A parallel monolithic algorithm for the numerical simulation of large-scale fluid structure interaction problems

Summary A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids Vol. 80; no. 12; pp. 687 - 714
Main Authors: Eken, Ali, Sahin, Mehmet
Format: Journal Article
Language:English
Published: Bognor Regis Blackwell Publishing Ltd 30.04.2016
Wiley Subscription Services, Inc
Subjects:
ISSN:0271-2091, 1097-0363
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant–Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large‐scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one‐level restricted additive Schwarz preconditioner with a block‐incomplete factorization within each partitioned sub‐domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd. A novel FSI algorithm is proposed for the large‐scale simulation of fluid‐structure interaction problems in a fully coupled form. A special attention is given to satisfy both the local and global discrete geometric conservation law (DGCL) in order to conserve the total fluid volume/mass in machine precision. Large‐scale numerical results are presented for several classical FSI benchmark problems.
AbstractList A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant–Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large‐scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one‐level restricted additive Schwarz preconditioner with a block‐incomplete factorization within each partitioned sub‐domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd.
Summary A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant–Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large‐scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one‐level restricted additive Schwarz preconditioner with a block‐incomplete factorization within each partitioned sub‐domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd. A novel FSI algorithm is proposed for the large‐scale simulation of fluid‐structure interaction problems in a fully coupled form. A special attention is given to satisfy both the local and global discrete geometric conservation law (DGCL) in order to conserve the total fluid volume/mass in machine precision. Large‐scale numerical results are presented for several classical FSI benchmark problems.
Summary A novel parallel monolithic algorithm has been developed for the numerical simulation of large-scale fluid structure interaction problems. The governing incompressible Navier-Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian-Eulerian formulation-based side-centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large-scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one-level restricted additive Schwarz preconditioner with a block-incomplete factorization within each partitioned sub-domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd.
A novel parallel monolithic algorithm has been developed for the numerical simulation of large-scale fluid structure interaction problems. The governing incompressible Navier-Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian-Eulerian formulation-based side-centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large-scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one-level restricted additive Schwarz preconditioner with a block-incomplete factorization within each partitioned sub-domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd. A novel FSI algorithm is proposed for the large-scale simulation of fluid-structure interaction problems in a fully coupled form. A special attention is given to satisfy both the local and global discrete geometric conservation law (DGCL) in order to conserve the total fluid volume/mass in machine precision. Large-scale numerical results are presented for several classical FSI benchmark problems.
Author Sahin, Mehmet
Eken, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Eken
  fullname: Eken, Ali
  organization: Astronautical Engineering Department, Faculty of Aeronautics and Astronautics, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
– sequence: 2
  givenname: Mehmet
  surname: Sahin
  fullname: Sahin, Mehmet
  email: Correspondence to: Mehmet Sahin, Astronautical Engineering Department, Faculty of Aeronautics and Astronautics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey., msahin.ae00@gtalumni.org
  organization: Astronautical Engineering Department, Faculty of Aeronautics and Astronautics, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
BookMark eNqF0VFvFCEQB3Bi2sRrNfEjkPjiy57Dwi7w2FR7trlom2j6SLjdoaWyywlsar99tz1To9H0iUn4MTD8D8jeGEck5A2DJQOo37vQLwVr9QuyYKBlBbzle2QBtWRVDZq9JAc53wCArhVfkO0R3dpkQ8BAhzjG4Mu176gNVzHN5UBdTLRcIx2nAZPvbKDZD1OwxceRRkeDTVdY5XkDqQuT72kuaerKlJD6sWCy3SPdprgJOORXZN_ZkPH1r_WQfDv5-PX4U7X-sjo9PlpXHddSV22PWtlWb1wDKEDrptko0UsnVK1r2-uWt5Ip5P08rLPaikZxx1FZQAZ9zQ_Ju13f-eIfE-ZiBp87DMGOGKdsmAIQuhVcPE-lgqZWINVM3_5Fb-KUxnmQWUkhecuUnNVyp7oUc07oTOfL44-VZH0wDMxDVmbOyjxk9fsFTwe2yQ823f2LVjt66wPe_deZk_WHP73PBX8-eZu-m1Zy2ZjLzytzdqHX52J1ac74PRBGtFA
CODEN IJNFDW
CitedBy_id crossref_primary_10_1016_j_cjche_2022_07_018
crossref_primary_10_1002_fld_5057
crossref_primary_10_1016_j_jtice_2022_104284
crossref_primary_10_1515_rnam_2022_0014
crossref_primary_10_1002_fld_5159
crossref_primary_10_1016_j_compfluid_2015_08_024
crossref_primary_10_1002_fld_4786
crossref_primary_10_1016_j_cma_2025_118211
crossref_primary_10_1007_s00162_019_00492_0
crossref_primary_10_1007_s11804_017_1436_4
crossref_primary_10_1016_j_camwa_2023_01_029
crossref_primary_10_1016_j_jcp_2020_109894
crossref_primary_10_1007_s00366_019_00880_4
crossref_primary_10_3389_fbioe_2024_1433811
crossref_primary_10_1016_j_compfluid_2018_11_004
crossref_primary_10_1016_j_jfluidstructs_2020_103050
crossref_primary_10_1007_s12206_023_0418_5
crossref_primary_10_1002_nme_7626
crossref_primary_10_1007_s10915_021_01748_w
crossref_primary_10_1016_j_compfluid_2017_05_005
crossref_primary_10_3390_bioengineering11030269
crossref_primary_10_3390_w11051048
crossref_primary_10_1007_s00466_020_01860_y
crossref_primary_10_1002_cnm_3171
crossref_primary_10_1002_nme_5598
Cites_doi 10.1017/CBO9780511546792
10.1137/S1064827595287997
10.1007/s00466-010-0544-7
10.1016/j.jcp.2012.08.047
10.1016/0045-7930(94)90023-X
10.1002/0470091355.ecm063
10.1016/0021-9991(74)90051-5
10.1061/JMCEA3.0000098
10.1016/j.cma.2010.04.016
10.1016/j.cma.2007.07.002
10.1007/978-3-540-74460-3_20
10.1016/S0045-7825(98)00207-2
10.1007/s00466-006-0066-5
10.1016/j.cma.2012.09.004
10.1016/j.jcp.2013.08.038
10.1017/jfm.2011.543
10.1016/0045-7825(82)90128-1
10.1016/j.jcp.2012.07.001
10.1016/j.jcp.2009.03.027
10.1002/cnm.1281
10.1007/3-540-27206-2_8
10.1016/j.jcp.2009.10.001
10.1016/j.cma.2011.03.015
10.2514/3.61273
10.1002/(SICI)1097-0363(19970930)25:6<697::AID-FLD583>3.0.CO;2-R
10.1007/s00466-008-0270-6
10.1016/j.jcp.2005.02.012
10.1051/m2an:2003049
10.1016/j.cma.2006.09.002
10.1016/0045-7825(94)00077-8
10.1016/S0045-7825(98)00151-0
10.1016/S0045-7949(02)00409-1
10.1002/fld.1650040606
10.1002/fld.1650080906
10.1063/1.1761178
10.1016/j.jcp.2003.11.031
10.1007/3-540-34596-5_15
10.2514/3.25229
10.1137/090779425
10.1007/s004660050393
10.1016/j.jnnfm.2011.03.010
10.1006/jcph.2001.6973
10.1016/0045-7825(81)90049-9
10.1051/m2an/197307R300331
10.1002/num.1690080202
10.1007/s00466-008-0255-5
10.1016/j.compstruc.2007.01.013
10.1016/j.jnnfm.2012.11.011
10.1016/S0045-7825(01)00302-4
10.1080/10407799508914960
10.1115/1.2900803
10.1137/0914028
10.1016/j.compstruc.2009.12.006
10.1016/j.cam.2012.10.006
10.1007/s00466-014-1071-8
10.1016/j.cma.2008.04.018
10.1002/nme.3001
10.1016/S0021-9991(03)00311-5
10.1016/j.cma.2004.09.014
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.4169
DatabaseName Istex
CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 714
ExternalDocumentID 3992482691
10_1002_fld_4169
FLD4169
ark_67375_WNG_JQ9LP4GW_J
Genre article
GrantInformation_xml – fundername: Turkish National Scientific and Technical Research Council (TUBITAK)
  funderid: 112M107
– fundername: National Center for High Performance Computing of Turkey (UYBHM)
  funderid: 10752009
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWS
WRC
AAYXX
CITATION
O8X
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c3979-6de98a69bf50e409955b84d7f48292ad9636718e3d416fa9a4583f3e8a0e10d23
IEDL.DBID DRFUL
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373065100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
IngestDate Sun Nov 09 11:20:31 EST 2025
Tue Oct 07 09:31:50 EDT 2025
Fri Jul 25 12:15:02 EDT 2025
Tue Nov 18 22:32:18 EST 2025
Sat Nov 29 03:27:51 EST 2025
Wed Jan 22 16:21:47 EST 2025
Tue Nov 11 03:32:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3979-6de98a69bf50e409955b84d7f48292ad9636718e3d416fa9a4583f3e8a0e10d23
Notes Turkish National Scientific and Technical Research Council (TUBITAK) - No. 112M107
National Center for High Performance Computing of Turkey (UYBHM) - No. 10752009
ark:/67375/WNG-JQ9LP4GW-J
ArticleID:FLD4169
istex:3FF695A0CFD5DA1AB0E41D5082BD781B9F419C69
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1774736187
PQPubID 996375
PageCount 28
ParticipantIDs proquest_miscellaneous_1800496434
proquest_miscellaneous_1780528078
proquest_journals_1774736187
crossref_citationtrail_10_1002_fld_4169
crossref_primary_10_1002_fld_4169
wiley_primary_10_1002_fld_4169_FLD4169
istex_primary_ark_67375_WNG_JQ9LP4GW_J
PublicationCentury 2000
PublicationDate 30 April 2016
PublicationDateYYYYMMDD 2016-04-30
PublicationDate_xml – month: 04
  year: 2016
  text: 30 April 2016
  day: 30
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Koobus B, Farhat C. Second-order time-accurate and geometricaly conservative implicit schemes for flow computations on unstructured dynamic meshes. Computer Methods in Applied Mechanics and Engineering. 1999; 170: 103-129.
Blom FJ. A monolithical fluid-structure interaction algorithm applied to the piston problem. Computer Methods in Applied Mechanics and Engineering. 1998; 167(3- 4): 369-391.
Crouzeix M, Raviart PA. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Analyse Numérique. 1973; 7: 33-76.
Farhat C. CFD-Based Nonlinear Computational Aeroelasticity, Encyclopedia of Computational Mechanics. John Wiley & Sons, Ltd, 2004.
Küttler U, Gee M, Förster C, Comerford A, Wall WA. Coupling strategies for biomedical fluid-structure interaction problems. International Journal for Numerical Methods in Biomedical. 2010; 26(3- 4): 305-321.
Demirdz̆ić I, Perić M. Space conservation law in finite volume calculations of fluid flow. International Journal for Numerical Methods in Fluids. 1988; 8: 1037-1050.
Badia S, Quaini A, Quarteroni A. Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect. Computer Methods in Applied Mechanics and Engineering. 2008; 197: 4216-4232.
Newmark NM. A method of computation for structural dynamics. Journal of Engineering Mechanics Division-ASCE. 1959; 85(3): 67-94.
Hughes TJ, Liu WK, Zimmermann TK. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering. 1981; 29(3): 329-349.
Küttler U, Förster C, Wall WA. A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure Dirichlet fluid domains. Computational Mechanics. 2006; 38(4- 5): 417-429.
Donea J, Giuliani S, Halleux J. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering. 1982; 33(13): 689-723.
Hwang YH. Calculations of incompressible flow on a staggered triangle grid, Part I: mathematical formulation. Numerical Heat Transfer Part B-Fundamentals. 1995; 27(3): 323-336.
Erzincanli B, Sahin M. An arbitrary Lagrangian-Eulerian formulation for solving moving boundary problems with large displacement and rotations. Journal of Computational Physics. 2013; 255: 660-679.
Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. John Willey & Sons: New York, 2001.
Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids. 1965; 8: 2182-2189.
Gee MW, Küttler U, Wall WA. Truly monolithic algebraic multigrid for fluid-structure interaction. International Journal for Numerical Methods in Engineering. 2011; 85(8): 987-1016.
Mahesh K, Constantinescu G, Moin P. A numerical method for large-eddy simulation in complex geometries. Journal Computational Physics. 2004; 197: 215-240.
von Scheven M. Effiziente algorithmen für die fluid-struktur-wechselwirkung. Bericht: Institut für Baustatik und Baudynamik, 2009.
Deville MO, Fischer PF, Mund EH. High-Order Methods for Incompressible Fluid Flow. Cambridge University Press: Cambridge, 2002.
Brighi B, Bousselsal M. On the rank-one-convexity domain of the Saint Venant-Kirchhoff stored energy function. Rendiconti del Seminario Matematico della Università di Padova. 1995; 94: 25-45.
Gerstenberger A, Wall WA. An extended finite element method/lagrange multiplier based approach for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering. 2008; 197: 1699-1714.
Sahin M, Mohseni K. An arbitrary Lagrangian-Eulerian formulation for the numerical simulation of flow patterns generated by the Hydromedusa Aequorea Victoria. Journal of Computational Physics. 2009; 228(12): 4588-4605.
Gerbeau J-F, Vidrascu M. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. ESAIM-Mathematical Modeling and Numerical Analysis Journal. 20036; 37: 631-647.
Matthies HG, Steindorf J. Partitioned strong coupling algorithms for fluid-structure interaction. Computers & Structures. 2003; 81(8- 11): 805-812.
Kabel M, Böhlke T, Schneider M. Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations. Computational Mechanics. 2014; 54: 1497-1514.
Richter T, Wick T. Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Computer Methods in Applied Mechanics Engineering. 2010; 199(41- 44): 2633-2642.
Maliska CR, Raithby GD. A method for computing three dimensional flows using non-orthogonal boundary-fitted co-ordinates. International Journal for Numerical Methods in Fluids. 1984; 4(6): 519-537.
Sahin M. A stable unstructured finite volume method for parallel large-scale viscoelastic fluid flow calculations. Journal of Non-Newtonian Fluid Mechanics. 2011; 166(14- 15): 779-791.
Tezduyar TE, Sathe S, Keedy R, Stein K. Space-time finite element techniques for computation of fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering. 2006; 195: 2002-2027.
de Boer A, van der Schoot MS, Bijl H. Mesh deformation based on radial basis function interpolation. Computers & Structures. 2007; 85: 784-795.
Formaggia L, Gerbeau JF, Nobile F, Quarteroni A. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics Engineering. 2001; 191(6- 7): 561-582.
Hirt C, Amsden A, Cook J. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics. 1974; 14(3): 227-253.
Dai M, Schmidt DP. Adaptive tetrahedral meshing in free-surface flow. Journal of Computational Physics. 2005; 208(1): 228-252.
Rida S, McKenty F, Meng FL, Reggio M. A staggered control volume scheme for unstructured triangular grids. International Journal for Numerical Methods in Fluids. 1997; 25(6): 697-717.
Dai H, Luo H, Doyle JF. Dynamic pitching of an elastic rectangular wing in hovering motion. Journal of Fluid Mechanics. 2012; 693: 473-499.
Barker AT, Cai X-C. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling. Journal of Computational Physics. 2010; 229: 642-659.
Richter T. A fully Eulerian formulation for fluid-structure interaction problems. Journal of Computational Physics. 2013; 233(0): 227-240.
Geuzaine P, Grandmont C, Farhat C. Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. Journal of Computational Physics. 2003; 191(1): 206-227.
Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG. Nonlinear fluid-structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples. Computational Mechanics. 2011; 47: 335-357.
Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. Journal of Applied Mechanics. 1993; 60: 371-375.
Zhang X, Schmidt D, Perot B. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics. Journal Computational Physics. 2002; 175: 764-791.
Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing. March 1993; 14(2): 461-469.
Sahin M. Parallel large-scale numerical simulations of purely-elastic instabilities behind a confined circular cylinder in a rectangular channel. Journal of Non-Newtonian Fluid Mechanics. 2013; 195(0): 46-56.
Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing. 1998; 20(1): 359-392.
Chabannes V, Pena G, Prudhomme C. High-order fluid-structure interaction in 2D and 3D application to blood flow in arteries. Journal of Computational and Applied Mathematics. 2013; 246: 1-9.
Thomas PD, Lombard CK. Geometric conservation law and its application to flow computations on moving grids. AIAA Journal. 1979; 17: 1030-1037.
Degroote J, Vierendeels J. Multi-solver algorithms for the partitioned simulation of fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering. 2011; 200(25- 28): 2195-2210.
Barker AT, Cai X-C. Two-level Newton and hybrid Schwarz preconditioners for fluid-structure interaction. SIAM Journal on Scientific Computing. 2010; 32(4): 2395-2417.
Anderson WK, Bonhaus DL. An implicit upwind algorithm for computing turbulent flows on unstructured grids. Computers & Fluids. 1994; 23: 1-21.
Batina JT. Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA Journal. 1990; 28(8): 1381-1388.
Förster C, Wall WA, Ramm E. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering. 2007; 196: 1278-1293.
Johnson AA, Tezduyar TE. Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics. 1999; 23: 130-143.
Malan AG, Oxtoby OF. An accelerated, fully-coupled, parallel 3D hybrid finite-volume fluid-structure interaction scheme. Computer Methods in Applied Mechanics Engineering. 2013; 253(0): 426-438.
Muddle RL, Mihajlovic M, Heil M. An efficient preconditioner for monolithically-coupled large-displacement fluid-structure interaction problems with pseudo-solid mesh updates. Journal Computational Physics. 2012; 231(21): 7315-7334.
Küttler U, Wall WA. Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics. 2008; 43: 61-72.
Degroote J, Haelterman R, Annerel S, Bruggeman P, Vierendeels J. Performance of partitioned procedures in fluid-structure interaction. Computers & Structures. 2010; 88(7- 8): 446-457.
Johnson A, Tezduyar T. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfa
1974; 14
2010; 229
1993; 60
2006; 38
1999; 170
1994; 23
March 1993; 14
2013; 246
2003; 191
1977
1992; 8
2012; 693
2010; 26
2001
1995; 27
1965; 8
2013; 233
2010; 199
2013; 195
2008; 197
1998; 167
2011; 200
2011; 166
2014; 54
1988
1979; 17
2010; 32
1959; 85
1995; 94
2003; 81
2012
2002; 175
2010
1997; 25
1982; 33
2009
2008
2006; 195
1999; 23
2003; 37
2006
1981; 29
2005
2004
2002
1994; 119
1998; 20
1999
2010; 88
2004; 197
2012; 231
1984; 4
2001; 191
1990; 28
1988; 8
2007; 196
2013; 255
2011; 85
2005; 208
2008; 43
2013; 253
2007; 85
2011; 47
2009; 228
1973; 7
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Park KC (e_1_2_6_25_1) 1977
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
Turek S (e_1_2_6_57_1) 2010
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_60_1
Brighi B (e_1_2_6_41_1) 1995; 94
Newmark NM (e_1_2_6_47_1) 1959; 85
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Scheven M (e_1_2_6_66_1) 2009
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_61_1
e_1_2_6_8_1
Belytschko T (e_1_2_6_40_1) 2001
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Küttler U, Förster C, Wall WA. A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure Dirichlet fluid domains. Computational Mechanics. 2006; 38(4- 5): 417-429.
– reference: Heil M, Hazel AL, Boyle J. Solvers for large-displacement fluid structure interaction problems: segregated versus monolithic approaches. Computational Mechanics. 2008; 43: 91-101.
– reference: Erzincanli B, Sahin M. An arbitrary Lagrangian-Eulerian formulation for solving moving boundary problems with large displacement and rotations. Journal of Computational Physics. 2013; 255: 660-679.
– reference: Gee MW, Küttler U, Wall WA. Truly monolithic algebraic multigrid for fluid-structure interaction. International Journal for Numerical Methods in Engineering. 2011; 85(8): 987-1016.
– reference: Chabannes V, Pena G, Prudhomme C. High-order fluid-structure interaction in 2D and 3D application to blood flow in arteries. Journal of Computational and Applied Mathematics. 2013; 246: 1-9.
– reference: Geuzaine P, Grandmont C, Farhat C. Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. Journal of Computational Physics. 2003; 191(1): 206-227.
– reference: Muddle RL, Mihajlovic M, Heil M. An efficient preconditioner for monolithically-coupled large-displacement fluid-structure interaction problems with pseudo-solid mesh updates. Journal Computational Physics. 2012; 231(21): 7315-7334.
– reference: Farhat C. CFD-Based Nonlinear Computational Aeroelasticity, Encyclopedia of Computational Mechanics. John Wiley & Sons, Ltd, 2004.
– reference: Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. John Willey & Sons: New York, 2001.
– reference: Johnson AA, Tezduyar TE. Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics. 1999; 23: 130-143.
– reference: Maliska CR, Raithby GD. A method for computing three dimensional flows using non-orthogonal boundary-fitted co-ordinates. International Journal for Numerical Methods in Fluids. 1984; 4(6): 519-537.
– reference: Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. Journal of Applied Mechanics. 1993; 60: 371-375.
– reference: Dai H, Luo H, Doyle JF. Dynamic pitching of an elastic rectangular wing in hovering motion. Journal of Fluid Mechanics. 2012; 693: 473-499.
– reference: Newmark NM. A method of computation for structural dynamics. Journal of Engineering Mechanics Division-ASCE. 1959; 85(3): 67-94.
– reference: Degroote J, Haelterman R, Annerel S, Bruggeman P, Vierendeels J. Performance of partitioned procedures in fluid-structure interaction. Computers & Structures. 2010; 88(7- 8): 446-457.
– reference: Formaggia L, Gerbeau JF, Nobile F, Quarteroni A. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics Engineering. 2001; 191(6- 7): 561-582.
– reference: de Boer A, van der Schoot MS, Bijl H. Mesh deformation based on radial basis function interpolation. Computers & Structures. 2007; 85: 784-795.
– reference: Badia S, Quaini A, Quarteroni A. Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect. Computer Methods in Applied Mechanics and Engineering. 2008; 197: 4216-4232.
– reference: Zhang X, Schmidt D, Perot B. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics. Journal Computational Physics. 2002; 175: 764-791.
– reference: Donea J, Giuliani S, Halleux J. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering. 1982; 33(13): 689-723.
– reference: Deville MO, Fischer PF, Mund EH. High-Order Methods for Incompressible Fluid Flow. Cambridge University Press: Cambridge, 2002.
– reference: Barker AT, Cai X-C. Two-level Newton and hybrid Schwarz preconditioners for fluid-structure interaction. SIAM Journal on Scientific Computing. 2010; 32(4): 2395-2417.
– reference: Matthies HG, Steindorf J. Partitioned strong coupling algorithms for fluid-structure interaction. Computers & Structures. 2003; 81(8- 11): 805-812.
– reference: Johnson A, Tezduyar T. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Computer Methods in Applied Mechanics Engineering. 1994; 119(1- 2): 73-94.
– reference: Gerbeau J-F, Vidrascu M. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. ESAIM-Mathematical Modeling and Numerical Analysis Journal. 20036; 37: 631-647.
– reference: Demirdz̆ić I, Perić M. Space conservation law in finite volume calculations of fluid flow. International Journal for Numerical Methods in Fluids. 1988; 8: 1037-1050.
– reference: Mahesh K, Constantinescu G, Moin P. A numerical method for large-eddy simulation in complex geometries. Journal Computational Physics. 2004; 197: 215-240.
– reference: Malan AG, Oxtoby OF. An accelerated, fully-coupled, parallel 3D hybrid finite-volume fluid-structure interaction scheme. Computer Methods in Applied Mechanics Engineering. 2013; 253(0): 426-438.
– reference: Förster C, Wall WA, Ramm E. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering. 2007; 196: 1278-1293.
– reference: Tezduyar TE, Sathe S, Keedy R, Stein K. Space-time finite element techniques for computation of fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering. 2006; 195: 2002-2027.
– reference: Anderson WK, Bonhaus DL. An implicit upwind algorithm for computing turbulent flows on unstructured grids. Computers & Fluids. 1994; 23: 1-21.
– reference: Küttler U, Wall WA. Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics. 2008; 43: 61-72.
– reference: Küttler U, Gee M, Förster C, Comerford A, Wall WA. Coupling strategies for biomedical fluid-structure interaction problems. International Journal for Numerical Methods in Biomedical. 2010; 26(3- 4): 305-321.
– reference: Degroote J, Vierendeels J. Multi-solver algorithms for the partitioned simulation of fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering. 2011; 200(25- 28): 2195-2210.
– reference: von Scheven M. Effiziente algorithmen für die fluid-struktur-wechselwirkung. Bericht: Institut für Baustatik und Baudynamik, 2009.
– reference: Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG. Nonlinear fluid-structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples. Computational Mechanics. 2011; 47: 335-357.
– reference: Crouzeix M, Raviart PA. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Analyse Numérique. 1973; 7: 33-76.
– reference: Gerstenberger A, Wall WA. An extended finite element method/lagrange multiplier based approach for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering. 2008; 197: 1699-1714.
– reference: Brighi B, Bousselsal M. On the rank-one-convexity domain of the Saint Venant-Kirchhoff stored energy function. Rendiconti del Seminario Matematico della Università di Padova. 1995; 94: 25-45.
– reference: Richter T, Wick T. Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Computer Methods in Applied Mechanics Engineering. 2010; 199(41- 44): 2633-2642.
– reference: Batina JT. Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA Journal. 1990; 28(8): 1381-1388.
– reference: Hirt C, Amsden A, Cook J. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics. 1974; 14(3): 227-253.
– reference: Hwang YH. Calculations of incompressible flow on a staggered triangle grid, Part I: mathematical formulation. Numerical Heat Transfer Part B-Fundamentals. 1995; 27(3): 323-336.
– reference: Sahin M. Parallel large-scale numerical simulations of purely-elastic instabilities behind a confined circular cylinder in a rectangular channel. Journal of Non-Newtonian Fluid Mechanics. 2013; 195(0): 46-56.
– reference: Rida S, McKenty F, Meng FL, Reggio M. A staggered control volume scheme for unstructured triangular grids. International Journal for Numerical Methods in Fluids. 1997; 25(6): 697-717.
– reference: Richter T. A fully Eulerian formulation for fluid-structure interaction problems. Journal of Computational Physics. 2013; 233(0): 227-240.
– reference: Sahin M, Mohseni K. An arbitrary Lagrangian-Eulerian formulation for the numerical simulation of flow patterns generated by the Hydromedusa Aequorea Victoria. Journal of Computational Physics. 2009; 228(12): 4588-4605.
– reference: Dai M, Schmidt DP. Adaptive tetrahedral meshing in free-surface flow. Journal of Computational Physics. 2005; 208(1): 228-252.
– reference: Koobus B, Farhat C. Second-order time-accurate and geometricaly conservative implicit schemes for flow computations on unstructured dynamic meshes. Computer Methods in Applied Mechanics and Engineering. 1999; 170: 103-129.
– reference: Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing. 1998; 20(1): 359-392.
– reference: Barker AT, Cai X-C. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling. Journal of Computational Physics. 2010; 229: 642-659.
– reference: Kabel M, Böhlke T, Schneider M. Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations. Computational Mechanics. 2014; 54: 1497-1514.
– reference: Hughes TJ, Liu WK, Zimmermann TK. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering. 1981; 29(3): 329-349.
– reference: Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids. 1965; 8: 2182-2189.
– reference: Rannacher R, Turek S. A simple nonconforming element. Numerical Methods for Partial Differential Equations. 1992; 8: 97-111.
– reference: Sahin M. A stable unstructured finite volume method for parallel large-scale viscoelastic fluid flow calculations. Journal of Non-Newtonian Fluid Mechanics. 2011; 166(14- 15): 779-791.
– reference: Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing. March 1993; 14(2): 461-469.
– reference: Thomas PD, Lombard CK. Geometric conservation law and its application to flow computations on moving grids. AIAA Journal. 1979; 17: 1030-1037.
– reference: Blom FJ. A monolithical fluid-structure interaction algorithm applied to the piston problem. Computer Methods in Applied Mechanics and Engineering. 1998; 167(3- 4): 369-391.
– year: 2009
– volume: 54
  start-page: 1497
  year: 2014
  end-page: 1514
  article-title: Efficient fixed point and Newton‐Krylov solvers for FFT‐based homogenization of elasticity at large deformations
  publication-title: Computational Mechanics
– year: 2005
– volume: 88
  start-page: 446
  issue: 7– 8
  year: 2010
  end-page: 457
  article-title: Performance of partitioned procedures in fluid‐structure interaction
  publication-title: Computers & Structures
– year: 2001
– volume: 23
  start-page: 1
  year: 1994
  end-page: 21
  article-title: An implicit upwind algorithm for computing turbulent flows on unstructured grids
  publication-title: Computers & Fluids
– volume: 191
  start-page: 561
  issue: 6– 7
  year: 2001
  end-page: 582
  article-title: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels
  publication-title: Computer Methods in Applied Mechanics Engineering
– volume: 37
  start-page: 631
  year: 2003
  end-page: 647
  article-title: A quasi‐Newton algorithm based on a reduced model for fluid‐structure interaction problems in blood flows
  publication-title: ESAIM‐Mathematical Modeling and Numerical Analysis Journal
– volume: 199
  start-page: 2633
  issue: 41– 44
  year: 2010
  end-page: 2642
  article-title: Finite elements for fluid‐structure interaction in ALE and fully Eulerian coordinates
  publication-title: Computer Methods in Applied Mechanics Engineering
– volume: 166
  start-page: 779
  issue: 14– 15
  year: 2011
  end-page: 791
  article-title: A stable unstructured finite volume method for parallel large‐scale viscoelastic fluid flow calculations
  publication-title: Journal of Non‐Newtonian Fluid Mechanics
– volume: 23
  start-page: 130
  year: 1999
  end-page: 143
  article-title: Advanced mesh generation and update methods for 3D flow simulations
  publication-title: Computational Mechanics
– volume: 233
  start-page: 227
  issue: 0
  year: 2013
  end-page: 240
  article-title: A fully Eulerian formulation for fluid‐structure interaction problems
  publication-title: Journal of Computational Physics
– volume: 200
  start-page: 2195
  issue: 25– 28
  year: 2011
  end-page: 2210
  article-title: Multi‐solver algorithms for the partitioned simulation of fluid‐structure interaction
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 17
  start-page: 1030
  year: 1979
  end-page: 1037
  article-title: Geometric conservation law and its application to flow computations on moving grids
  publication-title: AIAA Journal
– volume: 229
  start-page: 642
  year: 2010
  end-page: 659
  article-title: Scalable parallel methods for monolithic coupling in fluid‐structure interaction with application to blood flow modeling
  publication-title: Journal of Computational Physics
– volume: 197
  start-page: 4216
  year: 2008
  end-page: 4232
  article-title: Modular vs. non‐modular preconditioners for fluid‐structure systems with large added‐mass effect
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 60
  start-page: 371
  year: 1993
  end-page: 375
  article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized‐ method
  publication-title: Journal of Applied Mechanics
– year: 2004
– volume: 43
  start-page: 61
  year: 2008
  end-page: 72
  article-title: Fixed‐point fluid‐structure interaction solvers with dynamic relaxation
  publication-title: Computational Mechanics
– volume: 28
  start-page: 1381
  issue: 8
  year: 1990
  end-page: 1388
  article-title: Unsteady Euler airfoil solutions using unstructured dynamic meshes
  publication-title: AIAA Journal
– volume: 8
  start-page: 97
  year: 1992
  end-page: 111
  article-title: A simple nonconforming element
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 85
  start-page: 784
  year: 2007
  end-page: 795
  article-title: Mesh deformation based on radial basis function interpolation
  publication-title: Computers & Structures
– volume: 25
  start-page: 697
  issue: 6
  year: 1997
  end-page: 717
  article-title: A staggered control volume scheme for unstructured triangular grids
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 693
  start-page: 473
  year: 2012
  end-page: 499
  article-title: Dynamic pitching of an elastic rectangular wing in hovering motion
  publication-title: Journal of Fluid Mechanics
– volume: 196
  start-page: 1278
  year: 2007
  end-page: 1293
  article-title: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 231
  start-page: 7315
  issue: 21
  year: 2012
  end-page: 7334
  article-title: An efficient preconditioner for monolithically‐coupled large‐displacement fluid‐structure interaction problems with pseudo‐solid mesh updates
  publication-title: Journal Computational Physics
– volume: 94
  start-page: 25
  year: 1995
  end-page: 45
  article-title: On the rank‐one‐convexity domain of the Saint Venant–Kirchhoff stored energy function
  publication-title: Rendiconti del Seminario Matematico della Università di Padova
– volume: 119
  start-page: 73
  issue: 1– 2
  year: 1994
  end-page: 94
  article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces
  publication-title: Computer Methods in Applied Mechanics Engineering
– start-page: 371
  year: 2006
  end-page: 385
– volume: 47
  start-page: 335
  year: 2011
  end-page: 357
  article-title: Nonlinear fluid‐structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples
  publication-title: Computational Mechanics
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  end-page: 94
  article-title: A method of computation for structural dynamics
  publication-title: Journal of Engineering Mechanics Division‐ASCE
– volume: 38
  start-page: 417
  issue: 4– 5
  year: 2006
  end-page: 429
  article-title: A solution for the incompressibility dilemma in partitioned fluid‐structure interaction with pure Dirichlet fluid domains
  publication-title: Computational Mechanics
– volume: 246
  start-page: 1
  year: 2013
  end-page: 9
  article-title: High‐order fluid‐structure interaction in 2D and 3D application to blood flow in arteries
  publication-title: Journal of Computational and Applied Mathematics
– volume: 33
  start-page: 689
  issue: 13
  year: 1982
  end-page: 723
  article-title: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid‐structure interactions
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 228
  start-page: 4588
  issue: 12
  year: 2009
  end-page: 4605
  article-title: An arbitrary Lagrangian–Eulerian formulation for the numerical simulation of flow patterns generated by the Hydromedusa Aequorea Victoria
  publication-title: Journal of Computational Physics
– volume: 195
  start-page: 46
  issue: 0
  year: 2013
  end-page: 56
  article-title: Parallel large‐scale numerical simulations of purely‐elastic instabilities behind a confined circular cylinder in a rectangular channel
  publication-title: Journal of Non‐Newtonian Fluid Mechanics
– volume: 255
  start-page: 660
  year: 2013
  end-page: 679
  article-title: An arbitrary Lagrangian–Eulerian formulation for solving moving boundary problems with large displacement and rotations
  publication-title: Journal of Computational Physics
– volume: 208
  start-page: 228
  issue: 1
  year: 2005
  end-page: 252
  article-title: Adaptive tetrahedral meshing in free‐surface flow
  publication-title: Journal of Computational Physics
– volume: 29
  start-page: 329
  issue: 3
  year: 1981
  end-page: 349
  article-title: Lagrangian–Eulerian finite element formulation for incompressible viscous flows
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 27
  start-page: 323
  issue: 3
  year: 1995
  end-page: 336
  article-title: Calculations of incompressible flow on a staggered triangle grid, Part I: mathematical formulation
  publication-title: Numerical Heat Transfer Part B‐Fundamentals
– volume: 253
  start-page: 426
  issue: 0
  year: 2013
  end-page: 438
  article-title: An accelerated, fully‐coupled, parallel 3D hybrid finite‐volume fluid‐structure interaction scheme
  publication-title: Computer Methods in Applied Mechanics Engineering
– year: 2010
– volume: 4
  start-page: 519
  issue: 6
  year: 1984
  end-page: 537
  article-title: A method for computing three dimensional flows using non‐orthogonal boundary‐fitted co‐ordinates
  publication-title: International Journal for Numerical Methods in Fluids
– year: 2012
– volume: 14
  start-page: 227
  issue: 3
  year: 1974
  end-page: 253
  article-title: An arbitrary Lagrangian–Eulerian computing method for all flow speeds
  publication-title: Journal of Computational Physics
– volume: 81
  start-page: 805
  issue: 8– 11
  year: 2003
  end-page: 812
  article-title: Partitioned strong coupling algorithms for fluid‐structure interaction
  publication-title: Computers & Structures
– start-page: 162
  year: 2008
  end-page: 169
– volume: 7
  start-page: 33
  year: 1973
  end-page: 76
  article-title: Conforming and nonconforming finite element methods for solving the stationary Stokes equations
  publication-title: RAIRO Analyse Numérique
– volume: 85
  start-page: 987
  issue: 8
  year: 2011
  end-page: 1016
  article-title: Truly monolithic algebraic multigrid for fluid‐structure interaction
  publication-title: International Journal for Numerical Methods in Engineering
– year: 2002
– volume: 43
  start-page: 91
  year: 2008
  end-page: 101
  article-title: Solvers for large‐displacement fluid structure interaction problems: segregated versus monolithic approaches
  publication-title: Computational Mechanics
– volume: 8
  start-page: 1037
  year: 1988
  end-page: 1050
  article-title: Space conservation law in finite volume calculations of fluid flow
  publication-title: International Journal for Numerical Methods in Fluids
– year: 1988
– volume: 170
  start-page: 103
  year: 1999
  end-page: 129
  article-title: Second‐order time‐accurate and geometricaly conservative implicit schemes for flow computations on unstructured dynamic meshes
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 197
  start-page: 1699
  year: 2008
  end-page: 1714
  article-title: An extended finite element method/lagrange multiplier based approach for fluid‐structure interaction
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 14
  start-page: 461
  issue: 2
  year: March 1993
  end-page: 469
  article-title: A flexible inner‐outer preconditioned GMRES algorithm
  publication-title: SIAM Journal on Scientific Computing
– volume: 197
  start-page: 215
  year: 2004
  end-page: 240
  article-title: A numerical method for large‐eddy simulation in complex geometries
  publication-title: Journal Computational Physics
– volume: 32
  start-page: 2395
  issue: 4
  year: 2010
  end-page: 2417
  article-title: Two‐level Newton and hybrid Schwarz preconditioners for fluid‐structure interaction
  publication-title: SIAM Journal on Scientific Computing
– volume: 26
  start-page: 305
  issue: 3– 4
  year: 2010
  end-page: 321
  article-title: Coupling strategies for biomedical fluid‐structure interaction problems
  publication-title: International Journal for Numerical Methods in Biomedical
– volume: 195
  start-page: 2002
  year: 2006
  end-page: 2027
  article-title: Space‐time finite element techniques for computation of fluid‐structure interactions
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 94
  year: 1977
  end-page: 124
– volume: 175
  start-page: 764
  year: 2002
  end-page: 791
  article-title: Accuracy and conservation properties of a three‐dimensional unstructured staggered mesh scheme for fluid dynamics
  publication-title: Journal Computational Physics
– volume: 8
  start-page: 2182
  year: 1965
  end-page: 2189
  article-title: Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface
  publication-title: Physics of Fluids
– volume: 167
  start-page: 369
  issue: 3– 4
  year: 1998
  end-page: 391
  article-title: A monolithical fluid‐structure interaction algorithm applied to the piston problem
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 191
  start-page: 206
  issue: 1
  year: 2003
  end-page: 227
  article-title: Design and analysis of ALE schemes with provable second‐order time‐accuracy for inviscid and viscous flow simulations
  publication-title: Journal of Computational Physics
– volume: 20
  start-page: 359
  issue: 1
  year: 1998
  end-page: 392
  article-title: A fast and high quality multilevel scheme for partitioning irregular graphs
  publication-title: SIAM Journal on Scientific Computing
– year: 1999
– ident: e_1_2_6_24_1
  doi: 10.1017/CBO9780511546792
– ident: e_1_2_6_54_1
  doi: 10.1137/S1064827595287997
– ident: e_1_2_6_67_1
  doi: 10.1007/s00466-010-0544-7
– ident: e_1_2_6_68_1
– ident: e_1_2_6_11_1
  doi: 10.1016/j.jcp.2012.08.047
– ident: e_1_2_6_43_1
  doi: 10.1016/0045-7930(94)90023-X
– ident: e_1_2_6_21_1
  doi: 10.1002/0470091355.ecm063
– ident: e_1_2_6_2_1
  doi: 10.1016/0021-9991(74)90051-5
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  ident: e_1_2_6_47_1
  article-title: A method of computation for structural dynamics
  publication-title: Journal of Engineering Mechanics Division‐ASCE
  doi: 10.1061/JMCEA3.0000098
– ident: e_1_2_6_59_1
  doi: 10.1016/j.cma.2010.04.016
– ident: e_1_2_6_9_1
  doi: 10.1016/j.cma.2007.07.002
– ident: e_1_2_6_22_1
  doi: 10.1007/978-3-540-74460-3_20
– ident: e_1_2_6_5_1
  doi: 10.1016/S0045-7825(98)00207-2
– ident: e_1_2_6_35_1
  doi: 10.1007/s00466-006-0066-5
– ident: e_1_2_6_65_1
  doi: 10.1016/j.cma.2012.09.004
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jcp.2013.08.038
– volume-title: Fluid‐Structure Interaction II: Modelling, Simulation, Optimisation
  year: 2010
  ident: e_1_2_6_57_1
– ident: e_1_2_6_10_1
  doi: 10.1017/jfm.2011.543
– ident: e_1_2_6_8_1
  doi: 10.1016/0045-7825(82)90128-1
– ident: e_1_2_6_33_1
  doi: 10.1016/j.jcp.2012.07.001
– ident: e_1_2_6_23_1
  doi: 10.1016/j.jcp.2009.03.027
– ident: e_1_2_6_37_1
  doi: 10.1002/cnm.1281
– ident: e_1_2_6_18_1
  doi: 10.1007/3-540-27206-2_8
– ident: e_1_2_6_30_1
  doi: 10.1016/j.jcp.2009.10.001
– ident: e_1_2_6_69_1
– ident: e_1_2_6_27_1
  doi: 10.1016/j.cma.2011.03.015
– ident: e_1_2_6_3_1
  doi: 10.2514/3.61273
– ident: e_1_2_6_15_1
  doi: 10.1002/(SICI)1097-0363(19970930)25:6<697::AID-FLD583>3.0.CO;2-R
– volume: 94
  start-page: 25
  year: 1995
  ident: e_1_2_6_41_1
  article-title: On the rank‐one‐convexity domain of the Saint Venant–Kirchhoff stored energy function
  publication-title: Rendiconti del Seminario Matematico della Università di Padova
– ident: e_1_2_6_36_1
  doi: 10.1007/s00466-008-0270-6
– ident: e_1_2_6_52_1
  doi: 10.1016/j.jcp.2005.02.012
– ident: e_1_2_6_61_1
  doi: 10.1051/m2an:2003049
– ident: e_1_2_6_34_1
  doi: 10.1016/j.cma.2006.09.002
– ident: e_1_2_6_49_1
  doi: 10.1016/0045-7825(94)00077-8
– ident: e_1_2_6_28_1
  doi: 10.1016/S0045-7825(98)00151-0
– start-page: 94
  volume-title: Computational Methods for Fluid‐Structure Interaction Problems
  year: 1977
  ident: e_1_2_6_25_1
– ident: e_1_2_6_26_1
  doi: 10.1016/S0045-7949(02)00409-1
– ident: e_1_2_6_14_1
  doi: 10.1002/fld.1650040606
– ident: e_1_2_6_4_1
  doi: 10.1002/fld.1650080906
– ident: e_1_2_6_20_1
  doi: 10.1063/1.1761178
– volume-title: Effiziente algorithmen für die fluid‐struktur‐wechselwirkung
  year: 2009
  ident: e_1_2_6_66_1
– ident: e_1_2_6_45_1
  doi: 10.1016/j.jcp.2003.11.031
– ident: e_1_2_6_56_1
– ident: e_1_2_6_55_1
  doi: 10.1007/3-540-34596-5_15
– ident: e_1_2_6_48_1
  doi: 10.2514/3.25229
– ident: e_1_2_6_31_1
  doi: 10.1137/090779425
– ident: e_1_2_6_39_1
– ident: e_1_2_6_50_1
  doi: 10.1007/s004660050393
– ident: e_1_2_6_62_1
  doi: 10.1016/j.jnnfm.2011.03.010
– ident: e_1_2_6_44_1
  doi: 10.1006/jcph.2001.6973
– ident: e_1_2_6_7_1
  doi: 10.1016/0045-7825(81)90049-9
– ident: e_1_2_6_17_1
  doi: 10.1051/m2an/197307R300331
– ident: e_1_2_6_16_1
  doi: 10.1002/num.1690080202
– ident: e_1_2_6_64_1
  doi: 10.1007/s00466-008-0255-5
– ident: e_1_2_6_51_1
  doi: 10.1016/j.compstruc.2007.01.013
– ident: e_1_2_6_19_1
  doi: 10.1016/j.jnnfm.2012.11.011
– ident: e_1_2_6_63_1
  doi: 10.1016/S0045-7825(01)00302-4
– ident: e_1_2_6_13_1
  doi: 10.1080/10407799508914960
– ident: e_1_2_6_46_1
  doi: 10.1115/1.2900803
– ident: e_1_2_6_53_1
  doi: 10.1137/0914028
– ident: e_1_2_6_58_1
  doi: 10.1016/j.compstruc.2009.12.006
– ident: e_1_2_6_60_1
  doi: 10.1016/j.cam.2012.10.006
– ident: e_1_2_6_42_1
  doi: 10.1007/s00466-014-1071-8
– ident: e_1_2_6_29_1
  doi: 10.1016/j.cma.2008.04.018
– ident: e_1_2_6_32_1
  doi: 10.1002/nme.3001
– ident: e_1_2_6_6_1
  doi: 10.1016/S0021-9991(03)00311-5
– ident: e_1_2_6_38_1
  doi: 10.1016/j.cma.2004.09.014
– volume-title: Nonlinear Finite Elements for Continua and Structures
  year: 2001
  ident: e_1_2_6_40_1
SSID ssj0009283
Score 2.3112504
Snippet Summary A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The...
A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing...
Summary A novel parallel monolithic algorithm has been developed for the numerical simulation of large-scale fluid structure interaction problems. The...
A novel parallel monolithic algorithm has been developed for the numerical simulation of large-scale fluid structure interaction problems. The governing...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 687
SubjectTerms Algorithms
Computational fluid dynamics
Computer simulation
Conservation
Finite element analysis
finite element method
Finite volume method
Fluid flow
fluid-structure interaction
Fluids
large displacement
large-scale computation
Mathematical analysis
monolithic method
Navier-Stokes equations
unstructured finite volume method
Viscous flow
Title A parallel monolithic algorithm for the numerical simulation of large-scale fluid structure interaction problems
URI https://api.istex.fr/ark:/67375/WNG-JQ9LP4GW-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.4169
https://www.proquest.com/docview/1774736187
https://www.proquest.com/docview/1780528078
https://www.proquest.com/docview/1800496434
Volume 80
WOSCitedRecordID wos000373065100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagywEOFAqIhYKMhMopNLGdHx8ryhZVq1VBVO3NsmMHVrjZKukijjwCz8iTMBN7t60ECIlTonii-Gcm8zkz-YaQl7DhqgW4vYQ3FU-EsSbRdYX0eDw3ThgkhRuKTZSzWXV6Ko9iViX-CxP4IdYf3NAyhvc1Grg2_e4laWjj7WtAE_ImGbEyxRDtaP_D5Hh6SbnLAgknKzPQBZmtqGdTtru695ozGuG8fruGNK_i1cHhTDb_p6v3yN0IM-le0Iv75IZrt8hmhJw0GnS_Re5c4SN8QLo9ilTg3jtPQT0xNe7zvKbaf1p0cHpGAeFSQIy0XYZAj6f9_CwWAKOLhnrMK__5_UcPTY42fjm3NDDULjtHkZqiCz9S0FjIpn9IjidvP755l8SiDEmNIcCksE5WupCmyVMHm0OZ56YStmxExSTTFgy6AH_nuIURN1pqDMw23FU6dVlqGX9ENtpF6x4TWjBrcsDLurBCGMONdWVmeaYzKwxcG5NXq9VRdWQsx8IZXgWuZaZgYhVO7Ji8WEueB5aO38jsDAu8FtDdF8xqK3N1MjtQh-_l9EgcnKjDMdleaYCKBt2rDGByyYusKuFZ62YwRYyv6NYtliiD9SGQwP8vMhXuyQAGwuh2Bp35Y4fVZLqPxyf_KviU3AY4V4RY1zbZgOV1z8it-uvFvO-eR_P4BU60Fag
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLhL0QKGAutCCkVA5pV3naYtT1bItJawKatXeLDt2YEWaRQmLOPIT-I38Emby2LYSICROieKJ4sdM_I3H_gbgOTpcWYjTnhfkIvBCY42nM0H0eEFkXGiIFK5JNpFMJuL8XB4vwcv-LEzLD7FYcCPLaP7XZOC0IL1zyRqaF3Yb4YS8AQNivULPa7D_fnyaXnLu-i0Lp59wVAbJe-7Zkb_Tv3ttNhpQx367BjWvAtZmxhmv_ldd78KdDmiy3VYz7sGSK9dgtQOdrDPpeg1WrjAS3odqlxEZeFG4gqGC0ua4j9OM6eLDrMLbC4YYlyFmZOW8DfUUrJ5edCnA2CxnBe0s__n9R41FjuXFfGpZy1E7rxwjcoqqPUrBulQ29QM4Hb862Tv0urQMXkZBQC-2TgodS5NHI4fuoYwiI0Kb5KHwpa-tpMHgwgUWW5xrqSk0mwdO6JHjI-sHD2G5nJVuHVjsWxMhYtaxDUNjAmNdwm3ANbehwWdDeNEPj8o6znJKnVGolm3ZV9ixijp2CM8Wkp9bno7fyGw1I7wQ0NUn2teWROpscqCO3sn0ODw4U0dD2OhVQHUmXSuOQDkJYi4S_NaiGI2RIiy6dLM5yVCGCKLw_4uMIK8MgSC2bqtRmj9WWI3Tfbo--lfBp3Dr8ORtqtLXkzeP4TaCu7iNfG3AMg6124Sb2dcv07p60tnKL9rkGZg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLkJwoFBALBQwEiqntJvE-bE4VSwplNVqQVTtzbJjh66aZquERRx5BJ6RJ2EmcbatBAiJU6J4ovhnJvPZY38D8AInXDlHt-eFRRp6XBvtqTwlerww0pZrIoVrk00k02l6fCxma_CqPwvT8UOsFtzIMtr_NRm4PTfF7gVraFGaHYQT4hoMeCQ4Kvlg_DE7nFxw7gYdC2eQ-KgMwu-5Z0fBbv_uFW80oI79dgVqXgasrcfJNv6rrnfgtgOabK_TjLuwZqtN2HCgkzmTbjbh1iVGwntQ7zEiAy9LWzJUUNocdzLPmSo_L2q8PWOIcRliRlYtu1BPyZr5mUsBxhYFK2ln-c_vPxossqwol3PDOo7aZW0ZkVPU3VEK5lLZNPfhMHvz6fVbz6Vl8HIKAnqxsSJVsdBFNLI4PRRRpFNukoKngQiUQZOO0ePZ0GCLCyUUhWaL0KZqZP2RCcIHsF4tKvsQWBwYHSFiVrHhXOtQG5v4JvSVb7jGZ0N42Q-PzB1nOaXOKGXHthxI7FhJHTuE5yvJ846n4zcy2-0IrwRUfUr72pJIHk335cEHMZnx_SN5MIStXgWkM-lG-giUkzD20wS_tSpGY6QIi6rsYkkylCGCKPz_IpPSrAyBILZuu1WaP1ZYZpMxXR_9q-AzuDEbZ3Lybvr-MdxEbBd3ga8tWMeRtk_gev71y7ypnzpT-QVBvBkT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+monolithic+algorithm+for+the+numerical+simulation+of+large-scale+fluid+structure+interaction+problems&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Eken%2C+Ali&rft.au=Sahin%2C+Mehmet&rft.date=2016-04-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=80&rft.issue=12&rft.spage=687&rft_id=info:doi/10.1002%2Ffld.4169&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3992482691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon