Computer Methods in Applied Mechanics Engineering. 2010; 199(41- 44): 2633-2642. – reference: Batina JT. Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA Journal. 1990; 28(8): 1381-1388. – reference: Hirt C, Amsden A, Cook J. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics. 1974; 14(3): 227-253. – reference: Hwang YH. Calculations of incompressible flow on a staggered triangle grid, Part I: mathematical formulation. Numerical Heat Transfer Part B-Fundamentals. 1995; 27(3): 323-336. – reference: Sahin M. Parallel large-scale numerical simulations of purely-elastic instabilities behind a confined circular cylinder in a rectangular channel. Journal of Non-Newtonian Fluid Mechanics. 2013; 195(0): 46-56. – reference: Rida S, McKenty F, Meng FL, Reggio M. A staggered control volume scheme for unstructured triangular grids. International Journal for Numerical Methods in Fluids. 1997; 25(6): 697-717. – reference: Richter T. A fully Eulerian formulation for fluid-structure interaction problems. Journal of Computational Physics. 2013; 233(0): 227-240. – reference: Sahin M, Mohseni K. An arbitrary Lagrangian-Eulerian formulation for the numerical simulation of flow patterns generated by the Hydromedusa Aequorea Victoria. Journal of Computational Physics. 2009; 228(12): 4588-4605. – reference: Dai M, Schmidt DP. Adaptive tetrahedral meshing in free-surface flow. Journal of Computational Physics. 2005; 208(1): 228-252. – reference: Koobus B, Farhat C. Second-order time-accurate and geometricaly conservative implicit schemes for flow computations on unstructured dynamic meshes. Computer Methods in Applied Mechanics and Engineering. 1999; 170: 103-129. – reference: Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing. 1998; 20(1): 359-392. – reference: Barker AT, Cai X-C. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling. Journal of Computational Physics. 2010; 229: 642-659. – reference: Kabel M, Böhlke T, Schneider M. Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations. Computational Mechanics. 2014; 54: 1497-1514. – reference: Hughes TJ, Liu WK, Zimmermann TK. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering. 1981; 29(3): 329-349. – reference: Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids. 1965; 8: 2182-2189. – reference: Rannacher R, Turek S. A simple nonconforming element. Numerical Methods for Partial Differential Equations. 1992; 8: 97-111. – reference: Sahin M. A stable unstructured finite volume method for parallel large-scale viscoelastic fluid flow calculations. Journal of Non-Newtonian Fluid Mechanics. 2011; 166(14- 15): 779-791. – reference: Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing. March 1993; 14(2): 461-469. – reference: Thomas PD, Lombard CK. Geometric conservation law and its application to flow computations on moving grids. AIAA Journal. 1979; 17: 1030-1037. – reference: Blom FJ. A monolithical fluid-structure interaction algorithm applied to the piston problem. Computer Methods in Applied Mechanics and Engineering. 1998; 167(3- 4): 369-391. – year: 2009 – volume: 54 start-page: 1497 year: 2014 end-page: 1514 article-title: Efficient fixed point and Newton‐Krylov solvers for FFT‐based homogenization of elasticity at large deformations publication-title: Computational Mechanics – year: 2005 – volume: 88 start-page: 446 issue: 7– 8 year: 2010 end-page: 457 article-title: Performance of partitioned procedures in fluid‐structure interaction publication-title: Computers & Structures – year: 2001 – volume: 23 start-page: 1 year: 1994 end-page: 21 article-title: An implicit upwind algorithm for computing turbulent flows on unstructured grids publication-title: Computers & Fluids – volume: 191 start-page: 561 issue: 6– 7 year: 2001 end-page: 582 article-title: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels publication-title: Computer Methods in Applied Mechanics Engineering – volume: 37 start-page: 631 year: 2003 end-page: 647 article-title: A quasi‐Newton algorithm based on a reduced model for fluid‐structure interaction problems in blood flows publication-title: ESAIM‐Mathematical Modeling and Numerical Analysis Journal – volume: 199 start-page: 2633 issue: 41– 44 year: 2010 end-page: 2642 article-title: Finite elements for fluid‐structure interaction in ALE and fully Eulerian coordinates publication-title: Computer Methods in Applied Mechanics Engineering – volume: 166 start-page: 779 issue: 14– 15 year: 2011 end-page: 791 article-title: A stable unstructured finite volume method for parallel large‐scale viscoelastic fluid flow calculations publication-title: Journal of Non‐Newtonian Fluid Mechanics – volume: 23 start-page: 130 year: 1999 end-page: 143 article-title: Advanced mesh generation and update methods for 3D flow simulations publication-title: Computational Mechanics – volume: 233 start-page: 227 issue: 0 year: 2013 end-page: 240 article-title: A fully Eulerian formulation for fluid‐structure interaction problems publication-title: Journal of Computational Physics – volume: 200 start-page: 2195 issue: 25– 28 year: 2011 end-page: 2210 article-title: Multi‐solver algorithms for the partitioned simulation of fluid‐structure interaction publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 17 start-page: 1030 year: 1979 end-page: 1037 article-title: Geometric conservation law and its application to flow computations on moving grids publication-title: AIAA Journal – volume: 229 start-page: 642 year: 2010 end-page: 659 article-title: Scalable parallel methods for monolithic coupling in fluid‐structure interaction with application to blood flow modeling publication-title: Journal of Computational Physics – volume: 197 start-page: 4216 year: 2008 end-page: 4232 article-title: Modular vs. non‐modular preconditioners for fluid‐structure systems with large added‐mass effect publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 60 start-page: 371 year: 1993 end-page: 375 article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized‐ method publication-title: Journal of Applied Mechanics – year: 2004 – volume: 43 start-page: 61 year: 2008 end-page: 72 article-title: Fixed‐point fluid‐structure interaction solvers with dynamic relaxation publication-title: Computational Mechanics – volume: 28 start-page: 1381 issue: 8 year: 1990 end-page: 1388 article-title: Unsteady Euler airfoil solutions using unstructured dynamic meshes publication-title: AIAA Journal – volume: 8 start-page: 97 year: 1992 end-page: 111 article-title: A simple nonconforming element publication-title: Numerical Methods for Partial Differential Equations – volume: 85 start-page: 784 year: 2007 end-page: 795 article-title: Mesh deformation based on radial basis function interpolation publication-title: Computers & Structures – volume: 25 start-page: 697 issue: 6 year: 1997 end-page: 717 article-title: A staggered control volume scheme for unstructured triangular grids publication-title: International Journal for Numerical Methods in Fluids – volume: 693 start-page: 473 year: 2012 end-page: 499 article-title: Dynamic pitching of an elastic rectangular wing in hovering motion publication-title: Journal of Fluid Mechanics – volume: 196 start-page: 1278 year: 2007 end-page: 1293 article-title: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 231 start-page: 7315 issue: 21 year: 2012 end-page: 7334 article-title: An efficient preconditioner for monolithically‐coupled large‐displacement fluid‐structure interaction problems with pseudo‐solid mesh updates publication-title: Journal Computational Physics – volume: 94 start-page: 25 year: 1995 end-page: 45 article-title: On the rank‐one‐convexity domain of the Saint Venant–Kirchhoff stored energy function publication-title: Rendiconti del Seminario Matematico della Università di Padova – volume: 119 start-page: 73 issue: 1– 2 year: 1994 end-page: 94 article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces publication-title: Computer Methods in Applied Mechanics Engineering – start-page: 371 year: 2006 end-page: 385 – volume: 47 start-page: 335 year: 2011 end-page: 357 article-title: Nonlinear fluid‐structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples publication-title: Computational Mechanics – volume: 85 start-page: 67 issue: 3 year: 1959 end-page: 94 article-title: A method of computation for structural dynamics publication-title: Journal of Engineering Mechanics Division‐ASCE – volume: 38 start-page: 417 issue: 4– 5 year: 2006 end-page: 429 article-title: A solution for the incompressibility dilemma in partitioned fluid‐structure interaction with pure Dirichlet fluid domains publication-title: Computational Mechanics – volume: 246 start-page: 1 year: 2013 end-page: 9 article-title: High‐order fluid‐structure interaction in 2D and 3D application to blood flow in arteries publication-title: Journal of Computational and Applied Mathematics – volume: 33 start-page: 689 issue: 13 year: 1982 end-page: 723 article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid‐structure interactions publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 228 start-page: 4588 issue: 12 year: 2009 end-page: 4605 article-title: An arbitrary Lagrangian–Eulerian formulation for the numerical simulation of flow patterns generated by the Hydromedusa Aequorea Victoria publication-title: Journal of Computational Physics – volume: 195 start-page: 46 issue: 0 year: 2013 end-page: 56 article-title: Parallel large‐scale numerical simulations of purely‐elastic instabilities behind a confined circular cylinder in a rectangular channel publication-title: Journal of Non‐Newtonian Fluid Mechanics – volume: 255 start-page: 660 year: 2013 end-page: 679 article-title: An arbitrary Lagrangian–Eulerian formulation for solving moving boundary problems with large displacement and rotations publication-title: Journal of Computational Physics – volume: 208 start-page: 228 issue: 1 year: 2005 end-page: 252 article-title: Adaptive tetrahedral meshing in free‐surface flow publication-title: Journal of Computational Physics – volume: 29 start-page: 329 issue: 3 year: 1981 end-page: 349 article-title: Lagrangian–Eulerian finite element formulation for incompressible viscous flows publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 27 start-page: 323 issue: 3 year: 1995 end-page: 336 article-title: Calculations of incompressible flow on a staggered triangle grid, Part I: mathematical formulation publication-title: Numerical Heat Transfer Part B‐Fundamentals – volume: 253 start-page: 426 issue: 0 year: 2013 end-page: 438 article-title: An accelerated, fully‐coupled, parallel 3D hybrid finite‐volume fluid‐structure interaction scheme publication-title: Computer Methods in Applied Mechanics Engineering – year: 2010 – volume: 4 start-page: 519 issue: 6 year: 1984 end-page: 537 article-title: A method for computing three dimensional flows using non‐orthogonal boundary‐fitted co‐ordinates publication-title: International Journal for Numerical Methods in Fluids – year: 2012 – volume: 14 start-page: 227 issue: 3 year: 1974 end-page: 253 article-title: An arbitrary Lagrangian–Eulerian computing method for all flow speeds publication-title: Journal of Computational Physics – volume: 81 start-page: 805 issue: 8– 11 year: 2003 end-page: 812 article-title: Partitioned strong coupling algorithms for fluid‐structure interaction publication-title: Computers & Structures – start-page: 162 year: 2008 end-page: 169 – volume: 7 start-page: 33 year: 1973 end-page: 76 article-title: Conforming and nonconforming finite element methods for solving the stationary Stokes equations publication-title: RAIRO Analyse Numérique – volume: 85 start-page: 987 issue: 8 year: 2011 end-page: 1016 article-title: Truly monolithic algebraic multigrid for fluid‐structure interaction publication-title: International Journal for Numerical Methods in Engineering – year: 2002 – volume: 43 start-page: 91 year: 2008 end-page: 101 article-title: Solvers for large‐displacement fluid structure interaction problems: segregated versus monolithic approaches publication-title: Computational Mechanics – volume: 8 start-page: 1037 year: 1988 end-page: 1050 article-title: Space conservation law in finite volume calculations of fluid flow publication-title: International Journal for Numerical Methods in Fluids – year: 1988 – volume: 170 start-page: 103 year: 1999 end-page: 129 article-title: Second‐order time‐accurate and geometricaly conservative implicit schemes for flow computations on unstructured dynamic meshes publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 197 start-page: 1699 year: 2008 end-page: 1714 article-title: An extended finite element method/lagrange multiplier based approach for fluid‐structure interaction publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 14 start-page: 461 issue: 2 year: March 1993 end-page: 469 article-title: A flexible inner‐outer preconditioned GMRES algorithm publication-title: SIAM Journal on Scientific Computing – volume: 197 start-page: 215 year: 2004 end-page: 240 article-title: A numerical method for large‐eddy simulation in complex geometries publication-title: Journal Computational Physics – volume: 32 start-page: 2395 issue: 4 year: 2010 end-page: 2417 article-title: Two‐level Newton and hybrid Schwarz preconditioners for fluid‐structure interaction publication-title: SIAM Journal on Scientific Computing – volume: 26 start-page: 305 issue: 3– 4 year: 2010 end-page: 321 article-title: Coupling strategies for biomedical fluid‐structure interaction problems publication-title: International Journal for Numerical Methods in Biomedical – volume: 195 start-page: 2002 year: 2006 end-page: 2027 article-title: Space‐time finite element techniques for computation of fluid‐structure interactions publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 94 year: 1977 end-page: 124 – volume: 175 start-page: 764 year: 2002 end-page: 791 article-title: Accuracy and conservation properties of a three‐dimensional unstructured staggered mesh scheme for fluid dynamics publication-title: Journal Computational Physics – volume: 8 start-page: 2182 year: 1965 end-page: 2189 article-title: Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface publication-title: Physics of Fluids – volume: 167 start-page: 369 issue: 3– 4 year: 1998 end-page: 391 article-title: A monolithical fluid‐structure interaction algorithm applied to the piston problem publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 191 start-page: 206 issue: 1 year: 2003 end-page: 227 article-title: Design and analysis of ALE schemes with provable second‐order time‐accuracy for inviscid and viscous flow simulations publication-title: Journal of Computational Physics – volume: 20 start-page: 359 issue: 1 year: 1998 end-page: 392 article-title: A fast and high quality multilevel scheme for partitioning irregular graphs publication-title: SIAM Journal on Scientific Computing – year: 1999 – ident: e_1_2_6_24_1 doi: 10.1017/CBO9780511546792 – ident: e_1_2_6_54_1 doi: 10.1137/S1064827595287997 – ident: e_1_2_6_67_1 doi: 10.1007/s00466-010-0544-7 – ident: e_1_2_6_68_1 – ident: e_1_2_6_11_1 doi: 10.1016/j.jcp.2012.08.047 – ident: e_1_2_6_43_1 doi: 10.1016/0045-7930(94)90023-X – ident: e_1_2_6_21_1 doi: 10.1002/0470091355.ecm063 – ident: e_1_2_6_2_1 doi: 10.1016/0021-9991(74)90051-5 – volume: 85 start-page: 67 issue: 3 year: 1959 ident: e_1_2_6_47_1 article-title: A method of computation for structural dynamics publication-title: Journal of Engineering Mechanics Division‐ASCE doi: 10.1061/JMCEA3.0000098 – ident: e_1_2_6_59_1 doi: 10.1016/j.cma.2010.04.016 – ident: e_1_2_6_9_1 doi: 10.1016/j.cma.2007.07.002 – ident: e_1_2_6_22_1 doi: 10.1007/978-3-540-74460-3_20 – ident: e_1_2_6_5_1 doi: 10.1016/S0045-7825(98)00207-2 – ident: e_1_2_6_35_1 doi: 10.1007/s00466-006-0066-5 – ident: e_1_2_6_65_1 doi: 10.1016/j.cma.2012.09.004 – ident: e_1_2_6_12_1 doi: 10.1016/j.jcp.2013.08.038 – volume-title: Fluid‐Structure Interaction II: Modelling, Simulation, Optimisation year: 2010 ident: e_1_2_6_57_1 – ident: e_1_2_6_10_1 doi: 10.1017/jfm.2011.543 – ident: e_1_2_6_8_1 doi: 10.1016/0045-7825(82)90128-1 – ident: e_1_2_6_33_1 doi: 10.1016/j.jcp.2012.07.001 – ident: e_1_2_6_23_1 doi: 10.1016/j.jcp.2009.03.027 – ident: e_1_2_6_37_1 doi: 10.1002/cnm.1281 – ident: e_1_2_6_18_1 doi: 10.1007/3-540-27206-2_8 – ident: e_1_2_6_30_1 doi: 10.1016/j.jcp.2009.10.001 – ident: e_1_2_6_69_1 – ident: e_1_2_6_27_1 doi: 10.1016/j.cma.2011.03.015 – ident: e_1_2_6_3_1 doi: 10.2514/3.61273 – ident: e_1_2_6_15_1 doi: 10.1002/(SICI)1097-0363(19970930)25:6<697::AID-FLD583>3.0.CO;2-R – volume: 94 start-page: 25 year: 1995 ident: e_1_2_6_41_1 article-title: On the rank‐one‐convexity domain of the Saint Venant–Kirchhoff stored energy function publication-title: Rendiconti del Seminario Matematico della Università di Padova – ident: e_1_2_6_36_1 doi: 10.1007/s00466-008-0270-6 – ident: e_1_2_6_52_1 doi: 10.1016/j.jcp.2005.02.012 – ident: e_1_2_6_61_1 doi: 10.1051/m2an:2003049 – ident: e_1_2_6_34_1 doi: 10.1016/j.cma.2006.09.002 – ident: e_1_2_6_49_1 doi: 10.1016/0045-7825(94)00077-8 – ident: e_1_2_6_28_1 doi: 10.1016/S0045-7825(98)00151-0 – start-page: 94 volume-title: Computational Methods for Fluid‐Structure Interaction Problems year: 1977 ident: e_1_2_6_25_1 – ident: e_1_2_6_26_1 doi: 10.1016/S0045-7949(02)00409-1 – ident: e_1_2_6_14_1 doi: 10.1002/fld.1650040606 – ident: e_1_2_6_4_1 doi: 10.1002/fld.1650080906 – ident: e_1_2_6_20_1 doi: 10.1063/1.1761178 – volume-title: Effiziente algorithmen für die fluid‐struktur‐wechselwirkung year: 2009 ident: e_1_2_6_66_1 – ident: e_1_2_6_45_1 doi: 10.1016/j.jcp.2003.11.031 – ident: e_1_2_6_56_1 – ident: e_1_2_6_55_1 doi: 10.1007/3-540-34596-5_15 – ident: e_1_2_6_48_1 doi: 10.2514/3.25229 – ident: e_1_2_6_31_1 doi: 10.1137/090779425 – ident: e_1_2_6_39_1 – ident: e_1_2_6_50_1 doi: 10.1007/s004660050393 – ident: e_1_2_6_62_1 doi: 10.1016/j.jnnfm.2011.03.010 – ident: e_1_2_6_44_1 doi: 10.1006/jcph.2001.6973 – ident: e_1_2_6_7_1 doi: 10.1016/0045-7825(81)90049-9 – ident: e_1_2_6_17_1 doi: 10.1051/m2an/197307R300331 – ident: e_1_2_6_16_1 doi: 10.1002/num.1690080202 – ident: e_1_2_6_64_1 doi: 10.1007/s00466-008-0255-5 – ident: e_1_2_6_51_1 doi: 10.1016/j.compstruc.2007.01.013 – ident: e_1_2_6_19_1 doi: 10.1016/j.jnnfm.2012.11.011 – ident: e_1_2_6_63_1 doi: 10.1016/S0045-7825(01)00302-4 – ident: e_1_2_6_13_1 doi: 10.1080/10407799508914960 – ident: e_1_2_6_46_1 doi: 10.1115/1.2900803 – ident: e_1_2_6_53_1 doi: 10.1137/0914028 – ident: e_1_2_6_58_1 doi: 10.1016/j.compstruc.2009.12.006 – ident: e_1_2_6_60_1 doi: 10.1016/j.cam.2012.10.006 – ident: e_1_2_6_42_1 doi: 10.1007/s00466-014-1071-8 – ident: e_1_2_6_29_1 doi: 10.1016/j.cma.2008.04.018 – ident: e_1_2_6_32_1 doi: 10.1002/nme.3001 – ident: e_1_2_6_6_1 doi: 10.1016/S0021-9991(03)00311-5 – ident: e_1_2_6_38_1 doi: 10.1016/j.cma.2004.09.014 – volume-title: Nonlinear Finite Elements for Continua and Structures year: 2001 ident: e_1_2_6_40_1 |
| SSID | ssj0009283 |
| Score | 2.3112504 |
| Snippet | Summary
A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The... A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing... Summary A novel parallel monolithic algorithm has been developed for the numerical simulation of large-scale fluid structure interaction problems. The... A novel parallel monolithic algorithm has been developed for the numerical simulation of large-scale fluid structure interaction problems. The governing... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 687 |
| SubjectTerms | Algorithms Computational fluid dynamics Computer simulation Conservation Finite element analysis finite element method Finite volume method Fluid flow fluid-structure interaction Fluids large displacement large-scale computation Mathematical analysis monolithic method Navier-Stokes equations unstructured finite volume method Viscous flow |
| Title | A parallel monolithic algorithm for the numerical simulation of large-scale fluid structure interaction problems |
| URI | https://api.istex.fr/ark:/67375/WNG-JQ9LP4GW-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.4169 https://www.proquest.com/docview/1774736187 https://www.proquest.com/docview/1780528078 https://www.proquest.com/docview/1800496434 |
| Volume | 80 |
| WOSCitedRecordID | wos000373065100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0363 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009283 issn: 0271-2091 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagywEOFAqIhYKMhMopNLGdHx8ryhZVq1VBVO3NsmMHVrjZKukijjwCz8iTMBN7t60ECIlTonii-Gcm8zkz-YaQl7DhqgW4vYQ3FU-EsSbRdYX0eDw3ThgkhRuKTZSzWXV6Ko9iViX-CxP4IdYf3NAyhvc1Grg2_e4laWjj7WtAE_ImGbEyxRDtaP_D5Hh6SbnLAgknKzPQBZmtqGdTtru695ozGuG8fruGNK_i1cHhTDb_p6v3yN0IM-le0Iv75IZrt8hmhJw0GnS_Re5c4SN8QLo9ilTg3jtPQT0xNe7zvKbaf1p0cHpGAeFSQIy0XYZAj6f9_CwWAKOLhnrMK__5_UcPTY42fjm3NDDULjtHkZqiCz9S0FjIpn9IjidvP755l8SiDEmNIcCksE5WupCmyVMHm0OZ56YStmxExSTTFgy6AH_nuIURN1pqDMw23FU6dVlqGX9ENtpF6x4TWjBrcsDLurBCGMONdWVmeaYzKwxcG5NXq9VRdWQsx8IZXgWuZaZgYhVO7Ji8WEueB5aO38jsDAu8FtDdF8xqK3N1MjtQh-_l9EgcnKjDMdleaYCKBt2rDGByyYusKuFZ62YwRYyv6NYtliiD9SGQwP8vMhXuyQAGwuh2Bp35Y4fVZLqPxyf_KviU3AY4V4RY1zbZgOV1z8it-uvFvO-eR_P4BU60Fag |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLhL0QKGAutCCkVA5pV3naYtT1bItJawKatXeLDt2YEWaRQmLOPIT-I38Emby2LYSICROieKJ4sdM_I3H_gbgOTpcWYjTnhfkIvBCY42nM0H0eEFkXGiIFK5JNpFMJuL8XB4vwcv-LEzLD7FYcCPLaP7XZOC0IL1zyRqaF3Yb4YS8AQNivULPa7D_fnyaXnLu-i0Lp59wVAbJe-7Zkb_Tv3ttNhpQx367BjWvAtZmxhmv_ldd78KdDmiy3VYz7sGSK9dgtQOdrDPpeg1WrjAS3odqlxEZeFG4gqGC0ua4j9OM6eLDrMLbC4YYlyFmZOW8DfUUrJ5edCnA2CxnBe0s__n9R41FjuXFfGpZy1E7rxwjcoqqPUrBulQ29QM4Hb862Tv0urQMXkZBQC-2TgodS5NHI4fuoYwiI0Kb5KHwpa-tpMHgwgUWW5xrqSk0mwdO6JHjI-sHD2G5nJVuHVjsWxMhYtaxDUNjAmNdwm3ANbehwWdDeNEPj8o6znJKnVGolm3ZV9ixijp2CM8Wkp9bno7fyGw1I7wQ0NUn2teWROpscqCO3sn0ODw4U0dD2OhVQHUmXSuOQDkJYi4S_NaiGI2RIiy6dLM5yVCGCKLw_4uMIK8MgSC2bqtRmj9WWI3Tfbo--lfBp3Dr8ORtqtLXkzeP4TaCu7iNfG3AMg6124Sb2dcv07p60tnKL9rkGZg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLkJwoFBALBQwEiqntJvE-bE4VSwplNVqQVTtzbJjh66aZquERRx5BJ6RJ2EmcbatBAiJU6J4ovhnJvPZY38D8AInXDlHt-eFRRp6XBvtqTwlerww0pZrIoVrk00k02l6fCxma_CqPwvT8UOsFtzIMtr_NRm4PTfF7gVraFGaHYQT4hoMeCQ4Kvlg_DE7nFxw7gYdC2eQ-KgMwu-5Z0fBbv_uFW80oI79dgVqXgasrcfJNv6rrnfgtgOabK_TjLuwZqtN2HCgkzmTbjbh1iVGwntQ7zEiAy9LWzJUUNocdzLPmSo_L2q8PWOIcRliRlYtu1BPyZr5mUsBxhYFK2ln-c_vPxossqwol3PDOo7aZW0ZkVPU3VEK5lLZNPfhMHvz6fVbz6Vl8HIKAnqxsSJVsdBFNLI4PRRRpFNukoKngQiUQZOO0ePZ0GCLCyUUhWaL0KZqZP2RCcIHsF4tKvsQWBwYHSFiVrHhXOtQG5v4JvSVb7jGZ0N42Q-PzB1nOaXOKGXHthxI7FhJHTuE5yvJ846n4zcy2-0IrwRUfUr72pJIHk335cEHMZnx_SN5MIStXgWkM-lG-giUkzD20wS_tSpGY6QIi6rsYkkylCGCKPz_IpPSrAyBILZuu1WaP1ZYZpMxXR_9q-AzuDEbZ3Lybvr-MdxEbBd3ga8tWMeRtk_gev71y7ypnzpT-QVBvBkT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+monolithic+algorithm+for+the+numerical+simulation+of+large-scale+fluid+structure+interaction+problems&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Eken%2C+Ali&rft.au=Sahin%2C+Mehmet&rft.date=2016-04-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=80&rft.issue=12&rft.spage=687&rft_id=info:doi/10.1002%2Ffld.4169&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3992482691 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |