The boundary recovery and sliver elimination algorithms of three-dimensional constrained Delaunay triangulation

A boundary recovery and sliver elimination algorithm of the three‐dimensional constrained Delaunay triangulation is proposed for finite element mesh generation. The boundary recovery algorithm includes two main procedures: geometrical recovery procedure and topological recovery procedure. Combining...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering Vol. 68; no. 2; pp. 192 - 209
Main Authors: Guan, Zhenqun, Song, Chao, Gu, Yuanxian
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 08.10.2006
Wiley
Subjects:
ISSN:0029-5981, 1097-0207
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A boundary recovery and sliver elimination algorithm of the three‐dimensional constrained Delaunay triangulation is proposed for finite element mesh generation. The boundary recovery algorithm includes two main procedures: geometrical recovery procedure and topological recovery procedure. Combining the advantages of the edges/faces swappings algorithm and edges/faces splittings algorithm presented respectively by George and Weatherill, the geometrical recovery procedure can recover the missing boundaries and guarantee the geometry conformity by introducing fewer Steiner points. The topological recovery procedure includes two phases: ‘dressing wound’ and smoothing, which will overcome topology inconsistency between 3D domain boundary triangles and the volume mesh. In order to solve the problem of sliver elements in the three‐dimensional Delaunay triangulation, a method named sliver decomposition is proposed. By extending the algorithm proposed by Canvendish, the presented method deals with sliver elements by using local decomposition or mergence operation. In this way, sliver elements could be eliminated thoroughly and the mesh quality could be improved in great deal. Copyright © 2006 John Wiley & Sons, Ltd.
AbstractList A boundary recovery and sliver elimination algorithm of the three-dimensional constrained Delaunay triangulation is proposed for finite element mesh generation. The boundary recovery algorithm includes two main procedures: geometrical recovery procedure and topological recovery procedure. Combining the advantages of the edges/faces swappings algorithm and edges/faces splittings algorithm presented respectively by George and Weatherill, the geometrical recovery procedure can recover the missing boundaries and guarantee the geometry conformity by introducing fewer Steiner points. The topological recovery procedure includes two phases: dressing wound and smoothing, which will overcome topology inconsistency between 3D domain boundary triangles and the volume mesh. In order to solve the problem of sliver elements in the three-dimensional Delaunay triangulation, a method named sliver decomposition is proposed. By extending the algorithm proposed by Canvendish, the presented method deals with sliver elements by using local decomposition or mergence operation. In this way, sliver elements could be eliminated thoroughly and the mesh quality could be improved in great deal.
A boundary recovery and sliver elimination algorithm of the three‐dimensional constrained Delaunay triangulation is proposed for finite element mesh generation. The boundary recovery algorithm includes two main procedures: geometrical recovery procedure and topological recovery procedure. Combining the advantages of the edges/faces swappings algorithm and edges/faces splittings algorithm presented respectively by George and Weatherill, the geometrical recovery procedure can recover the missing boundaries and guarantee the geometry conformity by introducing fewer Steiner points. The topological recovery procedure includes two phases: ‘dressing wound’ and smoothing, which will overcome topology inconsistency between 3D domain boundary triangles and the volume mesh. In order to solve the problem of sliver elements in the three‐dimensional Delaunay triangulation, a method named sliver decomposition is proposed. By extending the algorithm proposed by Canvendish, the presented method deals with sliver elements by using local decomposition or mergence operation. In this way, sliver elements could be eliminated thoroughly and the mesh quality could be improved in great deal. Copyright © 2006 John Wiley & Sons, Ltd.
Author Gu, Yuanxian
Guan, Zhenqun
Song, Chao
Author_xml – sequence: 1
  givenname: Zhenqun
  surname: Guan
  fullname: Guan, Zhenqun
  email: guanzhq@dlut.edu.cn
  organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China
– sequence: 2
  givenname: Chao
  surname: Song
  fullname: Song, Chao
  organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China
– sequence: 3
  givenname: Yuanxian
  surname: Gu
  fullname: Gu, Yuanxian
  organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18132883$$DView record in Pascal Francis
BookMark eNp90VFvFCEQB3BiauK1mvgReNH4sicDu8A-alurTa0PVk18IdzubA9locKuet9ertecMUafmGR-_AMzh-QgxICEPAa2BMb48zDiEhRT98gCWKsqxpk6IIvSaqum1fCAHOb8hTGAhokFiVdrpKs4h96mDU3Yxe9YCht6mr0rNUXvRhfs5GKg1l_H5Kb1mGkc6LROiFXvRgy5dK2nXQx5StYF7OkJejsHu6FTcjZcz_424iG5P1if8dHdeUQ-vDq9On5dXbw7e3P84qLqRKtUZYVuxWqlODKEXkvdK-RtbVH0rKlZA1oOUgCXyKzqgA0aasCBDRKGXlopjsjTXe5Nit9mzJMZXe7QexswztnwVja6FrrAZ_-FwDSHtqmBFfrkjtrcWT8kGzqXzU1yYxmeAQ2Cay2KW-5cl2LOCQfTuen299vZ-BJptqsyZVVmu6rfb9hf2Gf-Tasd_eE8bv7pzOXb0z-9yxP-3HubvhqphGrMp8szwz-fn7-XLz-aWvwCqwK0_A
CODEN IJNMBH
CitedBy_id crossref_primary_10_1145_3618352
crossref_primary_10_1016_j_enggeo_2017_08_021
crossref_primary_10_1108_EC_09_2023_0617
crossref_primary_10_1016_j_cag_2016_04_004
crossref_primary_10_1016_j_finel_2014_02_006
crossref_primary_10_1016_j_apm_2017_07_011
crossref_primary_10_1016_j_compstruc_2010_11_016
Cites_doi 10.1016/S0168-874X(96)00063-7
10.1093/comjnl/24.2.162
10.1002/nme.1620371203
10.1016/0045-7825(91)90017-Z
10.1093/comjnl/24.2.167
10.1016/0167-8396(91)90038-D
10.1007/BF02274210
10.1002/nme.1620210210
10.1002/1097-0207(20000910/20)49:1/2<167::AID-NME928>3.0.CO;2-L
ContentType Journal Article
Copyright Copyright © 2006 John Wiley & Sons, Ltd.
2006 INIST-CNRS
Copyright_xml – notice: Copyright © 2006 John Wiley & Sons, Ltd.
– notice: 2006 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.1707
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 209
ExternalDocumentID 18132883
10_1002_nme_1707
NME1707
ark_67375_WNG_2ZJJS6BV_4
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation
  funderid: 10002006; 10572032; 10032030
– fundername: Special Funds for National Key Basic Research
  funderid: G1999032805
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
AAYXX
CITATION
O8X
.4S
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
ARCSS
GBZZK
HF~
IQODW
M6O
PALCI
RIWAO
SAMSI
TUS
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3977-a3893bb72e0e1d868d7e294ae3d05405186f63126e0a7c10f8141ef0f61fd6a63
IEDL.DBID DRFUL
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000241049600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Thu Jul 10 23:48:41 EDT 2025
Thu Oct 02 11:11:59 EDT 2025
Mon Jul 21 09:14:50 EDT 2025
Sat Nov 29 06:43:36 EST 2025
Tue Nov 18 21:49:00 EST 2025
Wed Jan 22 16:37:51 EST 2025
Sun Sep 21 06:17:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Finite element method
constrained Delaunay triangulation
sliver element
Smoothing
boundary recovery
Delaunay triangulation
Modelling
Two phase medium
Topology
Automatic mesh generation
Mesh generation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3977-a3893bb72e0e1d868d7e294ae3d05405186f63126e0a7c10f8141ef0f61fd6a63
Notes National Natural Science Foundation - No. 10002006; No. 10572032; No. 10032030
ArticleID:NME1707
Special Funds for National Key Basic Research - No. G1999032805
ark:/67375/WNG-2ZJJS6BV-4
istex:91B30B3DCE9C0632B9052DDEB21E72B34BC65D4E
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1082195410
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_29658438
proquest_miscellaneous_1082195410
pascalfrancis_primary_18132883
crossref_citationtrail_10_1002_nme_1707
crossref_primary_10_1002_nme_1707
wiley_primary_10_1002_nme_1707_NME1707
istex_primary_ark_67375_WNG_2ZJJS6BV_4
PublicationCentury 2000
PublicationDate 8 October 2006
PublicationDateYYYYMMDD 2006-10-08
PublicationDate_xml – month: 10
  year: 2006
  text: 8 October 2006
  day: 08
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2006
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Xu YG, Yang Q, Wu ZZ et al. The algorithm of 3D constrained Delaunay triangulation. The Chinese Journal of Software 2001; 12(1):103-110.
George PL. Improvements on Delaunay-based three-dimensional automatic mesh generator. Finite Element in Analysis and Design 1997; 25:297-317.
Bowyer A. Computing Dirichlet tessellations. The Computer Journal 1981; 24:162-166.
Sapidis N, Perucchio R. Delaunay triangulation of arbitrarily shaped planar domains. CAGD 1991; 8:421-437.
Joe B. Construction of three-dimensional Delaunay triangulations using local transformations. Computer Aided Geometric Design 1991; 8:123-142.
Karamete BK, Beall MW, Shephard MS. Triangulation of arbitrary polyhedra to support automatic mesh generators. International Journal for Numerical Methods in Engineering 2000; 49:167-191.
Freitag L. On combining Laplacian and optimization-based mesh smoothing techniques. Trends in unstructured mesh generation. ASME 1997; AMD-220:37-43.
Canvendish JC, Field DA, Frey WH. An approach to automatic three-dimensional finite element meshes generation. International Journal for Numerical Methods in Engineering 1985; 21:329-347.
Watson DF. Computing the n-dimensional Delaunay tessellations with application to Voronoi polytopes. The Computer Journal 1981; 24:167-172.
Baker TJ. Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation. Engineering with Computers 1989; 5:161-175.
Min WD, Tang ZS. The Delaunay triangulation of a point set within an arbitrary 2D domain. The Chinese Journal of Computer 1995; 18(5):357-364.
Weatherill NP, Hassan O. Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering 1994; 37:2005-2039.
George PL, Hecht F, Saltel E. Automatic mesh generator with specified boundary. Computer Methods in Applied Mechanics and Engineering 1991; 92:269-288.
Joe B. GEOMPACK-A software package for the generation of meshes using geometric algorithms. Advances in Engineering Software 1991; 56(13):325-331.
1997; AMD‐220
1989; 5
2000; 49
1991; 56
1997; 25
1991; 92
1981; 24
1997
1994; 37
1995; 18
2001; 12
1985; 21
1991; 8
Freitag L (e_1_2_1_15_2) 1997; 220
Xu YG (e_1_2_1_4_2) 2001; 12
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_10_2
Sapidis N (e_1_2_1_3_2) 1991; 8
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_8_2
Min WD (e_1_2_1_2_2) 1995; 18
e_1_2_1_9_2
Joe B (e_1_2_1_12_2) 1991; 56
References_xml – reference: Bowyer A. Computing Dirichlet tessellations. The Computer Journal 1981; 24:162-166.
– reference: Sapidis N, Perucchio R. Delaunay triangulation of arbitrarily shaped planar domains. CAGD 1991; 8:421-437.
– reference: Karamete BK, Beall MW, Shephard MS. Triangulation of arbitrary polyhedra to support automatic mesh generators. International Journal for Numerical Methods in Engineering 2000; 49:167-191.
– reference: Baker TJ. Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation. Engineering with Computers 1989; 5:161-175.
– reference: Joe B. GEOMPACK-A software package for the generation of meshes using geometric algorithms. Advances in Engineering Software 1991; 56(13):325-331.
– reference: Weatherill NP, Hassan O. Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering 1994; 37:2005-2039.
– reference: George PL, Hecht F, Saltel E. Automatic mesh generator with specified boundary. Computer Methods in Applied Mechanics and Engineering 1991; 92:269-288.
– reference: Freitag L. On combining Laplacian and optimization-based mesh smoothing techniques. Trends in unstructured mesh generation. ASME 1997; AMD-220:37-43.
– reference: Xu YG, Yang Q, Wu ZZ et al. The algorithm of 3D constrained Delaunay triangulation. The Chinese Journal of Software 2001; 12(1):103-110.
– reference: Min WD, Tang ZS. The Delaunay triangulation of a point set within an arbitrary 2D domain. The Chinese Journal of Computer 1995; 18(5):357-364.
– reference: Canvendish JC, Field DA, Frey WH. An approach to automatic three-dimensional finite element meshes generation. International Journal for Numerical Methods in Engineering 1985; 21:329-347.
– reference: Joe B. Construction of three-dimensional Delaunay triangulations using local transformations. Computer Aided Geometric Design 1991; 8:123-142.
– reference: George PL. Improvements on Delaunay-based three-dimensional automatic mesh generator. Finite Element in Analysis and Design 1997; 25:297-317.
– reference: Watson DF. Computing the n-dimensional Delaunay tessellations with application to Voronoi polytopes. The Computer Journal 1981; 24:167-172.
– volume: 18
  start-page: 357
  issue: 5
  year: 1995
  end-page: 364
  article-title: The Delaunay triangulation of a point set within an arbitrary 2D domain
  publication-title: The Chinese Journal of Computer
– volume: 8
  start-page: 421
  year: 1991
  end-page: 437
  article-title: Delaunay triangulation of arbitrarily shaped planar domains
  publication-title: CAGD
– volume: 5
  start-page: 161
  year: 1989
  end-page: 175
  article-title: Automatic mesh generation for complex three‐dimensional regions using a constrained Delaunay triangulation
  publication-title: Engineering with Computers
– volume: AMD‐220
  start-page: 37
  year: 1997
  end-page: 43
  article-title: On combining Laplacian and optimization‐based mesh smoothing techniques. Trends in unstructured mesh generation
  publication-title: ASME
– volume: 12
  start-page: 103
  issue: 1
  year: 2001
  end-page: 110
  article-title: The algorithm of 3D constrained Delaunay triangulation
  publication-title: The Chinese Journal of Software
– volume: 21
  start-page: 329
  year: 1985
  end-page: 347
  article-title: An approach to automatic three‐dimensional finite element meshes generation
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 37
  start-page: 2005
  year: 1994
  end-page: 2039
  article-title: Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 56
  start-page: 325
  issue: 13
  year: 1991
  end-page: 331
  article-title: GEOMPACK—A software package for the generation of meshes using geometric algorithms
  publication-title: Advances in Engineering Software
– volume: 25
  start-page: 297
  year: 1997
  end-page: 317
  article-title: Improvements on Delaunay‐based three‐dimensional automatic mesh generator
  publication-title: Finite Element in Analysis and Design
– year: 1997
– volume: 49
  start-page: 167
  year: 2000
  end-page: 191
  article-title: Triangulation of arbitrary polyhedra to support automatic mesh generators
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 24
  start-page: 162
  year: 1981
  end-page: 166
  article-title: Computing Dirichlet tessellations
  publication-title: The Computer Journal
– volume: 92
  start-page: 269
  year: 1991
  end-page: 288
  article-title: Automatic mesh generator with specified boundary
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 24
  start-page: 167
  year: 1981
  end-page: 172
  article-title: Computing the n‐dimensional Delaunay tessellations with application to Voronoi polytopes
  publication-title: The Computer Journal
– volume: 8
  start-page: 123
  year: 1991
  end-page: 142
  article-title: Construction of three‐dimensional Delaunay triangulations using local transformations
  publication-title: Computer Aided Geometric Design
– ident: e_1_2_1_10_2
  doi: 10.1016/S0168-874X(96)00063-7
– volume: 12
  start-page: 103
  issue: 1
  year: 2001
  ident: e_1_2_1_4_2
  article-title: The algorithm of 3D constrained Delaunay triangulation
  publication-title: The Chinese Journal of Software
– ident: e_1_2_1_5_2
  doi: 10.1093/comjnl/24.2.162
– ident: e_1_2_1_13_2
– ident: e_1_2_1_7_2
  doi: 10.1002/nme.1620371203
– volume: 220
  start-page: 37
  year: 1997
  ident: e_1_2_1_15_2
  article-title: On combining Laplacian and optimization‐based mesh smoothing techniques. Trends in unstructured mesh generation
  publication-title: ASME
– ident: e_1_2_1_11_2
  doi: 10.1016/0045-7825(91)90017-Z
– ident: e_1_2_1_6_2
  doi: 10.1093/comjnl/24.2.167
– ident: e_1_2_1_8_2
  doi: 10.1016/0167-8396(91)90038-D
– ident: e_1_2_1_9_2
  doi: 10.1007/BF02274210
– volume: 56
  start-page: 325
  issue: 13
  year: 1991
  ident: e_1_2_1_12_2
  article-title: GEOMPACK—A software package for the generation of meshes using geometric algorithms
  publication-title: Advances in Engineering Software
– volume: 18
  start-page: 357
  issue: 5
  year: 1995
  ident: e_1_2_1_2_2
  article-title: The Delaunay triangulation of a point set within an arbitrary 2D domain
  publication-title: The Chinese Journal of Computer
– ident: e_1_2_1_16_2
  doi: 10.1002/nme.1620210210
– volume: 8
  start-page: 421
  year: 1991
  ident: e_1_2_1_3_2
  article-title: Delaunay triangulation of arbitrarily shaped planar domains
  publication-title: CAGD
– ident: e_1_2_1_14_2
  doi: 10.1002/1097-0207(20000910/20)49:1/2<167::AID-NME928>3.0.CO;2-L
SSID ssj0011503
Score 1.8747196
Snippet A boundary recovery and sliver elimination algorithm of the three‐dimensional constrained Delaunay triangulation is proposed for finite element mesh...
A boundary recovery and sliver elimination algorithm of the three-dimensional constrained Delaunay triangulation is proposed for finite element mesh...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 192
SubjectTerms Algorithms
Boundaries
boundary recovery
Computational techniques
constrained Delaunay triangulation
Constraints
Delaunay triangulation
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Physics
Recovery
sliver element
Slivers
Three dimensional
Topology
Title The boundary recovery and sliver elimination algorithms of three-dimensional constrained Delaunay triangulation
URI https://api.istex.fr/ark:/67375/WNG-2ZJJS6BV-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.1707
https://www.proquest.com/docview/1082195410
https://www.proquest.com/docview/29658438
Volume 68
WOSCitedRecordID wos000241049600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQlwMcKBRQl59iJASn0Dh2HecItAuq2hUCChUXa5I4pWKbbZNdxN54BJ6RJ2HG-WFXohISpyTSJBl5ZpJv7PE3jD0RaSZ1pl3gHAY5JhBpYEBh1gqxVLmK4wS8pQ_i8dgcHydv26pK2gvT8EP0E24UGf57TQEOab29RBp65p6LmDaSD2hPFSZeg913o6ODfg0BoY7sCjx2EiM66tkw2u7uXfkZDWhcv1NxJNQ4PkXT2GIFeS7jV_8DGq3_j-o32Y0WdvIXjZ_cYldcucHWWwjK2wCvN9j1JX5CvDrsSV3r2-wCXYqnvg1TteCUSWMYLDiUOUewiucc1aLKGrI1h8nJtDqdfTmr-bTgM3QZ9-vHz5yaCTREIDwjaEodKlCDXTeBeQkLTl1EypO2p9gddjTa-_DqTdB2bAgyApIBEPxJ0zhyoRO50SaPXZQocDL30FAYXWgpIu3QFzIRFkYo4Yqw0KLINWh5l62V09JtMh4LlYpMZ4mBQiUSoEgc0CqkoMqdFIbsWWc6m7V05qTzxDZEzJHFUbY0ykP2uJc8byg8_iLz1Fu_F4DqK5W8xTv20_i1jT7v77_XLz9aNWRbK-7x54kG83pjJL6t8xeLkUrLL1C66bwmKtaI-PVEOGSPLpGJiItHSYP6eAe6VGE7Ptyj471_FbzPrvnZI1---ICtzaq5e8iuZt9mp3W11cbOby6eIBM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5Vu0jAgUIBsfy0RkJwCo1j13bECWiXUnYjBC2tuFhO4pSKbRaSXcTeeASekSfBkz92JSohcUoiTZLReCb5xh5_A_CIxgkTibCetS7IXQIRe8pwl7UayXjKpQxNNdIjGUXq5CR8uwbP2r0wNT9EN-GGkVF9rzHAcUJ6e4k19Nw-pRJ3kve5YFL1oL_7bng06hYRHNZhbYXHTqhoyz3rB9vtvSt_oz4a9jtWR5rSGSirO1usQM9lAFv9gYbr_6X7dbjWAE_yvPaUG7Bm8w1Yb0AoaUK83ICrSwyF7mrc0bqWN-GrcyoSV42YigXBXNoFwoKYPCUOrrpz4vTC2hocbWImp9PibPbpvCTTjMyc09hfP36m2E6gpgIhCYJT7FHhNNi1EzPPzYJgH5H8tOkqdguOhnuHL_e9pmeDlyCU9AwCoDiWgfUtTZVQqbRByI1laQUOqRKZYDQQ1nlDQv1MUU5t5meCZqkwgt2GXj7N7R0gkvKYJiIJlcl4yIzJQmtwHZJi7U5sBvCkHTudNITmqPNE11TMgXZW1mjlATzsJL_UJB5_kXlcDX8nYIrPWPQmd_Rx9EoHHw8O3osXHzQfwOaKf_x5onKZvVLMva11GO1iFRdgTG6n8xLJWANk2KP-ALYukAmQjYcz5fSpPOhChXU03sPj3X8V3ILL-4fjkR69jt7cgyvVXFJVzHgferNibh_ApeTb7KwsNptA-g1TbSQD
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9NLULwwGCAKIPNSAiewuLEdRzxBHQFRhdNwNjEi-Uk9jatS7ekndY3PgKfkU-CL_9oJSYh8ZREuiQn313yO_v8O4DnNE58nnDtaG2D3CYQsSMUs1mrCnyWsiAIVWnpURBF4vAw3FuB181emIofop1ww8gov9cY4Po8NVsLrKFn-hUNcCd5l_XDPutAd_B5uD9qFxEs1vGbCo9-KGjDPet6W829S3-jLg7sFVZHqsIOkKk6WyxBz0UAW_6Bhqv_pftduFMDT_Km8pR7sKKzNVitQSipQ7xYg9sLDIX2areldS3uw4V1KhKXjZjyOcFc2gbCnKgsJRau2nNi9cLaGrQ2UeOjSX4yPT4ryMSQqXUa_evHzxTbCVRUICRBcIo9KqwGAz1Ws0zNCfYRyY7qrmIPYH-4_fXdB6fu2eAkCCUdhQAojgNPu5qmgos00F7IlPbTEhxSwQ33qce19YaEukZQRrVxDacm5Yr7D6GTTTL9CEhAWUwTnoRCGRb6SplQK1yHpFi7E6sevGxsJ5Oa0Bx1HsuKitmTdpQljnIPnrWS5xWJx19kXpTmbwVUfopFb0FfHkTvpfd9Z-cLf_tNsh5sLPnHnycKm9kL4du3NQ4jbaziAozK9GRWIBmrhwx71O3B5jUyHrLxMF9YfUoPulZhGe1u4_Hxvwpuws29wVCOPkaf1uFWOZVU1jI-gc40n-mncCO5nJ4U-UYdR78BrGcjfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+boundary+recovery+and+sliver+elimination+algorithms+of+three-dimensional+constrained+Delaunay+triangulation&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Guan%2C+Zhenqun&rft.au=Song%2C+Chao&rft.au=Gu%2C+Yuanxian&rft.date=2006-10-08&rft.issn=0029-5981&rft.volume=68&rft.issue=2&rft.spage=192&rft.epage=209&rft_id=info:doi/10.1002%2Fnme.1707&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon