The boundary recovery and sliver elimination algorithms of three-dimensional constrained Delaunay triangulation
A boundary recovery and sliver elimination algorithm of the three‐dimensional constrained Delaunay triangulation is proposed for finite element mesh generation. The boundary recovery algorithm includes two main procedures: geometrical recovery procedure and topological recovery procedure. Combining...
Saved in:
| Published in: | International journal for numerical methods in engineering Vol. 68; no. 2; pp. 192 - 209 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Ltd
08.10.2006
Wiley |
| Subjects: | |
| ISSN: | 0029-5981, 1097-0207 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A boundary recovery and sliver elimination algorithm of the three‐dimensional constrained Delaunay triangulation is proposed for finite element mesh generation. The boundary recovery algorithm includes two main procedures: geometrical recovery procedure and topological recovery procedure. Combining the advantages of the edges/faces swappings algorithm and edges/faces splittings algorithm presented respectively by George and Weatherill, the geometrical recovery procedure can recover the missing boundaries and guarantee the geometry conformity by introducing fewer Steiner points. The topological recovery procedure includes two phases: ‘dressing wound’ and smoothing, which will overcome topology inconsistency between 3D domain boundary triangles and the volume mesh. In order to solve the problem of sliver elements in the three‐dimensional Delaunay triangulation, a method named sliver decomposition is proposed. By extending the algorithm proposed by Canvendish, the presented method deals with sliver elements by using local decomposition or mergence operation. In this way, sliver elements could be eliminated thoroughly and the mesh quality could be improved in great deal. Copyright © 2006 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | A boundary recovery and sliver elimination algorithm of the three-dimensional constrained Delaunay triangulation is proposed for finite element mesh generation. The boundary recovery algorithm includes two main procedures: geometrical recovery procedure and topological recovery procedure. Combining the advantages of the edges/faces swappings algorithm and edges/faces splittings algorithm presented respectively by George and Weatherill, the geometrical recovery procedure can recover the missing boundaries and guarantee the geometry conformity by introducing fewer Steiner points. The topological recovery procedure includes two phases: dressing wound and smoothing, which will overcome topology inconsistency between 3D domain boundary triangles and the volume mesh. In order to solve the problem of sliver elements in the three-dimensional Delaunay triangulation, a method named sliver decomposition is proposed. By extending the algorithm proposed by Canvendish, the presented method deals with sliver elements by using local decomposition or mergence operation. In this way, sliver elements could be eliminated thoroughly and the mesh quality could be improved in great deal. A boundary recovery and sliver elimination algorithm of the three‐dimensional constrained Delaunay triangulation is proposed for finite element mesh generation. The boundary recovery algorithm includes two main procedures: geometrical recovery procedure and topological recovery procedure. Combining the advantages of the edges/faces swappings algorithm and edges/faces splittings algorithm presented respectively by George and Weatherill, the geometrical recovery procedure can recover the missing boundaries and guarantee the geometry conformity by introducing fewer Steiner points. The topological recovery procedure includes two phases: ‘dressing wound’ and smoothing, which will overcome topology inconsistency between 3D domain boundary triangles and the volume mesh. In order to solve the problem of sliver elements in the three‐dimensional Delaunay triangulation, a method named sliver decomposition is proposed. By extending the algorithm proposed by Canvendish, the presented method deals with sliver elements by using local decomposition or mergence operation. In this way, sliver elements could be eliminated thoroughly and the mesh quality could be improved in great deal. Copyright © 2006 John Wiley & Sons, Ltd. |
| Author | Gu, Yuanxian Guan, Zhenqun Song, Chao |
| Author_xml | – sequence: 1 givenname: Zhenqun surname: Guan fullname: Guan, Zhenqun email: guanzhq@dlut.edu.cn organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China – sequence: 2 givenname: Chao surname: Song fullname: Song, Chao organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China – sequence: 3 givenname: Yuanxian surname: Gu fullname: Gu, Yuanxian organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18132883$$DView record in Pascal Francis |
| BookMark | eNp90VFvFCEQB3BiauK1mvgReNH4sicDu8A-alurTa0PVk18IdzubA9locKuet9ertecMUafmGR-_AMzh-QgxICEPAa2BMb48zDiEhRT98gCWKsqxpk6IIvSaqum1fCAHOb8hTGAhokFiVdrpKs4h96mDU3Yxe9YCht6mr0rNUXvRhfs5GKg1l_H5Kb1mGkc6LROiFXvRgy5dK2nXQx5StYF7OkJejsHu6FTcjZcz_424iG5P1if8dHdeUQ-vDq9On5dXbw7e3P84qLqRKtUZYVuxWqlODKEXkvdK-RtbVH0rKlZA1oOUgCXyKzqgA0aasCBDRKGXlopjsjTXe5Nit9mzJMZXe7QexswztnwVja6FrrAZ_-FwDSHtqmBFfrkjtrcWT8kGzqXzU1yYxmeAQ2Cay2KW-5cl2LOCQfTuen299vZ-BJptqsyZVVmu6rfb9hf2Gf-Tasd_eE8bv7pzOXb0z-9yxP-3HubvhqphGrMp8szwz-fn7-XLz-aWvwCqwK0_A |
| CODEN | IJNMBH |
| CitedBy_id | crossref_primary_10_1145_3618352 crossref_primary_10_1016_j_enggeo_2017_08_021 crossref_primary_10_1108_EC_09_2023_0617 crossref_primary_10_1016_j_cag_2016_04_004 crossref_primary_10_1016_j_finel_2014_02_006 crossref_primary_10_1016_j_apm_2017_07_011 crossref_primary_10_1016_j_compstruc_2010_11_016 |
| Cites_doi | 10.1016/S0168-874X(96)00063-7 10.1093/comjnl/24.2.162 10.1002/nme.1620371203 10.1016/0045-7825(91)90017-Z 10.1093/comjnl/24.2.167 10.1016/0167-8396(91)90038-D 10.1007/BF02274210 10.1002/nme.1620210210 10.1002/1097-0207(20000910/20)49:1/2<167::AID-NME928>3.0.CO;2-L |
| ContentType | Journal Article |
| Copyright | Copyright © 2006 John Wiley & Sons, Ltd. 2006 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2006 John Wiley & Sons, Ltd. – notice: 2006 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/nme.1707 |
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics Physics |
| EISSN | 1097-0207 |
| EndPage | 209 |
| ExternalDocumentID | 18132883 10_1002_nme_1707 NME1707 ark_67375_WNG_2ZJJS6BV_4 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation funderid: 10002006; 10572032; 10032030 – fundername: Special Funds for National Key Basic Research funderid: G1999032805 |
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI RWS WRC AAYXX CITATION O8X .4S 6TJ ABDPE ABEML ACKIV ACSCC AGHNM AI. ARCSS GBZZK HF~ IQODW M6O PALCI RIWAO SAMSI TUS VH1 VOH ZY4 ~A~ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3977-a3893bb72e0e1d868d7e294ae3d05405186f63126e0a7c10f8141ef0f61fd6a63 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000241049600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5981 |
| IngestDate | Thu Jul 10 23:48:41 EDT 2025 Thu Oct 02 11:11:59 EDT 2025 Mon Jul 21 09:14:50 EDT 2025 Sat Nov 29 06:43:36 EST 2025 Tue Nov 18 21:49:00 EST 2025 Wed Jan 22 16:37:51 EST 2025 Sun Sep 21 06:17:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Finite element method constrained Delaunay triangulation sliver element Smoothing boundary recovery Delaunay triangulation Modelling Two phase medium Topology Automatic mesh generation Mesh generation |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3977-a3893bb72e0e1d868d7e294ae3d05405186f63126e0a7c10f8141ef0f61fd6a63 |
| Notes | National Natural Science Foundation - No. 10002006; No. 10572032; No. 10032030 ArticleID:NME1707 Special Funds for National Key Basic Research - No. G1999032805 ark:/67375/WNG-2ZJJS6BV-4 istex:91B30B3DCE9C0632B9052DDEB21E72B34BC65D4E ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1082195410 |
| PQPubID | 23500 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_29658438 proquest_miscellaneous_1082195410 pascalfrancis_primary_18132883 crossref_citationtrail_10_1002_nme_1707 crossref_primary_10_1002_nme_1707 wiley_primary_10_1002_nme_1707_NME1707 istex_primary_ark_67375_WNG_2ZJJS6BV_4 |
| PublicationCentury | 2000 |
| PublicationDate | 8 October 2006 |
| PublicationDateYYYYMMDD | 2006-10-08 |
| PublicationDate_xml | – month: 10 year: 2006 text: 8 October 2006 day: 08 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
| PublicationYear | 2006 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Xu YG, Yang Q, Wu ZZ et al. The algorithm of 3D constrained Delaunay triangulation. The Chinese Journal of Software 2001; 12(1):103-110. George PL. Improvements on Delaunay-based three-dimensional automatic mesh generator. Finite Element in Analysis and Design 1997; 25:297-317. Bowyer A. Computing Dirichlet tessellations. The Computer Journal 1981; 24:162-166. Sapidis N, Perucchio R. Delaunay triangulation of arbitrarily shaped planar domains. CAGD 1991; 8:421-437. Joe B. Construction of three-dimensional Delaunay triangulations using local transformations. Computer Aided Geometric Design 1991; 8:123-142. Karamete BK, Beall MW, Shephard MS. Triangulation of arbitrary polyhedra to support automatic mesh generators. International Journal for Numerical Methods in Engineering 2000; 49:167-191. Freitag L. On combining Laplacian and optimization-based mesh smoothing techniques. Trends in unstructured mesh generation. ASME 1997; AMD-220:37-43. Canvendish JC, Field DA, Frey WH. An approach to automatic three-dimensional finite element meshes generation. International Journal for Numerical Methods in Engineering 1985; 21:329-347. Watson DF. Computing the n-dimensional Delaunay tessellations with application to Voronoi polytopes. The Computer Journal 1981; 24:167-172. Baker TJ. Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation. Engineering with Computers 1989; 5:161-175. Min WD, Tang ZS. The Delaunay triangulation of a point set within an arbitrary 2D domain. The Chinese Journal of Computer 1995; 18(5):357-364. Weatherill NP, Hassan O. Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering 1994; 37:2005-2039. George PL, Hecht F, Saltel E. Automatic mesh generator with specified boundary. Computer Methods in Applied Mechanics and Engineering 1991; 92:269-288. Joe B. GEOMPACK-A software package for the generation of meshes using geometric algorithms. Advances in Engineering Software 1991; 56(13):325-331. 1997; AMD‐220 1989; 5 2000; 49 1991; 56 1997; 25 1991; 92 1981; 24 1997 1994; 37 1995; 18 2001; 12 1985; 21 1991; 8 Freitag L (e_1_2_1_15_2) 1997; 220 Xu YG (e_1_2_1_4_2) 2001; 12 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_10_2 Sapidis N (e_1_2_1_3_2) 1991; 8 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_8_2 Min WD (e_1_2_1_2_2) 1995; 18 e_1_2_1_9_2 Joe B (e_1_2_1_12_2) 1991; 56 |
| References_xml | – reference: Bowyer A. Computing Dirichlet tessellations. The Computer Journal 1981; 24:162-166. – reference: Sapidis N, Perucchio R. Delaunay triangulation of arbitrarily shaped planar domains. CAGD 1991; 8:421-437. – reference: Karamete BK, Beall MW, Shephard MS. Triangulation of arbitrary polyhedra to support automatic mesh generators. International Journal for Numerical Methods in Engineering 2000; 49:167-191. – reference: Baker TJ. Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation. Engineering with Computers 1989; 5:161-175. – reference: Joe B. GEOMPACK-A software package for the generation of meshes using geometric algorithms. Advances in Engineering Software 1991; 56(13):325-331. – reference: Weatherill NP, Hassan O. Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering 1994; 37:2005-2039. – reference: George PL, Hecht F, Saltel E. Automatic mesh generator with specified boundary. Computer Methods in Applied Mechanics and Engineering 1991; 92:269-288. – reference: Freitag L. On combining Laplacian and optimization-based mesh smoothing techniques. Trends in unstructured mesh generation. ASME 1997; AMD-220:37-43. – reference: Xu YG, Yang Q, Wu ZZ et al. The algorithm of 3D constrained Delaunay triangulation. The Chinese Journal of Software 2001; 12(1):103-110. – reference: Min WD, Tang ZS. The Delaunay triangulation of a point set within an arbitrary 2D domain. The Chinese Journal of Computer 1995; 18(5):357-364. – reference: Canvendish JC, Field DA, Frey WH. An approach to automatic three-dimensional finite element meshes generation. International Journal for Numerical Methods in Engineering 1985; 21:329-347. – reference: Joe B. Construction of three-dimensional Delaunay triangulations using local transformations. Computer Aided Geometric Design 1991; 8:123-142. – reference: George PL. Improvements on Delaunay-based three-dimensional automatic mesh generator. Finite Element in Analysis and Design 1997; 25:297-317. – reference: Watson DF. Computing the n-dimensional Delaunay tessellations with application to Voronoi polytopes. The Computer Journal 1981; 24:167-172. – volume: 18 start-page: 357 issue: 5 year: 1995 end-page: 364 article-title: The Delaunay triangulation of a point set within an arbitrary 2D domain publication-title: The Chinese Journal of Computer – volume: 8 start-page: 421 year: 1991 end-page: 437 article-title: Delaunay triangulation of arbitrarily shaped planar domains publication-title: CAGD – volume: 5 start-page: 161 year: 1989 end-page: 175 article-title: Automatic mesh generation for complex three‐dimensional regions using a constrained Delaunay triangulation publication-title: Engineering with Computers – volume: AMD‐220 start-page: 37 year: 1997 end-page: 43 article-title: On combining Laplacian and optimization‐based mesh smoothing techniques. Trends in unstructured mesh generation publication-title: ASME – volume: 12 start-page: 103 issue: 1 year: 2001 end-page: 110 article-title: The algorithm of 3D constrained Delaunay triangulation publication-title: The Chinese Journal of Software – volume: 21 start-page: 329 year: 1985 end-page: 347 article-title: An approach to automatic three‐dimensional finite element meshes generation publication-title: International Journal for Numerical Methods in Engineering – volume: 37 start-page: 2005 year: 1994 end-page: 2039 article-title: Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints publication-title: International Journal for Numerical Methods in Engineering – volume: 56 start-page: 325 issue: 13 year: 1991 end-page: 331 article-title: GEOMPACK—A software package for the generation of meshes using geometric algorithms publication-title: Advances in Engineering Software – volume: 25 start-page: 297 year: 1997 end-page: 317 article-title: Improvements on Delaunay‐based three‐dimensional automatic mesh generator publication-title: Finite Element in Analysis and Design – year: 1997 – volume: 49 start-page: 167 year: 2000 end-page: 191 article-title: Triangulation of arbitrary polyhedra to support automatic mesh generators publication-title: International Journal for Numerical Methods in Engineering – volume: 24 start-page: 162 year: 1981 end-page: 166 article-title: Computing Dirichlet tessellations publication-title: The Computer Journal – volume: 92 start-page: 269 year: 1991 end-page: 288 article-title: Automatic mesh generator with specified boundary publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 24 start-page: 167 year: 1981 end-page: 172 article-title: Computing the n‐dimensional Delaunay tessellations with application to Voronoi polytopes publication-title: The Computer Journal – volume: 8 start-page: 123 year: 1991 end-page: 142 article-title: Construction of three‐dimensional Delaunay triangulations using local transformations publication-title: Computer Aided Geometric Design – ident: e_1_2_1_10_2 doi: 10.1016/S0168-874X(96)00063-7 – volume: 12 start-page: 103 issue: 1 year: 2001 ident: e_1_2_1_4_2 article-title: The algorithm of 3D constrained Delaunay triangulation publication-title: The Chinese Journal of Software – ident: e_1_2_1_5_2 doi: 10.1093/comjnl/24.2.162 – ident: e_1_2_1_13_2 – ident: e_1_2_1_7_2 doi: 10.1002/nme.1620371203 – volume: 220 start-page: 37 year: 1997 ident: e_1_2_1_15_2 article-title: On combining Laplacian and optimization‐based mesh smoothing techniques. Trends in unstructured mesh generation publication-title: ASME – ident: e_1_2_1_11_2 doi: 10.1016/0045-7825(91)90017-Z – ident: e_1_2_1_6_2 doi: 10.1093/comjnl/24.2.167 – ident: e_1_2_1_8_2 doi: 10.1016/0167-8396(91)90038-D – ident: e_1_2_1_9_2 doi: 10.1007/BF02274210 – volume: 56 start-page: 325 issue: 13 year: 1991 ident: e_1_2_1_12_2 article-title: GEOMPACK—A software package for the generation of meshes using geometric algorithms publication-title: Advances in Engineering Software – volume: 18 start-page: 357 issue: 5 year: 1995 ident: e_1_2_1_2_2 article-title: The Delaunay triangulation of a point set within an arbitrary 2D domain publication-title: The Chinese Journal of Computer – ident: e_1_2_1_16_2 doi: 10.1002/nme.1620210210 – volume: 8 start-page: 421 year: 1991 ident: e_1_2_1_3_2 article-title: Delaunay triangulation of arbitrarily shaped planar domains publication-title: CAGD – ident: e_1_2_1_14_2 doi: 10.1002/1097-0207(20000910/20)49:1/2<167::AID-NME928>3.0.CO;2-L |
| SSID | ssj0011503 |
| Score | 1.8747196 |
| Snippet | A boundary recovery and sliver elimination algorithm of the three‐dimensional constrained Delaunay triangulation is proposed for finite element mesh... A boundary recovery and sliver elimination algorithm of the three-dimensional constrained Delaunay triangulation is proposed for finite element mesh... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 192 |
| SubjectTerms | Algorithms Boundaries boundary recovery Computational techniques constrained Delaunay triangulation Constraints Delaunay triangulation Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical methods in physics Physics Recovery sliver element Slivers Three dimensional Topology |
| Title | The boundary recovery and sliver elimination algorithms of three-dimensional constrained Delaunay triangulation |
| URI | https://api.istex.fr/ark:/67375/WNG-2ZJJS6BV-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.1707 https://www.proquest.com/docview/1082195410 https://www.proquest.com/docview/29658438 |
| Volume | 68 |
| WOSCitedRecordID | wos000241049600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 issn: 0029-5981 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQlwMcKBRQl59iJASn0Dh2HecItAuq2hUCChUXa5I4pWKbbZNdxN54BJ6RJ2HG-WFXohISpyTSJBl5ZpJv7PE3jD0RaSZ1pl3gHAY5JhBpYEBh1gqxVLmK4wS8pQ_i8dgcHydv26pK2gvT8EP0E24UGf57TQEOab29RBp65p6LmDaSD2hPFSZeg913o6ODfg0BoY7sCjx2EiM66tkw2u7uXfkZDWhcv1NxJNQ4PkXT2GIFeS7jV_8DGq3_j-o32Y0WdvIXjZ_cYldcucHWWwjK2wCvN9j1JX5CvDrsSV3r2-wCXYqnvg1TteCUSWMYLDiUOUewiucc1aLKGrI1h8nJtDqdfTmr-bTgM3QZ9-vHz5yaCTREIDwjaEodKlCDXTeBeQkLTl1EypO2p9gddjTa-_DqTdB2bAgyApIBEPxJ0zhyoRO50SaPXZQocDL30FAYXWgpIu3QFzIRFkYo4Yqw0KLINWh5l62V09JtMh4LlYpMZ4mBQiUSoEgc0CqkoMqdFIbsWWc6m7V05qTzxDZEzJHFUbY0ykP2uJc8byg8_iLz1Fu_F4DqK5W8xTv20_i1jT7v77_XLz9aNWRbK-7x54kG83pjJL6t8xeLkUrLL1C66bwmKtaI-PVEOGSPLpGJiItHSYP6eAe6VGE7Ptyj471_FbzPrvnZI1---ICtzaq5e8iuZt9mp3W11cbOby6eIBM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5Vu0jAgUIBsfy0RkJwCo1j13bECWiXUnYjBC2tuFhO4pSKbRaSXcTeeASekSfBkz92JSohcUoiTZLReCb5xh5_A_CIxgkTibCetS7IXQIRe8pwl7UayXjKpQxNNdIjGUXq5CR8uwbP2r0wNT9EN-GGkVF9rzHAcUJ6e4k19Nw-pRJ3kve5YFL1oL_7bng06hYRHNZhbYXHTqhoyz3rB9vtvSt_oz4a9jtWR5rSGSirO1usQM9lAFv9gYbr_6X7dbjWAE_yvPaUG7Bm8w1Yb0AoaUK83ICrSwyF7mrc0bqWN-GrcyoSV42YigXBXNoFwoKYPCUOrrpz4vTC2hocbWImp9PibPbpvCTTjMyc09hfP36m2E6gpgIhCYJT7FHhNNi1EzPPzYJgH5H8tOkqdguOhnuHL_e9pmeDlyCU9AwCoDiWgfUtTZVQqbRByI1laQUOqRKZYDQQ1nlDQv1MUU5t5meCZqkwgt2GXj7N7R0gkvKYJiIJlcl4yIzJQmtwHZJi7U5sBvCkHTudNITmqPNE11TMgXZW1mjlATzsJL_UJB5_kXlcDX8nYIrPWPQmd_Rx9EoHHw8O3osXHzQfwOaKf_x5onKZvVLMva11GO1iFRdgTG6n8xLJWANk2KP-ALYukAmQjYcz5fSpPOhChXU03sPj3X8V3ILL-4fjkR69jt7cgyvVXFJVzHgferNibh_ApeTb7KwsNptA-g1TbSQD |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9NLULwwGCAKIPNSAiewuLEdRzxBHQFRhdNwNjEi-Uk9jatS7ekndY3PgKfkU-CL_9oJSYh8ZREuiQn313yO_v8O4DnNE58nnDtaG2D3CYQsSMUs1mrCnyWsiAIVWnpURBF4vAw3FuB181emIofop1ww8gov9cY4Po8NVsLrKFn-hUNcCd5l_XDPutAd_B5uD9qFxEs1vGbCo9-KGjDPet6W829S3-jLg7sFVZHqsIOkKk6WyxBz0UAW_6Bhqv_pftduFMDT_Km8pR7sKKzNVitQSipQ7xYg9sLDIX2areldS3uw4V1KhKXjZjyOcFc2gbCnKgsJRau2nNi9cLaGrQ2UeOjSX4yPT4ryMSQqXUa_evHzxTbCVRUICRBcIo9KqwGAz1Ws0zNCfYRyY7qrmIPYH-4_fXdB6fu2eAkCCUdhQAojgNPu5qmgos00F7IlPbTEhxSwQ33qce19YaEukZQRrVxDacm5Yr7D6GTTTL9CEhAWUwTnoRCGRb6SplQK1yHpFi7E6sevGxsJ5Oa0Bx1HsuKitmTdpQljnIPnrWS5xWJx19kXpTmbwVUfopFb0FfHkTvpfd9Z-cLf_tNsh5sLPnHnycKm9kL4du3NQ4jbaziAozK9GRWIBmrhwx71O3B5jUyHrLxMF9YfUoPulZhGe1u4_Hxvwpuws29wVCOPkaf1uFWOZVU1jI-gc40n-mncCO5nJ4U-UYdR78BrGcjfg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+boundary+recovery+and+sliver+elimination+algorithms+of+three-dimensional+constrained+Delaunay+triangulation&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Guan%2C+Zhenqun&rft.au=Song%2C+Chao&rft.au=Gu%2C+Yuanxian&rft.date=2006-10-08&rft.issn=0029-5981&rft.volume=68&rft.issue=2&rft.spage=192&rft.epage=209&rft_id=info:doi/10.1002%2Fnme.1707&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |