VeloxChem: A Python‐driven density‐functional theory program for spectroscopy simulations in high‐performance computing environments
An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object‐oriented program structure written in a Python/C++ layered fashion, VeloxChem...
Saved in:
| Published in: | Wiley interdisciplinary reviews. Computational molecular science Vol. 10; no. 5; pp. e1457 - n/a |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
Wiley Periodicals, Inc
01.09.2020
Wiley Subscription Services, Inc Wiley |
| Subjects: | |
| ISSN: | 1759-0876, 1759-0884, 1759-0884 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object‐oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time‐efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second‐row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high‐performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X‐ray electronic absorption and circular dichroism spectra, but also time‐resolved linear response signals as due to ultra‐short weak laser pulses. VeloxChem distributed under the GNU Lesser General Public License version 2.1 (LGPLv2.1) license and made available for download from the homepage https://veloxchem.org.
This article is categorized under:
Software > Quantum Chemistry
Electronic Structure Theory > Density Functional Theory
Theoretical and Physical Chemistry > Spectroscopy
With a high degree of code vectorization and parallelization, the VeloxChem program provides a powerful tool to calculate absorptive and dispersive parts of real and complex linear response functions at the level of Kohn–Sham density functional theory, also allowing for a treatment of ultra‐short light pulses. |
|---|---|
| AbstractList | An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object‐oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time‐efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second‐row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high‐performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X‐ray electronic absorption and circular dichroism spectra, but also time‐resolved linear response signals as due to ultra‐short weak laser pulses. VeloxChem distributed under the GNU Lesser General Public License version 2.1 (LGPLv2.1) license and made available for download from the homepage https://veloxchem.org.This article is categorized under:Software > Quantum ChemistryElectronic Structure Theory > Density Functional TheoryTheoretical and Physical Chemistry > Spectroscopy An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object‐oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time‐efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second‐row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high‐performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X‐ray electronic absorption and circular dichroism spectra, but also time‐resolved linear response signals as due to ultra‐short weak laser pulses. VeloxChem distributed under the GNU Lesser General Public License version 2.1 (LGPLv2.1) license and made available for download from the homepage https://veloxchem.org . This article is categorized under: Software > Quantum Chemistry Electronic Structure Theory > Density Functional Theory Theoretical and Physical Chemistry > Spectroscopy An open-source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object-oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time-efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second-row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high-performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X-ray electronic absorption and circular dichroism spectra, but also time-resolved linear response signals as due to ultra-short weak laser pulses. An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object‐oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time‐efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second‐row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high‐performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X‐ray electronic absorption and circular dichroism spectra, but also time‐resolved linear response signals as due to ultra‐short weak laser pulses. VeloxChem distributed under the GNU Lesser General Public License version 2.1 (LGPLv2.1) license and made available for download from the homepage https://veloxchem.org. This article is categorized under: Software > Quantum Chemistry Electronic Structure Theory > Density Functional Theory Theoretical and Physical Chemistry > Spectroscopy With a high degree of code vectorization and parallelization, the VeloxChem program provides a powerful tool to calculate absorptive and dispersive parts of real and complex linear response functions at the level of Kohn–Sham density functional theory, also allowing for a treatment of ultra‐short light pulses. An open-source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object-oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time-efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second-row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high-performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X-ray electronic absorption and circular dichroism spectra, but also time-resolved linear response signals as due to ultra-short weak laser pulses. VeloxChem distributed under the GNU Lesser General Public License version 2.1 (LGPLv2.1) license and made available for download from the homepage https://veloxchem.org. This article is categorized under: Software > Quantum Chemistry Electronic Structure Theory > Density Functional Theory Theoretical and Physical Chemistry > Spectroscopy. |
| Author | Ahmadzadeh, Karan Scheurer, Maximilian Brand, Manuel Ringholm, Magnus Rinkevicius, Zilvinas Dreuw, Andreas Norman, Patrick Scott, Mikael Vahtras, Olav Li, Xin List, Nanna Holmgaard |
| Author_xml | – sequence: 1 givenname: Zilvinas surname: Rinkevicius fullname: Rinkevicius, Zilvinas organization: Kaunas University of Technology – sequence: 2 givenname: Xin surname: Li fullname: Li, Xin organization: KTH Royal Institute of Technology – sequence: 3 givenname: Olav surname: Vahtras fullname: Vahtras, Olav organization: KTH Royal Institute of Technology – sequence: 4 givenname: Karan surname: Ahmadzadeh fullname: Ahmadzadeh, Karan organization: KTH Royal Institute of Technology – sequence: 5 givenname: Manuel orcidid: 0000-0003-3992-043X surname: Brand fullname: Brand, Manuel organization: KTH Royal Institute of Technology – sequence: 6 givenname: Magnus surname: Ringholm fullname: Ringholm, Magnus organization: KTH Royal Institute of Technology – sequence: 7 givenname: Nanna Holmgaard surname: List fullname: List, Nanna Holmgaard organization: SLAC National Accelerator Laboratory – sequence: 8 givenname: Maximilian surname: Scheurer fullname: Scheurer, Maximilian organization: Ruprecht‐Karls University – sequence: 9 givenname: Mikael surname: Scott fullname: Scott, Mikael organization: Ruprecht‐Karls University – sequence: 10 givenname: Andreas surname: Dreuw fullname: Dreuw, Andreas organization: Ruprecht‐Karls University – sequence: 11 givenname: Patrick orcidid: 0000-0002-1191-4954 surname: Norman fullname: Norman, Patrick email: panor@kth.se organization: KTH Royal Institute of Technology |
| BackLink | https://www.osti.gov/servlets/purl/1591634$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-268434$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) |
| BookMark | eNp9kcFu1DAURSPUSpTSBX9gwYpF2jiJHYfdaIBSqahIQFlajvM8cUns1HY6ZNc1q34jX4Izg7pAAm9sWefdq3fvs-TAWANJ8gJnpzjL8rOtHPwpLkn1JDnCFanTjLHy4PFd0afJifc3WTxljfMCHyU_r6G3P9YdDG_QCn2aQ2fNr_uH1uk7MKgF43WY44eajAzaGtGj0IF1Mxqd3TgxIGUd8iPI4KyXdpyR18PUiwX2SBvU6U0XBUZwkRyEkYCkHcYpaLNBYO60s2YAE_zz5FCJ3sPJn_s4-fr-3Zf1h_Ty6vxivbpMZVFXVaqYLBSoUsaNQRFJC4UlI6LJWpLlbdU2ROWC0AID1DUVDalbRlhLmaKNqGlxnKR7Xb-FcWr46PQg3Myt0Pytvl5x6zb8e-h4TllZlJF_ueetD5p7qQPITlpj4s4ckxrTHfRqD8VYbifwgd_YycW4PM_LImN1mePF-vWekjEs70A9muOMLxXypUK-VBjZs7_Y6LyLNTih-_9NbHUP87-l-bf1x8-7id9e57dp |
| CitedBy_id | crossref_primary_10_1063_5_0031851 crossref_primary_10_1002_cplu_202200262 crossref_primary_10_1016_j_cplett_2021_138746 crossref_primary_10_1021_acs_chemrev_4c00815 crossref_primary_10_1002_wcms_1528 crossref_primary_10_1021_acs_jpca_5c04528 crossref_primary_10_1063_5_0040009 crossref_primary_10_1021_acs_jpca_5c03187 crossref_primary_10_1021_acs_jctc_4c01545 crossref_primary_10_1021_acs_jctc_4c01687 crossref_primary_10_1080_08927022_2022_2126865 crossref_primary_10_1002_ejoc_202300583 crossref_primary_10_1063_5_0203401 crossref_primary_10_1002_wcms_1462 crossref_primary_10_1088_2516_1075_aca859 crossref_primary_10_1063_5_0058221 crossref_primary_10_1109_ACCESS_2022_3217225 crossref_primary_10_1063_5_0231339 crossref_primary_10_3390_sym14040715 crossref_primary_10_1021_acs_jpclett_5c02066 crossref_primary_10_1039_D3NR06460C crossref_primary_10_1088_2516_1075_ad4b80 crossref_primary_10_1002_wcms_1610 crossref_primary_10_1002_chem_202301815 crossref_primary_10_3390_pr11102897 crossref_primary_10_1002_wcms_1596 crossref_primary_10_1021_acs_jchemed_2c01103 |
| Cites_doi | 10.1002/9781118794821 10.1002/qua.560450106 10.1021/ct400946k 10.1039/C9CC01513B 10.1021/ct500114m 10.1063/1.2716660 10.1039/C8CP04340J 10.1002/9780470116449.ch1 10.1002/wcms.1340 10.1063/1.1778131 10.1016/j.jpdc.2007.09.005 10.1063/1.469408 10.1021/jp304576g 10.1016/B978-0-12-374413-5.00369-9 10.1063/1.450106 10.1039/c1cp21951k 10.1021/acs.jctc.8b00286 10.1063/1.4985565 10.1016/0009-2614(96)00600-8 10.1039/C5CP02481A 10.1021/cr500524c 10.1063/1.4913961 10.1063/1.4922697 10.1021/jacs.7b05994 10.1021/acs.jctc.9b00758 10.1063/1.2348882 10.1063/1.4991616 10.1080/00268976.2016.1177667 10.1109/MCSE.2011.37 10.1039/b605188j 10.1021/acs.jctc.7b00171 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. published by Wiley Periodicals, Inc. 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 The Authors. published by Wiley Periodicals, Inc. – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | SLAC National Accelerator Lab., Menlo Park, CA (United States) |
| CorporateAuthor_xml | – name: SLAC National Accelerator Lab., Menlo Park, CA (United States) |
| DBID | 24P AAYXX CITATION 7QH 7TN 7UA C1K F1W H96 JQ2 L.G OIOZB OTOTI ADTPV AFDQA AOWAS D8T D8V ZZAVC |
| DOI | 10.1002/wcms.1457 |
| DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional OSTI.GOV - Hybrid OSTI.GOV SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1759-0884 |
| EndPage | n/a |
| ExternalDocumentID | oai_DiVA_org_kth_268434 1591634 10_1002_wcms_1457 WCMS1457 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Swedish e‐Science Research Centre (SeRC) – fundername: Villum Fonden funderid: VKR023371 – fundername: Vetenskapsrådet funderid: 2018‐4343 – fundername: Swedish National Infrastructure for Computing (SNIC) – fundername: H2020 Marie Skłodowska‐Curie Actions funderid: COSINE – fundername: Norges Forskningsråd funderid: 274918 |
| GroupedDBID | 05W 0R~ 1OC 1VH 24P 31~ 33P 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ ZZTAW ~S- AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION LH4 7QH 7TN 7UA C1K F1W H96 JQ2 L.G AAPBV ABHUG ADAWD ADDAD AEUQT AFVGU AGJLS OIOZB OTOTI ADTPV AFDQA AOWAS D8T D8V ZZAVC |
| ID | FETCH-LOGICAL-c3977-f8c3fef4c002ef5c63f1c85ab0d502d7db5f2a5631ee996ab59d858d68f6ba963 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502095100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1759-0876 1759-0884 |
| IngestDate | Tue Nov 04 16:37:06 EST 2025 Thu May 18 22:36:17 EDT 2023 Fri Sep 12 01:51:39 EDT 2025 Sat Nov 29 02:23:38 EST 2025 Tue Nov 18 21:34:50 EST 2025 Wed Jan 22 16:34:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3977-f8c3fef4c002ef5c63f1c85ab0d502d7db5f2a5631ee996ab59d858d68f6ba963 |
| Notes | Funding information H2020 Marie Skłodowska‐Curie Actions, Grant/Award Number: COSINE; Norges Forskningsråd, Grant/Award Number: 274918; Vetenskapsrådet, Grant/Award Number: 2018‐4343; Villum Fonden, Grant/Award Number: VKR023371; Swedish National Infrastructure for Computing (SNIC); Swedish e‐Science Research Centre (SeRC) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-76SF00515; COSINE; 274918; 2018‐4343; VKR023371 USDOE |
| ORCID | 0000-0002-1191-4954 0000-0003-3992-043X 0000000211914954 000000033992043X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1457 |
| PQID | 2430894216 |
| PQPubID | 2034594 |
| PageCount | 14 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_kth_268434 osti_scitechconnect_1591634 proquest_journals_2430894216 crossref_primary_10_1002_wcms_1457 crossref_citationtrail_10_1002_wcms_1457 wiley_primary_10_1002_wcms_1457_WCMS1457 |
| PublicationCentury | 2000 |
| PublicationDate | September/October 2020 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: September/October 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken – name: United States |
| PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
| PublicationYear | 2020 |
| Publisher | Wiley Periodicals, Inc Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Wiley Periodicals, Inc – name: Wiley Subscription Services, Inc – name: Wiley |
| References | 2007; 126 2004; 121 1993; 45 2015; 17 2017a; 139 2011 2010 2019; 55 2015; 142 2019; 15 2006; 8 2011; 13 2017b; 146 2017; 115 2018; 8 1986; 84 2015; 115 2001 2019; 21 2017; 13 2019 2018 2008; 68 2017 1995; 102 1996; 257 2012; 116 2007; 23 2017; 147 2018; 14 2014; 10 2006; 125 Scheurer M. (e_1_2_11_15_1) 2019 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Rehn DR (e_1_2_11_16_1) 2019 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_24_1 Olsen JMH (e_1_2_11_27_1) 2011 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_37_1 e_1_2_11_19_1 |
| References_xml | – year: 2011 – volume: 45 start-page: 31 issue: 1 year: 1993 end-page: 41 article-title: The C2‐DIIS convergence acceleration algorithm publication-title: Int J Quantum Chem – volume: 13 start-page: 20,519 year: 2011 end-page: 20,535 article-title: A perspective on nonresonant and resonant electronic response theory for time‐dependent molecular properties publication-title: Phys Chem Chem Phys – volume: 10 start-page: 2449 year: 2014 end-page: 2455 article-title: Efficient calculations of molecular linear response properties for spectral regions publication-title: J Chem Theory Comput – volume: 13 start-page: 22 issue: 2 year: 2011 end-page: 30 article-title: The NumPy array: A structure for efficient numerical computation publication-title: Comput Sci Eng – volume: 55 start-page: 5701 issue: 40 year: 2019 end-page: 5704 article-title: A new interpretation of the structure and solvent dependence of the far UV circular dichroism spectrum of short oligopeptides publication-title: Chem Commun – volume: 147 start-page: 144,109 year: 2017 article-title: Resonant‐convergent second‐order nonlinear response functions at the levels of Hartree‐Fock and Kohn‐Sham density functional theory publication-title: J Chem Phys – year: 2001 – volume: 115 start-page: 5797 year: 2015 end-page: 5890 article-title: Large‐scale computations in chemistry: A bird's eye view of a vibrant field publication-title: Chem Rev – volume: 8 issue: 1 year: 2018 article-title: PySCF: The Python‐based simulations of chemistry framework publication-title: WIREs Comput Mol Sci – volume: 23 start-page: 1 year: 2007 end-page: 82 – volume: 121 start-page: 4494 issue: 10 year: 2004 end-page: 4500 article-title: Local properties of quantum chemical systems: The LoProp approach publication-title: J Chem Phys – year: 2018 – volume: 142 start-page: 244,111 issue: 24 year: 2015 article-title: Beyond the electric‐dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation publication-title: J Chem Phys – volume: 257 start-page: 213 year: 1996 end-page: 223 article-title: Achieving linear scaling in exchange‐correlation density functional quadratures publication-title: Chem Phys Lett – year: 2010 – volume: 115 start-page: 39 issue: 1–2 year: 2017 end-page: 47 article-title: Assessing frequency‐dependent site polarisabilities in linear response polarisable embedding publication-title: Mol Phys – volume: 15 start-page: 6154 issue: 11 year: 2019 end-page: 6163 – volume: 116 start-page: 7372 year: 2012 end-page: 7385 article-title: Theoretical and experimental studies on circular Dichroism of Carbo[ n ]helicenes publication-title: J Phys Chem A – volume: 146 start-page: 234,101 issue: 23 year: 2017b article-title: A quantum‐mechanical perspective on linear response theory within polarizable embedding publication-title: J Chem Phys – volume: 125 start-page: 124,306 issue: 12 year: 2006 article-title: Electric dipole polarizabilities and C6 dipole‐dipole dispersion coefficients for sodium clusters and C60 publication-title: J Chem Phys – volume: 102 start-page: 346 year: 1995 end-page: 354 article-title: Efficient molecular numerical integration schemes publication-title: J Chem Phys – volume: 139 start-page: 14,947 year: 2017a end-page: 14,953 article-title: Origin of DNA‐induced circular dichroism in a minor‐groove binder publication-title: J Am Chem Soc – volume: 84 start-page: 3963 year: 1986 end-page: 3974 article-title: Efficient recursive computation of molecular integrals over Cartesian Gaussian functions publication-title: J Chem Phys – year: 2019 article-title: Gator: A Python‐driven program for spectroscopy simulations using correlated wave functions publication-title: WIREs Comput Mol Sci – volume: 8 start-page: 3072 year: 2006 end-page: 3077 article-title: A simple algebraic derivation of the Obara–Saika scheme for general two‐electron interaction potentials publication-title: Phys Chem Chem Phys – volume: 10 start-page: 1164 year: 2014 end-page: 1171 article-title: Damped response theory in combination with polarizable environments: The polarizable embedding complex polarization propagator method publication-title: J Chem Theory Comput – volume: 142 start-page: 104,103 issue: 10 year: 2015 article-title: Parallel scalability of Hartree‐Fock calculations publication-title: J Chem Phys – year: 2017 – volume: 126 start-page: 134,102 year: 2007 article-title: Electronic circular dichroism spectra from the complex polarization propagator publication-title: J Chem Phys – volume: 21 start-page: 2251 issue: 5 year: 2019 end-page: 2270 article-title: Decomposition of molecular properties publication-title: Phys Chem Chem Phys – volume: 68 start-page: 655 year: 2008 end-page: 662 article-title: MPI for Python: Performance improvements and MPI‐2 extensions publication-title: J Parallel Distrib Comput – year: 2019 – volume: 13 start-page: 3493 year: 2017 end-page: 3504 article-title: An Ab initio exciton model including charge‐transfer excited states publication-title: J Chem Theory Comput – volume: 14 start-page: 3504 issue: 7 year: 2018 end-page: 3511 article-title: Psi4NumPy: An interactive quantum chemistry programming environment for reference implementations and rapid development publication-title: J Chem Theory Comput – volume: 17 start-page: 21,866 year: 2015 end-page: 21,879 article-title: Predicting near‐UV electronic circular dichroism in nucleosomal DNA by means of DFT response theory publication-title: Phys Chem Chem Phys – ident: e_1_2_11_4_1 doi: 10.1002/9781118794821 – volume-title: CPPE: C++ and Python library for polarizable embedding year: 2019 ident: e_1_2_11_15_1 – ident: e_1_2_11_13_1 – ident: e_1_2_11_21_1 doi: 10.1002/qua.560450106 – ident: e_1_2_11_29_1 doi: 10.1021/ct400946k – ident: e_1_2_11_34_1 doi: 10.1039/C9CC01513B – ident: e_1_2_11_22_1 doi: 10.1021/ct500114m – ident: e_1_2_11_24_1 doi: 10.1063/1.2716660 – ident: e_1_2_11_31_1 doi: 10.1039/C8CP04340J – ident: e_1_2_11_10_1 – ident: e_1_2_11_6_1 doi: 10.1002/9780470116449.ch1 – ident: e_1_2_11_11_1 doi: 10.1002/wcms.1340 – ident: e_1_2_11_30_1 doi: 10.1063/1.1778131 – ident: e_1_2_11_8_1 doi: 10.1016/j.jpdc.2007.09.005 – ident: e_1_2_11_19_1 doi: 10.1063/1.469408 – ident: e_1_2_11_35_1 doi: 10.1021/jp304576g – ident: e_1_2_11_2_1 doi: 10.1016/B978-0-12-374413-5.00369-9 – ident: e_1_2_11_17_1 doi: 10.1063/1.450106 – ident: e_1_2_11_25_1 doi: 10.1039/c1cp21951k – ident: e_1_2_11_12_1 doi: 10.1021/acs.jctc.8b00286 – ident: e_1_2_11_28_1 doi: 10.1063/1.4985565 – ident: e_1_2_11_20_1 doi: 10.1016/0009-2614(96)00600-8 – ident: e_1_2_11_33_1 doi: 10.1039/C5CP02481A – ident: e_1_2_11_5_1 doi: 10.1021/cr500524c – year: 2019 ident: e_1_2_11_16_1 article-title: Gator: A Python‐driven program for spectroscopy simulations using correlated wave functions publication-title: WIREs Comput Mol Sci – ident: e_1_2_11_7_1 doi: 10.1063/1.4913961 – ident: e_1_2_11_23_1 doi: 10.1063/1.4922697 – volume-title: Chapter 3 ‐ molecular properties through polarizable embedding, pp. 107–143 year: 2011 ident: e_1_2_11_27_1 – ident: e_1_2_11_3_1 doi: 10.1021/jacs.7b05994 – ident: e_1_2_11_14_1 doi: 10.1021/acs.jctc.9b00758 – ident: e_1_2_11_26_1 doi: 10.1063/1.2348882 – ident: e_1_2_11_37_1 doi: 10.1063/1.4991616 – ident: e_1_2_11_32_1 doi: 10.1080/00268976.2016.1177667 – ident: e_1_2_11_9_1 doi: 10.1109/MCSE.2011.37 – ident: e_1_2_11_18_1 doi: 10.1039/b605188j – ident: e_1_2_11_36_1 doi: 10.1021/acs.jctc.7b00171 |
| SSID | ssj0000491231 |
| Score | 2.4730399 |
| SecondaryResourceType | review_article |
| Snippet | An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of... An open-source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of... |
| SourceID | swepub osti proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e1457 |
| SubjectTerms | Analytical methods Application programming interfaces (API) Basis functions Central processing units Circular dichroism Circular dichroism spectra Cluster computing Computation theory Computational efficiency Computer applications Computer simulation Computing costs CPUs Density Density functional theory density functional theory (DFT) Dichroism Diffusion ECD Electronic structure Electronic structure theory Electrostatic properties Embedding Functionals High level languages High performance computing High-performance computing clusters high‐performance computing (HPC) Lasers Mathematical analysis MATHEMATICS AND COMPUTING Matrix methods Message passing MPI Multiprocessing Object oriented programming Open source software OpenMP Parallel processing Physical chemistry Program processors Prototyping Quantum chemistry Response functions response theory Scaling Source programs Spectra Spectroscopy Theories Theory Ultraviolet spectra UV/vis |
| Title | VeloxChem: A Python‐driven density‐functional theory program for spectroscopy simulations in high‐performance computing environments |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1457 https://www.proquest.com/docview/2430894216 https://www.osti.gov/servlets/purl/1591634 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-268434 |
| Volume | 10 |
| WOSCitedRecordID | wos000502095100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1759-0884 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491231 issn: 1759-0884 databaseCode: DRFUL dateStart: 20110101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRJceCOWlspCCPUSdePEcQKn1ZYVB6hWQEtvlp9lRbtZbcJjb5w58Rv5JXicR1kJJCRukWVbjj3j-caa-QbgiU2Vt1qMRyZ1oyjVUkYyYSqSunDKIF-KUqHYBD86yk9Pi9kWPO9yYRp-iP7BDTUj3Neo4FJVB5ekoV_0ReX1nPErsB3HCUeRpumsf2Dx0NffysHh4qyIkHqtYxYa0YN-9IY9GpRerzaxZsMfugldg-2Z3vyvVd-CGy3kJONGRm7Dll3cgWuTrtLbXfh-Ys_Lr9jwjIzJbI10Aj-__TArvAmJwRD3eu0b0AY2T4ck5D-uSRvdRTzyJSFnE7kxy-WaVPOLti5YReYLgqTIfoLlZZYC0aGchDec5Pdcu3twPH3xbvIyams0RBqhY-RynTjrUu1_zzqms8TFOmdSjQwbUcONYo5KliWxtd61kooVJme5yXKXKem1_z4MFuXCPgCSOe9LFnniuMcclDvFncy4ZUYbiqhuCPvdSQndEphjHY1z0VAvU4GbK3Bzh_C477psWDv-1GkHj1t4qIF8uRoDi3QtPL7zGDUdwm4nBaJV60rQNBnlRUrjbAhPG8no50ee7sP5yViUqzPxsf4gkEcH59kP8vD3dYj3k9dv8ePhv3fdgesUHf8Q7LYLg3r1yT6Cq_pzPa9We0ER9mD78M30-NUvzZ0WOA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC7iRogX3-KaqI2I5DJktmd6HuJl2bhE3CxBk5hb009dTHaWnfGxN8-e_I3-Ert6HnFBQfA2ND3NTHc9vi6qvgJ4amLpvBZLAx3bMIiVEIGImAyEyq3UyJcipW82kU6n2dlZfrQBL9pamJofogu4oWZ4e40KjgHpvUvW0C_qonSKztIrsBk7MWI92Nx_Mz6ZdDEWh36dYfZ3rpTlAbKvteRCId3r3l9zSb3CqdY63KwpRNfRq3c_4xv_9-E34XoDO8mwlpNbsGHmt2Fr1HZ7uwPfT8158RUHnpMhOVohpcDPbz_0Eq0h0ZjmXq3cAPrBOnxIfA3kijQZXsShX-LrNpEfs1isSDm7aHqDlWQ2J0iM7BZYXFYqEOVbSjjnSX6vt7sLJ-OXx6ODoOnTECiEj4HNVGSNjZX7PWOZSiI7UBkTMtQspDrVklkqWBINjHHXKyFZrjOW6SSziRTOAtyD3ryYm_tAEuvuk3kW2dThDppamVqRpIZppSkiuz7stkfFVUNijr00znlNv0w5bi7Hze3Dk27qombu-NOkbTxv7uAGcuYqTC5SFXcYz-HUuA87rRjwRrVLTuMozPKYDpI-PKtFo1sfubr3Z6dDXizf84_VB45cOrjOrheIv38Hfzc6fIsPD_596mPYOjg-nPDJq-nrbbhGMRDgk992oFctP5mHcFV9rmbl8lGjF78AaJkaFQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VgCgXnq0ILWAhhHpZdeNd76PqJUqJQEAUCSi9WX5CRJuNsssjt5459TfyS_B4HyUSSEhcVivLa3ntGc_n0cw3AE9NLJ3VYmmgYxsGsRIiEBGTgVC5lRr5UqT0xSbSySQ7OcmnG3DY5sLU_BCdww01w5_XqOBmoe3-JWvoN3VWOkVn6RW46p4DDOii8bTzsDjs645lf-NKWR4g91pLLRTS_e7rNYPUK5xirYPNmkB0Hbt64zO-9X_Tvg03G9BJhrWU3IENM78Lm6O21ts9-HFsTovv2HBAhmS6QkKBn-cXeolnIdEY5F6tXANawdp5SHwG5Io08V3EYV_iszaRHbNYrEg5O2sqg5VkNidIi-wGWFzmKRDlC0o400l-z7bbgvfj5-9GL4KmSkOgEDwGNlORNTZW7veMZSqJ7EBlTMhQs5DqVEtmqWBJNDDGXa6EZLnOWKaTzCZSOP3fht68mJv7QBLrbpN5FtnUoQ6aWplakaSGaaUp4ro-7LVbxVVDYY6VNE55Tb5MOS4ux8Xtw5Ou66Lm7fhTpx3cb-7ABjLmKgwtUhV3CM-h1LgPu60Y8EaxS07jKMzymA6SPjyrRaMbH5m6j2bHQ14sP_LP1SeOTDo4zp4XiL_Pg38YvXmLLw_-vetjuD49GvPXLyevduAGRS-Aj3zbhV61_GIewjX1tZqVy0deKX4B64oX_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VeloxChem%3A+A+Python%E2%80%90driven+density%E2%80%90functional+theory+program+for+spectroscopy+simulations+in+high%E2%80%90performance+computing+environments&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Rinkevicius%2C+Zilvinas&rft.au=Li%2C+Xin&rft.au=Vahtras%2C+Olav&rft.au=Ahmadzadeh%2C+Karan&rft.date=2020-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=10&rft.issue=5&rft.spage=e1457&rft_id=info:doi/10.1002%2Fwcms.1457&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |