Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations
Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k‐space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, a...
Gespeichert in:
| Veröffentlicht in: | Magnetic resonance in medicine Jg. 65; H. 6; S. 1690 - 1701 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2011
|
| Schlagworte: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k‐space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third‐order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate‐gradient algorithm that uses explicit matrix‐vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k-space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third-order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate-gradient algorithm that uses explicit matrix-vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k-space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third-order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate-gradient algorithm that uses explicit matrix-vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration.Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k-space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third-order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate-gradient algorithm that uses explicit matrix-vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k ‐space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third‐order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate‐gradient algorithm that uses explicit matrix‐vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc. Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k‐space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third‐order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate‐gradient algorithm that uses explicit matrix‐vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc. |
| Author | Wilm, Bertram J. Pavan, Matteo Barmet, Christoph Pruessmann, Klaas P. |
| Author_xml | – sequence: 1 givenname: Bertram J. surname: Wilm fullname: Wilm, Bertram J. organization: Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland – sequence: 2 givenname: Christoph surname: Barmet fullname: Barmet, Christoph organization: Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland – sequence: 3 givenname: Matteo surname: Pavan fullname: Pavan, Matteo organization: Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland – sequence: 4 givenname: Klaas P. surname: Pruessmann fullname: Pruessmann, Klaas P. email: pruessmann@biomed.ee.ethz.ch organization: Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21520269$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90M1O3DAUBWALgWCgLHiByruKRcA_SRwvqxEwSIRKo7aIleXYN8VtEgfbEfD2BAZYVGo3vov7nSv57KPtwQ-A0BElJ5QQdtqH_oQxUYottKAFYxkrZL6NFkTkJONU5ntoP8bfhBApRb6L9tisCCvlAt2u3K87CNgHO78BjB9iCpNJzg-49QHX60vsBpzuAI8BIgwGsG9xHPVMEvSjD7rDrYPO4hFCmkLzshniJ7TT6i7C4ds8QD_Oz74vV9nVt4vL5derzHApRFbmYKUoqsIwpqVoRa6Zza1oCtoUpW2BG0aFNVJXlGvRUG05rwzXhlpgoPkB-rK5OwZ_P0FMqnfRQNfpAfwUVVUKwYSsyll-fpNT04NVY3C9Dk_qvY0ZHG-ACT7GAO0HoUS9NK3mptVr07M9_csal15_noJ23f8SD66Dp3-fVvW6fk9km4SLCR4_Ejr8UfNWFOrm-kLlq0r-XNdLVfNnvJCfpg |
| CitedBy_id | crossref_primary_10_1002_mrm_30262 crossref_primary_10_3389_fphy_2023_1124980 crossref_primary_10_1002_mrm_24263 crossref_primary_10_1002_mrm_30425 crossref_primary_10_1002_nbm_4056 crossref_primary_10_1002_mrm_30427 crossref_primary_10_1016_j_jmr_2023_107572 crossref_primary_10_1016_j_neuroimage_2022_118958 crossref_primary_10_1002_mrm_29957 crossref_primary_10_1002_mrm_28505 crossref_primary_10_1002_mrm_28346 crossref_primary_10_1002_mrm_29953 crossref_primary_10_1007_s10334_019_00770_2 crossref_primary_10_1002_mrm_25235 crossref_primary_10_1002_mrm_28501 crossref_primary_10_1088_1361_6560_aaf97a crossref_primary_10_1016_j_neuroimage_2015_10_019 crossref_primary_10_1007_s10334_015_0515_2 crossref_primary_10_1002_nbm_3753 crossref_primary_10_1002_mrm_24494 crossref_primary_10_1016_j_dib_2022_108050 crossref_primary_10_1002_mrm_29781 crossref_primary_10_1016_j_cobeha_2021_01_011 crossref_primary_10_1088_1361_6579_aa6e8c crossref_primary_10_1002_mrm_29943 crossref_primary_10_1002_mrm_29666 crossref_primary_10_1002_nbm_3359 crossref_primary_10_1016_j_pnmrs_2019_07_001 crossref_primary_10_1002_mrm_24934 crossref_primary_10_1186_s12968_014_0097_6 crossref_primary_10_1007_s00723_023_01584_1 crossref_primary_10_1002_jmri_27411 crossref_primary_10_1002_mrm_29058 crossref_primary_10_1002_nbm_4434 crossref_primary_10_3389_fnins_2014_00427 crossref_primary_10_1002_nbm_4831 crossref_primary_10_1002_mrm_29573 crossref_primary_10_1109_TMI_2015_2427157 crossref_primary_10_1002_mrm_25770 crossref_primary_10_1002_mrm_30601 crossref_primary_10_1109_TASC_2021_3052825 crossref_primary_10_1109_TMI_2011_2174158 crossref_primary_10_1002_mrm_23111 crossref_primary_10_1007_s10334_022_01021_7 crossref_primary_10_1002_mrm_24202 crossref_primary_10_1103_PRXQuantum_5_020320 crossref_primary_10_1016_j_neuroimage_2021_118530 crossref_primary_10_1016_j_neuroimage_2020_117286 crossref_primary_10_1002_mrm_27957 crossref_primary_10_1002_mrm_24606 crossref_primary_10_1002_mrm_29161 crossref_primary_10_1002_jmri_27247 crossref_primary_10_1016_j_neuroimage_2017_11_031 crossref_primary_10_1002_mrm_25085 crossref_primary_10_1002_mrm_28078 crossref_primary_10_1002_mrm_28110 crossref_primary_10_1002_mrm_29167 crossref_primary_10_1002_mrm_30314 crossref_primary_10_1002_mrm_28591 crossref_primary_10_1002_mp_12762 crossref_primary_10_1002_mrm_70012 crossref_primary_10_1002_mrm_26735 crossref_primary_10_1002_cmr_b_21324 crossref_primary_10_1002_mrm_25487 crossref_primary_10_1016_j_neuroimage_2020_116861 crossref_primary_10_1002_mrm_24836 crossref_primary_10_3934_ipi_2013_7_1215 crossref_primary_10_1002_mrm_25802 crossref_primary_10_1002_mrm_25407 crossref_primary_10_1016_j_jmr_2014_04_018 crossref_primary_10_1016_j_neuroimage_2017_01_014 crossref_primary_10_1097_RLI_0000000000000167 crossref_primary_10_1002_mrm_27055 crossref_primary_10_1002_mrm_27176 crossref_primary_10_1002_mrm_30069 crossref_primary_10_1109_TMAG_2012_2234758 crossref_primary_10_1002_mrm_29232 crossref_primary_10_1109_TMI_2016_2514608 crossref_primary_10_1002_mrm_28261 crossref_primary_10_1093_psyrad_kkae013 crossref_primary_10_1002_mrm_26524 crossref_primary_10_1002_mrm_25432 crossref_primary_10_1002_mrm_29633 crossref_primary_10_1002_mrm_70006 crossref_primary_10_1002_mrm_25838 crossref_primary_10_1002_mrm_30180 crossref_primary_10_1109_TMI_2012_2190991 crossref_primary_10_1038_s41598_017_11138_8 crossref_primary_10_1002_mrm_29460 crossref_primary_10_1002_mrm_25303 crossref_primary_10_1002_mrm_30606 crossref_primary_10_1038_s41551_025_01457_x crossref_primary_10_1002_mrm_26355 crossref_primary_10_1002_mrm_25827 crossref_primary_10_1016_j_neuroimage_2023_120159 crossref_primary_10_1016_j_neuroimage_2018_02_062 crossref_primary_10_1109_MSP_2019_2936964 crossref_primary_10_1002_mrm_25826 crossref_primary_10_1109_TMAG_2012_2196051 crossref_primary_10_1002_mrm_29378 crossref_primary_10_1002_mrm_30521 crossref_primary_10_1002_mrm_28168 crossref_primary_10_1002_mrm_29255 crossref_primary_10_1016_j_neuroimage_2017_07_062 crossref_primary_10_1002_mrm_24120 crossref_primary_10_1002_mrm_29130 crossref_primary_10_1002_mrm_24366 crossref_primary_10_1016_j_neuroimage_2017_04_044 crossref_primary_10_1002_mrm_28725 crossref_primary_10_1109_JSEN_2024_3509722 crossref_primary_10_1118_1_4837315 crossref_primary_10_1016_j_nic_2012_02_005 crossref_primary_10_1002_mrm_25851 crossref_primary_10_1002_mrm_28600 crossref_primary_10_1109_TMI_2013_2266259 crossref_primary_10_1016_j_neuroimage_2011_12_009 crossref_primary_10_1002_mrm_25859 crossref_primary_10_1002_mrm_30471 crossref_primary_10_1002_mrm_30351 crossref_primary_10_1088_0031_9155_59_13_3241 crossref_primary_10_1002_mrm_26493 crossref_primary_10_1002_mrm_29124 crossref_primary_10_1002_mrm_30113 crossref_primary_10_3389_fcvm_2022_826283 crossref_primary_10_1016_j_neuroimage_2017_01_022 crossref_primary_10_1002_mrm_29123 crossref_primary_10_2463_jjmrm_2025_1838 crossref_primary_10_1002_mrm_30635 crossref_primary_10_1016_j_neuroimage_2021_118738 crossref_primary_10_1002_mrm_27063 crossref_primary_10_1002_mrm_25841 crossref_primary_10_1002_mrm_30506 crossref_primary_10_1016_j_neuroimage_2014_05_024 crossref_primary_10_1002_nbm_4867 crossref_primary_10_1002_mrm_25167 crossref_primary_10_1002_mrm_28554 crossref_primary_10_1002_mrm_24478 crossref_primary_10_1002_mrm_29523 crossref_primary_10_1002_mrm_27902 crossref_primary_10_1109_TMI_2019_2936107 crossref_primary_10_1002_mrm_24518 |
| Cites_doi | 10.1002/nbm.1940080707 10.1002/mrm.10308 10.1002/mrm.10677 10.1007/s10334-008-0105-7 10.1002/mrm.21996 10.1002/mrm.1910010107 10.1002/1522-2586(200011)12:5<795::AID-JMRI20>3.0.CO;2-H 10.1002/nbm.1042 10.1002/mrm.1910390518 10.6028/jres.049.044 10.1007/BF02634590 10.1006/jmra.1994.1120 10.1002/mrm.21693 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/mrm.1910380316 10.1002/(SICI)1522-2586(199906)9:6<821::AID-JMRI9>3.0.CO;2-2 10.1016/j.jpdc.2008.05.013 10.1109/TMI.2004.827479 10.1002/mrm.1910400103 10.1006/jmre.1998.1396 10.1002/mrm.1910380623 10.1002/mrm.20261 10.1002/mrm.21624 10.1002/mrm.20758 10.1002/mrm.10200 10.1109/TMI.2005.848376 10.1002/mrm.20267 10.1002/mrm.20492 10.1016/0730-725X(90)90209-K 10.1002/mrm.1241 10.1002/mrm.1910370523 10.1002/mrm.20323 10.1109/TMI.1986.4307765 10.1109/42.97598 10.1109/42.3926 10.1109/TMI.1985.4307722 10.1002/(SICI)1522-2594(199901)41:1<103::AID-MRM15>3.0.CO;2-M 10.1016/S0730-725X(99)00077-6 10.1016/j.jmr.2004.11.009 10.1002/1522-2594(200103)45:3<525::AID-MRM1070>3.0.CO;2-S 10.1002/mrm.21603 10.1016/j.jcp.2004.12.004 10.1002/mrm.1910370619 10.1002/mrm.1910390411 10.1002/mrm.1910200209 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 Wiley‐Liss, Inc. Copyright © 2011 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2011 Wiley‐Liss, Inc. – notice: Copyright © 2011 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1002/mrm.22767 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 1701 |
| ExternalDocumentID | 21520269 10_1002_mrm_22767 MRM22767 ark_67375_WNG_4H89VRMC_M |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Philips Healthcare |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX CITATION O8X AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c3977-64ed97585c22a97f74a2d4d7b51b56dfe3c217dc9a813a7b1ad338c3ac1de2ea3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 151 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291115500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Fri Sep 05 13:59:10 EDT 2025 Thu Apr 03 06:50:29 EDT 2025 Sat Nov 29 02:37:27 EST 2025 Tue Nov 18 21:52:32 EST 2025 Tue Nov 11 03:09:13 EST 2025 Sun Sep 21 06:26:40 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright © 2011 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3977-64ed97585c22a97f74a2d4d7b51b56dfe3c217dc9a813a7b1ad338c3ac1de2ea3 |
| Notes | ArticleID:MRM22767 istex:0F2D5F3F86A424474A03188E149BB869AD7C1823 Philips Healthcare ark:/67375/WNG-4H89VRMC-M ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22767 |
| PMID | 21520269 |
| PQID | 867727986 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_867727986 pubmed_primary_21520269 crossref_primary_10_1002_mrm_22767 crossref_citationtrail_10_1002_mrm_22767 wiley_primary_10_1002_mrm_22767_MRM22767 istex_primary_ark_67375_WNG_4H89VRMC_M |
| PublicationCentury | 2000 |
| PublicationDate | June 2011 |
| PublicationDateYYYYMMDD | 2011-06-01 |
| PublicationDate_xml | – month: 06 year: 2011 text: June 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn. Reson. Med |
| PublicationYear | 2011 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Boesch C, Gruetter R, Martin E. Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems. Magn Reson Med 1991; 20: 268-284. Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding computerised tomography application]. IEEE Trans Med Imaging 1991; 10: 473-478. Langlois S, Desvignes M, Constans JM, Revenu M. MRI geometric distortion: a simple approach to correcting the effects of non-linear gradient fields. J Magn Reson Imaging 1999; 9: 821-831. Chen NK, Wyrwicz AM. Optimized distortion correction technique for echo planar imaging. Magn Reson Med 2001; 45: 525-528. Tyler DJ, Gowland PA. Rapid quantitation of magnetization transfer using pulsed off-resonance irradiation and echo planar imaging. Magn Reson Med 2005; 53: 103-109. Norris DG, Hutchison JM. Concomitant magnetic field gradients and their effects on imaging at low magnetic field strengths. Magn Reson Imaging 1990; 8: 33-37. Edler K, Hoult D. Spherical harmonic inductive detection coils for dynamic pre-emphasis. Magn Reson Med 2008; 60: 277-287. Bernstein MA, Zhou XHJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH. Concomitant gradient terms in phase contrast MR: Analysis and correction. Anal Chem 1998; 39: 300-308. Wan X, Gullberg GT, Parker DL, Zeng GL. Reduction of geometric and intensity distortions in echo-planar imaging using a multireference scan. Magn Reson Med 1997; 37: 932-942. Morrell G, Spielman D. Dynamic shimming for multi-slice magnetic resonance imaging. Magn Reson Med 1997; 38: 477-483. Boernert P, Schomberg H, Aldefeld B, Groen J. Improvements in spiral MR imaging. Magn Reson Mater Phys 1999; 9: 29-41. Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995; 8: 333-344. Zaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 2004; 52: 1156-1166. Alley MT, Glover GH, Pelc NJ. Gradient characterization using a Fourier-transform technique. Magn Reson Med 1998; 39: 581-587. Bachmann P. Analytische Zahlentheorie, Bd. 2: Die Analytische Zahlentheorie. Leipzig, Germany: Teubner; 1894. Larkman DJ, Herlihy AH, Coutts GA, Hajnal JV. Elimination of magnetic field foldover artifacts in MR images. J Magn Reson Imaging 2000; 12: 795-797. Netsch T, van Muiswinkel A. Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Trans Med Imaging 2004; 23: 789-798. Romeo F, Hoult DI. Magnet field profiling: analysis and correcting coil design. Magn Reson Med 1984; 1: 44-65. Maeda A, Sano K, Yokoyama T. Reconstruction by weighted correlation for MRI with time-varying gradients. IEEE Trans Med Imaging 1988; 7: 26-31. Pruessmann KP, Weiger M, Boernert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001; 46: 638-651. Whittaker ET, Watson GN. A course of modern analysis. Cambridge Mathematical Library; Cambridge: United Kingdom, 1973. Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 1998; 39: 801-812. Sekihara K, Matsui S, Kohno H. NMR imaging for magnets with large nonuniformities. IEEE Trans Med Imaging 1985; 4: 193-199. Wider G, Dotsch V, Wuthrich K. Self-Compensating Pulsed Magnetic-Field Gradients For Short Recovery Times. J Magn Reson Ser A 1994; 108: 255-258. Sanchez-Gonzalez J, Tsao J, Dydak U, Desco M, Boesiger P, Pruessmann KP. Minimum-norm reconstruction for sensitivity-encoded magnetic resonance spectroscopic imaging. Magn Reson Med 2006; 55: 287-295. Shen Y, Larkman DJ, Counsell S, Pu IM, Edwards D, Hajnal JV. Correction of high-order eddy current induced geometric distortion in diffusion-weighted echo-planar images. Magn Reson Med 2004; 52: 1184-1189. Zeng H, Constable RT. Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magn Reson Med 2002; 48: 137-146. King KF, Ganin A, Zhou XHJ, Bernstein MA. Concomitant gradient field effects in spiral scans. Magn Reson Med 1999; 41: 103-112. Horsfield MA. Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images. Magn Reson Imaging 1999; 17: 1335-1345. De Zanche N, Barmet C, Nordmeyer-Massner JA, Pruessmann KP. NMR probes for measuring magnetic fields and field dynamics in MR systems. Magn Reson Med 2008; 60: 176-186. Barmet C, De Zanche N, Pruessmann KP. Spatiotemporal magnetic field monitoring for MR. Magn Reson Med 2008; 60: 187-197. Man LC, Pauly JM, Macovski A. Multifrequency interpolation for fast off-resonance correction. Magn Reson Med 1997; 37: 785-792. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962. Beatty PJ, Nishimura DG, Pauly JM. Rapid gridding reconstruction with a minimal oversampling ratio. IEEE Trans Med Imaging 2005; 24: 799-808. Chen DQ, Marr RB, Lauterbur PC. Reconstruction from NMR data acquired with imaging gradients having arbitrary time-dependence. IEEE Trans Med Imaging 1986; 5: 162-164. Barmet C, De Zanche N, Pruessmann KP. A transmit/receive system for magnetic field monitoring of in-vivo MRI. Magn Reson Med 2009; 62: 269-276. Zhao YS, Anderson AW, Gore JC. Computer simulation studies of the effects of dynamic shimming on susceptibility artifacts in EPI at high field. J Magn Reson 2005; 173: 10-22. Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 2004; 51: 103-114. Pruessmann KP. Encoding and reconstruction in parallel MRI. NMR Biomed 2006; 19: 288-299. Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003; 49: 177-182. Duyn JH, Yang YH, Frank JA, van der Veen JW. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998; 132: 150-153. Bydder M, Robson MD. Partial Fourier partially parallel imaging. Magn Reson Med 2005; 53: 1393-1401. Lee JY, Greengard L. The type 3 nonuniform FFT and its applications. J Comput Phys 2005; 206: 1-5. Stone SS, Haldar JP, Tsao SC, Hwu WMW, Sutton BP, Liang ZP. Accelerating advanced MRI reconstructions on GPU's. J Parallel Distrib Comput 2008; 68: 1307-1318. Rosenfeld D. An optimal and efficient new gridding algorithm using singular value decomposition. Magn Reson Med 1998; 40: 14-23. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Stand 1952; 49: 409-436. Alexander AL, Tsuruda JS, Parker DL. Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med 1997; 38: 1016-1021. Hennig J, Welz AM, Schultz G, Korvink J, Liu Z, Speck O, Zaitsev M. Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. Magn Reson Mater Phy 2008; 21: 5-14. Kannengiesser SAR, Brenner AR, Noll TG. Memory- and time-efficient deconvolution of B0 field inhomogeneity effects. Proc ESMRMB Seville 1999; 1999: 67-68. 2005; 173 2009; 62 1985; 4 2010 1991; 10 2006; 55 2004; 23 2009 1973 2006; 19 2006 1999; 42 1950 1999; 41 1894 2002 2001; 45 1998; 40 1998; 132 2001; 46 1995; 8 2005; 24 1999; 9 2004; 52 1998; 39 2002; 48 2004; 51 1952; 49 2000; 12 1984; 1 1997; 37 1999; 17 1999; 1999 1991; 20 1986; 5 1988; 7 2005; 206 2005; 53 1997; 38 2003; 49 2008; 68 2008; 21 1990; 8 1994; 108 2008; 60 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 Bachmann P (e_1_2_7_46_2) 1894 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 Whittaker ET (e_1_2_7_37_2) 1973 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_40_2 Kannengiesser SAR (e_1_2_7_32_2) 1999; 1999 e_1_2_7_42_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 Bernstein MA (e_1_2_7_12_2) 1998; 39 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_38_2 |
| References_xml | – reference: Zaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 2004; 52: 1156-1166. – reference: Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding computerised tomography application]. IEEE Trans Med Imaging 1991; 10: 473-478. – reference: Morrell G, Spielman D. Dynamic shimming for multi-slice magnetic resonance imaging. Magn Reson Med 1997; 38: 477-483. – reference: Hennig J, Welz AM, Schultz G, Korvink J, Liu Z, Speck O, Zaitsev M. Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. Magn Reson Mater Phy 2008; 21: 5-14. – reference: Horsfield MA. Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images. Magn Reson Imaging 1999; 17: 1335-1345. – reference: Chen NK, Wyrwicz AM. Optimized distortion correction technique for echo planar imaging. Magn Reson Med 2001; 45: 525-528. – reference: Norris DG, Hutchison JM. Concomitant magnetic field gradients and their effects on imaging at low magnetic field strengths. Magn Reson Imaging 1990; 8: 33-37. – reference: Kannengiesser SAR, Brenner AR, Noll TG. Memory- and time-efficient deconvolution of B0 field inhomogeneity effects. Proc ESMRMB Seville 1999; 1999: 67-68. – reference: Sanchez-Gonzalez J, Tsao J, Dydak U, Desco M, Boesiger P, Pruessmann KP. Minimum-norm reconstruction for sensitivity-encoded magnetic resonance spectroscopic imaging. Magn Reson Med 2006; 55: 287-295. – reference: Alley MT, Glover GH, Pelc NJ. Gradient characterization using a Fourier-transform technique. Magn Reson Med 1998; 39: 581-587. – reference: Stone SS, Haldar JP, Tsao SC, Hwu WMW, Sutton BP, Liang ZP. Accelerating advanced MRI reconstructions on GPU's. J Parallel Distrib Comput 2008; 68: 1307-1318. – reference: Maeda A, Sano K, Yokoyama T. Reconstruction by weighted correlation for MRI with time-varying gradients. IEEE Trans Med Imaging 1988; 7: 26-31. – reference: Wider G, Dotsch V, Wuthrich K. Self-Compensating Pulsed Magnetic-Field Gradients For Short Recovery Times. J Magn Reson Ser A 1994; 108: 255-258. – reference: Boernert P, Schomberg H, Aldefeld B, Groen J. Improvements in spiral MR imaging. Magn Reson Mater Phys 1999; 9: 29-41. – reference: Pruessmann KP, Weiger M, Boernert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001; 46: 638-651. – reference: Barmet C, De Zanche N, Pruessmann KP. Spatiotemporal magnetic field monitoring for MR. Magn Reson Med 2008; 60: 187-197. – reference: Wan X, Gullberg GT, Parker DL, Zeng GL. Reduction of geometric and intensity distortions in echo-planar imaging using a multireference scan. Magn Reson Med 1997; 37: 932-942. – reference: Bernstein MA, Zhou XHJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH. Concomitant gradient terms in phase contrast MR: Analysis and correction. Anal Chem 1998; 39: 300-308. – reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962. – reference: Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995; 8: 333-344. – reference: Netsch T, van Muiswinkel A. Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Trans Med Imaging 2004; 23: 789-798. – reference: Shen Y, Larkman DJ, Counsell S, Pu IM, Edwards D, Hajnal JV. Correction of high-order eddy current induced geometric distortion in diffusion-weighted echo-planar images. Magn Reson Med 2004; 52: 1184-1189. – reference: Duyn JH, Yang YH, Frank JA, van der Veen JW. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998; 132: 150-153. – reference: Tyler DJ, Gowland PA. Rapid quantitation of magnetization transfer using pulsed off-resonance irradiation and echo planar imaging. Magn Reson Med 2005; 53: 103-109. – reference: Beatty PJ, Nishimura DG, Pauly JM. Rapid gridding reconstruction with a minimal oversampling ratio. IEEE Trans Med Imaging 2005; 24: 799-808. – reference: Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 2004; 51: 103-114. – reference: Lee JY, Greengard L. The type 3 nonuniform FFT and its applications. J Comput Phys 2005; 206: 1-5. – reference: Edler K, Hoult D. Spherical harmonic inductive detection coils for dynamic pre-emphasis. Magn Reson Med 2008; 60: 277-287. – reference: Bydder M, Robson MD. Partial Fourier partially parallel imaging. Magn Reson Med 2005; 53: 1393-1401. – reference: Romeo F, Hoult DI. Magnet field profiling: analysis and correcting coil design. Magn Reson Med 1984; 1: 44-65. – reference: King KF, Ganin A, Zhou XHJ, Bernstein MA. Concomitant gradient field effects in spiral scans. Magn Reson Med 1999; 41: 103-112. – reference: Langlois S, Desvignes M, Constans JM, Revenu M. MRI geometric distortion: a simple approach to correcting the effects of non-linear gradient fields. J Magn Reson Imaging 1999; 9: 821-831. – reference: Boesch C, Gruetter R, Martin E. Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems. Magn Reson Med 1991; 20: 268-284. – reference: Pruessmann KP. Encoding and reconstruction in parallel MRI. NMR Biomed 2006; 19: 288-299. – reference: Rosenfeld D. An optimal and efficient new gridding algorithm using singular value decomposition. Magn Reson Med 1998; 40: 14-23. – reference: Man LC, Pauly JM, Macovski A. Multifrequency interpolation for fast off-resonance correction. Magn Reson Med 1997; 37: 785-792. – reference: Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003; 49: 177-182. – reference: Larkman DJ, Herlihy AH, Coutts GA, Hajnal JV. Elimination of magnetic field foldover artifacts in MR images. J Magn Reson Imaging 2000; 12: 795-797. – reference: Chen DQ, Marr RB, Lauterbur PC. Reconstruction from NMR data acquired with imaging gradients having arbitrary time-dependence. IEEE Trans Med Imaging 1986; 5: 162-164. – reference: Barmet C, De Zanche N, Pruessmann KP. A transmit/receive system for magnetic field monitoring of in-vivo MRI. Magn Reson Med 2009; 62: 269-276. – reference: Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 1998; 39: 801-812. – reference: Alexander AL, Tsuruda JS, Parker DL. Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med 1997; 38: 1016-1021. – reference: Zeng H, Constable RT. Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magn Reson Med 2002; 48: 137-146. – reference: De Zanche N, Barmet C, Nordmeyer-Massner JA, Pruessmann KP. NMR probes for measuring magnetic fields and field dynamics in MR systems. Magn Reson Med 2008; 60: 176-186. – reference: Whittaker ET, Watson GN. A course of modern analysis. Cambridge Mathematical Library; Cambridge: United Kingdom, 1973. – reference: Sekihara K, Matsui S, Kohno H. NMR imaging for magnets with large nonuniformities. IEEE Trans Med Imaging 1985; 4: 193-199. – reference: Bachmann P. Analytische Zahlentheorie, Bd. 2: Die Analytische Zahlentheorie. Leipzig, Germany: Teubner; 1894. – reference: Zhao YS, Anderson AW, Gore JC. Computer simulation studies of the effects of dynamic shimming on susceptibility artifacts in EPI at high field. J Magn Reson 2005; 173: 10-22. – reference: Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Stand 1952; 49: 409-436. – volume: 39 start-page: 300 year: 1998 end-page: 308 article-title: Concomitant gradient terms in phase contrast MR: Analysis and correction publication-title: Anal Chem – volume: 51 start-page: 103 year: 2004 end-page: 114 article-title: Comprehensive approach for correction of motion and distortion in diffusion‐weighted MRI publication-title: Magn Reson Med – year: 2009 – volume: 173 start-page: 10 year: 2005 end-page: 22 article-title: Computer simulation studies of the effects of dynamic shimming on susceptibility artifacts in EPI at high field publication-title: J Magn Reson – volume: 40 start-page: 14 year: 1998 end-page: 23 article-title: An optimal and efficient new gridding algorithm using singular value decomposition publication-title: Magn Reson Med – volume: 49 start-page: 409 year: 1952 end-page: 436 article-title: Methods of conjugate gradients for solving linear systems publication-title: J Res Natl Bureau Stand – volume: 5 start-page: 162 year: 1986 end-page: 164 article-title: Reconstruction from NMR data acquired with imaging gradients having arbitrary time‐dependence publication-title: IEEE Trans Med Imaging – volume: 21 start-page: 5 year: 2008 end-page: 14 article-title: Parallel imaging in non‐bijective, curvilinear magnetic field gradients: a concept study publication-title: Magn Reson Mater Phy – volume: 23 start-page: 789 year: 2004 end-page: 798 article-title: Quantitative evaluation of image‐based distortion correction in diffusion tensor imaging publication-title: IEEE Trans Med Imaging – volume: 1999 start-page: 67 year: 1999 end-page: 68 article-title: Memory‐ and time‐efficient deconvolution of B0 field inhomogeneity effects publication-title: Proc ESMRMB Seville – volume: 60 start-page: 187 year: 2008 end-page: 197 article-title: Spatiotemporal magnetic field monitoring for MR publication-title: Magn Reson Med – volume: 62 start-page: 269 year: 2009 end-page: 276 article-title: A transmit/receive system for magnetic field monitoring of in‐vivo MRI publication-title: Magn Reson Med – volume: 19 start-page: 288 year: 2006 end-page: 299 article-title: Encoding and reconstruction in parallel MRI publication-title: NMR Biomed – volume: 17 start-page: 1335 year: 1999 end-page: 1345 article-title: Mapping eddy current induced fields for the correction of diffusion‐weighted echo planar images publication-title: Magn Reson Imaging – volume: 24 start-page: 799 year: 2005 end-page: 808 article-title: Rapid gridding reconstruction with a minimal oversampling ratio publication-title: IEEE Trans Med Imaging – volume: 20 start-page: 268 year: 1991 end-page: 284 article-title: Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems publication-title: Magn Reson Med – volume: 41 start-page: 103 year: 1999 end-page: 112 article-title: Concomitant gradient field effects in spiral scans publication-title: Magn Reson Med – volume: 132 start-page: 150 year: 1998 end-page: 153 article-title: Simple correction method for k‐space trajectory deviations in MRI publication-title: J Magn Reson – volume: 53 start-page: 1393 year: 2005 end-page: 1401 article-title: Partial Fourier partially parallel imaging publication-title: Magn Reson Med – volume: 9 start-page: 821 year: 1999 end-page: 831 article-title: MRI geometric distortion: a simple approach to correcting the effects of non‐linear gradient fields publication-title: J Magn Reson Imaging – year: 1894 – volume: 49 start-page: 177 year: 2003 end-page: 182 article-title: Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo publication-title: Magn Reson Med – volume: 37 start-page: 785 year: 1997 end-page: 792 article-title: Multifrequency interpolation for fast off‐resonance correction publication-title: Magn Reson Med – volume: 8 start-page: 333 year: 1995 end-page: 344 article-title: Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images publication-title: NMR Biomed – volume: 108 start-page: 255 year: 1994 end-page: 258 article-title: Self‐Compensating Pulsed Magnetic‐Field Gradients For Short Recovery Times publication-title: J Magn Reson Ser A – volume: 55 start-page: 287 year: 2006 end-page: 295 article-title: Minimum‐norm reconstruction for sensitivity‐encoded magnetic resonance spectroscopic imaging publication-title: Magn Reson Med – volume: 206 start-page: 1 year: 2005 end-page: 5 article-title: The type 3 nonuniform FFT and its applications publication-title: J Comput Phys – volume: 46 start-page: 638 year: 2001 end-page: 651 article-title: Advances in sensitivity encoding with arbitrary ‐space trajectories publication-title: Magn Reson Med – volume: 7 start-page: 26 year: 1988 end-page: 31 article-title: Reconstruction by weighted correlation for MRI with time‐varying gradients publication-title: IEEE Trans Med Imaging – volume: 60 start-page: 176 year: 2008 end-page: 186 article-title: NMR probes for measuring magnetic fields and field dynamics in MR systems publication-title: Magn Reson Med – volume: 8 start-page: 33 year: 1990 end-page: 37 article-title: Concomitant magnetic field gradients and their effects on imaging at low magnetic field strengths publication-title: Magn Reson Imaging – year: 1973 – volume: 52 start-page: 1184 year: 2004 end-page: 1189 article-title: Correction of high‐order eddy current induced geometric distortion in diffusion‐weighted echo‐planar images publication-title: Magn Reson Med – volume: 53 start-page: 103 year: 2005 end-page: 109 article-title: Rapid quantitation of magnetization transfer using pulsed off‐resonance irradiation and echo planar imaging publication-title: Magn Reson Med – year: 1950 – volume: 12 start-page: 795 year: 2000 end-page: 797 article-title: Elimination of magnetic field foldover artifacts in MR images publication-title: J Magn Reson Imaging – volume: 68 start-page: 1307 year: 2008 end-page: 1318 article-title: Accelerating advanced MRI reconstructions on GPU's publication-title: J Parallel Distrib Comput – volume: 39 start-page: 801 year: 1998 end-page: 812 article-title: Characterization of and correction for eddy current artifacts in echo planar diffusion imaging publication-title: Magn Reson Med – start-page: 216 year: 2010 – year: 2010 – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 48 start-page: 137 year: 2002 end-page: 146 article-title: Image distortion correction in EPI: comparison of field mapping with point spread function mapping publication-title: Magn Reson Med – volume: 38 start-page: 477 year: 1997 end-page: 483 article-title: Dynamic shimming for multi‐slice magnetic resonance imaging publication-title: Magn Reson Med – volume: 4 start-page: 193 year: 1985 end-page: 199 article-title: NMR imaging for magnets with large nonuniformities publication-title: IEEE Trans Med Imaging – volume: 10 start-page: 473 year: 1991 end-page: 478 article-title: Selection of a convolution function for Fourier inversion using gridding computerised tomography application] publication-title: IEEE Trans Med Imaging – volume: 1 start-page: 44 year: 1984 end-page: 65 article-title: Magnet field profiling: analysis and correcting coil design publication-title: Magn Reson Med – volume: 38 start-page: 1016 year: 1997 end-page: 1021 article-title: Elimination of eddy current artifacts in diffusion‐weighted echo‐planar images: the use of bipolar gradients publication-title: Magn Reson Med – volume: 60 start-page: 277 year: 2008 end-page: 287 article-title: Spherical harmonic inductive detection coils for dynamic pre‐emphasis publication-title: Magn Reson Med – year: 2002 – year: 2006 – volume: 9 start-page: 29 year: 1999 end-page: 41 article-title: Improvements in spiral MR imaging publication-title: Magn Reson Mater Phys – volume: 52 start-page: 1156 year: 2004 end-page: 1166 article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo‐planar imaging distortion correction publication-title: Magn Reson Med – volume: 37 start-page: 932 year: 1997 end-page: 942 article-title: Reduction of geometric and intensity distortions in echo‐planar imaging using a multireference scan publication-title: Magn Reson Med – volume: 45 start-page: 525 year: 2001 end-page: 528 article-title: Optimized distortion correction technique for echo planar imaging publication-title: Magn Reson Med – volume: 39 start-page: 581 year: 1998 end-page: 587 article-title: Gradient characterization using a Fourier‐transform technique publication-title: Magn Reson Med – volume: 1999 start-page: 67 year: 1999 ident: e_1_2_7_32_2 article-title: Memory‐ and time‐efficient deconvolution of B0 field inhomogeneity effects publication-title: Proc ESMRMB Seville – ident: e_1_2_7_13_2 doi: 10.1002/nbm.1940080707 – ident: e_1_2_7_18_2 doi: 10.1002/mrm.10308 – ident: e_1_2_7_24_2 doi: 10.1002/mrm.10677 – ident: e_1_2_7_4_2 doi: 10.1007/s10334-008-0105-7 – volume: 39 start-page: 300 year: 1998 ident: e_1_2_7_12_2 article-title: Concomitant gradient terms in phase contrast MR: Analysis and correction publication-title: Anal Chem – ident: e_1_2_7_35_2 doi: 10.1002/mrm.21996 – ident: e_1_2_7_36_2 doi: 10.1002/mrm.1910010107 – ident: e_1_2_7_3_2 doi: 10.1002/1522-2586(200011)12:5<795::AID-JMRI20>3.0.CO;2-H – ident: e_1_2_7_42_2 doi: 10.1002/nbm.1042 – ident: e_1_2_7_10_2 doi: 10.1002/mrm.1910390518 – ident: e_1_2_7_34_2 – ident: e_1_2_7_45_2 – ident: e_1_2_7_47_2 doi: 10.6028/jres.049.044 – ident: e_1_2_7_19_2 doi: 10.1007/BF02634590 – ident: e_1_2_7_16_2 doi: 10.1006/jmra.1994.1120 – ident: e_1_2_7_28_2 doi: 10.1002/mrm.21693 – ident: e_1_2_7_15_2 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: e_1_2_7_56_2 – ident: e_1_2_7_8_2 doi: 10.1002/mrm.1910380316 – ident: e_1_2_7_2_2 doi: 10.1002/(SICI)1522-2586(199906)9:6<821::AID-JMRI9>3.0.CO;2-2 – ident: e_1_2_7_55_2 doi: 10.1016/j.jpdc.2008.05.013 – ident: e_1_2_7_25_2 doi: 10.1109/TMI.2004.827479 – ident: e_1_2_7_31_2 doi: 10.1002/mrm.1910400103 – ident: e_1_2_7_52_2 doi: 10.1006/jmre.1998.1396 – ident: e_1_2_7_17_2 doi: 10.1002/mrm.1910380623 – ident: e_1_2_7_23_2 doi: 10.1002/mrm.20261 – ident: e_1_2_7_29_2 doi: 10.1002/mrm.21624 – ident: e_1_2_7_41_2 doi: 10.1002/mrm.20758 – ident: e_1_2_7_22_2 doi: 10.1002/mrm.10200 – ident: e_1_2_7_49_2 doi: 10.1109/TMI.2005.848376 – ident: e_1_2_7_27_2 doi: 10.1002/mrm.20267 – ident: e_1_2_7_54_2 doi: 10.1002/mrm.20492 – ident: e_1_2_7_7_2 doi: 10.1016/0730-725X(90)90209-K – ident: e_1_2_7_44_2 doi: 10.1002/mrm.1241 – ident: e_1_2_7_6_2 doi: 10.1002/mrm.1910370523 – ident: e_1_2_7_43_2 – volume-title: A course of modern analysis year: 1973 ident: e_1_2_7_37_2 – ident: e_1_2_7_14_2 doi: 10.1002/mrm.20323 – ident: e_1_2_7_30_2 doi: 10.1109/TMI.1986.4307765 – ident: e_1_2_7_48_2 doi: 10.1109/42.97598 – ident: e_1_2_7_5_2 doi: 10.1109/42.3926 – ident: e_1_2_7_40_2 doi: 10.1109/TMI.1985.4307722 – volume-title: Analytische Zahlentheorie, Bd. 2: Die Analytische Zahlentheorie year: 1894 ident: e_1_2_7_46_2 – ident: e_1_2_7_11_2 doi: 10.1002/(SICI)1522-2594(199901)41:1<103::AID-MRM15>3.0.CO;2-M – ident: e_1_2_7_26_2 doi: 10.1016/S0730-725X(99)00077-6 – ident: e_1_2_7_9_2 doi: 10.1016/j.jmr.2004.11.009 – ident: e_1_2_7_21_2 doi: 10.1002/1522-2594(200103)45:3<525::AID-MRM1070>3.0.CO;2-S – ident: e_1_2_7_38_2 doi: 10.1002/mrm.21603 – ident: e_1_2_7_50_2 doi: 10.1016/j.jcp.2004.12.004 – ident: e_1_2_7_39_2 – ident: e_1_2_7_20_2 doi: 10.1002/mrm.1910370619 – ident: e_1_2_7_33_2 – ident: e_1_2_7_53_2 doi: 10.1002/mrm.1910390411 – ident: e_1_2_7_51_2 doi: 10.1002/mrm.1910200209 |
| SSID | ssj0009974 |
| Score | 2.4228349 |
| Snippet | Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1690 |
| SubjectTerms | algebraic image reconstruction Algorithms Brain Mapping - methods diffusion imaging DTI Echo-Planar Imaging Eddy current correction Feasibility Studies Humans Image Processing, Computer-Assisted - methods magnetic field monitoring Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Phantoms, Imaging |
| Title | Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations |
| URI | https://api.istex.fr/ark:/67375/WNG-4H89VRMC-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22767 https://www.ncbi.nlm.nih.gov/pubmed/21520269 https://www.proquest.com/docview/867727986 |
| Volume | 65 |
| WOSCitedRecordID | wos000291115500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB486hFfvB51vSxBRHzp0aZp0-CTqKuCXWTxsj6FNElB1O6yVfHnm0u3IigcOG99mIaQmUm-mUy-AdhhoSxIzEhQ4EgFREkSCGn8URp0n8Y01NTd4N9e0m437ffZ1QQcjt_CeH6IJuFmPcPt19bBRV7tf5KGPo-e_2JME_uSPCTOKe8uup-Eu8wzMFNi9xlGxqxCB3i_-fPLWTRll_X9O6D5Fbe6g6cz_19TXoC5Gm-iI28gizChyyWYyeob9SX47UpAZbUM977kAzkyTuQC5YZcFhloi7LeBXookUGMaOgeLUmNBgWqXE12TXH1hFxJHBrqkTnLcp8O_AM3ndPr4_OgbrwQSIsHg4RoxWwgITEWjBaUCKyIonkc5nGiCh1JE8koyUQaRoLmoVAm0pWRkKHSWItoBSbLQanXAKWRUBTLpMhpQZS27GYHmhQh1gY7kEi3YG-sAi5rVnLbHOOJez5lzM2icbdoLdhuRIeeiuM7oV2nx0ZCjB5t7RqN-V33jJPzlN32smOetQCNFc2NR9lrElHqwWvFLcMfpixNWrDqDaAZzDYBNkErM7N2ev55HjzrZe5j_d9FN2DWZ6xtjmcTJo2O9RZMy7eXh2rUhl-0n7Zh6qTXublsO2P_AOXl_0I |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-VlgEv43NbGQwLoYmXAHGcOJZ4mRhdEU2FKj6fLMd2JASkVcum_fn4I02FxKRJvOXhYlm-O_t35_PvAPZYKAsSMxIUOFIBUZIEQhp_lAbdpzENNXU3-Nc92u-nt7fsogHH07cwnh-iTrhZz3D7tXVwm5A-nLGGPo2fDjCmCZ2DFjFmFDeh9XPQuerNSHeZZ2GmxO41jEyZhY7wYf3zq_OoZZf271tg8zV2dYdPZ_l9016BjxXoRD-8laxCQ5drsJBV1-pr8MHVgcrJOtz5ug_kGDmRi5Zrhllk8C3KBmfovkQGNqKRe7kkNRoWaOIKsyueq0fk6uLQSI_NgZb7nOAGXHVOL0-6QdV9IZAWFAYJ0YrZaEJiLBgtKBFYEUXzOMzjRBU6kiacUZKJNIwEzUOhTLgrIyFDpbEW0SdolsNSfwGURkJRLJMipwVR2lKcHWlShFgbAEEi3Yb9qQ64rKjJbYeMR-5JlTE3i8bdorVhtxYdeT6Ot4S-O0XWEmL8YAvYaMxv-r846absepCd8KwNaKppbtzK3pWIUg9_T7il-cOUpUkbPnsLqAeznYBN5MrMrJ2i_z0Png0y97H5_6I7sNi9zHq8d9Y__wpLPoVtkz5b0DT61tswL_8830_G3yprfwHfGgIV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4B26Jeyhu2LWBVVcUlQBwnjqVeKmABsVmhVaHLyXL8kBCQXe0WxM_Hj2wQEkiVuOUwSUYzHvub8fgzwA8WS0NSRiKDExURJUkkpI1HadF9ntJYU7-Df9mlvV4-GLDzGfg1PQsT-CGagpuLDD9fuwDXI2X2nllD78Z3uxjTjM5Cy_4us2HZOux3LrrPpLsssDBT4uYaRqbMQvt4r3n5xXrUcqZ9fA1svsSufvHpLLxP7UX4XINO9DuMkiWY0dUyzBf1tvoyfPR9oHKyAleh7wN5Rk7ks-WGYRZZfIuK_im6rpCFjWjkTy5JjYYGTXxjds1zdYt8Xxwa6bFd0MpQE1yFi87Rn4OTqL59IZIOFEYZ0Yq5bEJiLBg1lAisiKJlGpdppoxOpE1nlGQijxNBy1gom-7KRMhYaaxFsgZz1bDSG4DyRCiKZWZKaojSjuJsXxMTY20BBEl0G3amPuCypiZ3N2Tc8kCqjLk1GvdGa8P3RnQU-DheE_rpHdlIiPGNa2CjKf_bO-bkJGeX_eKAF21AU09zG1Zur0RUeng_4Y7mD1OWZ21YDyOg-Zi7Cdhmrsxq7R39th686Bf-4cv_i27D_Plhh3dPe2df4VOoYLuazzeYs-7Wm_BBPvy7noy36sH-BGgSAZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+order+reconstruction+for+MRI+in+the+presence+of+spatiotemporal+field+perturbations&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Wilm%2C+Bertram+J.&rft.au=Barmet%2C+Christoph&rft.au=Pavan%2C+Matteo&rft.au=Pruessmann%2C+Klaas+P.&rft.date=2011-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=65&rft.issue=6&rft.spage=1690&rft.epage=1701&rft_id=info:doi/10.1002%2Fmrm.22767&rft.externalDBID=10.1002%252Fmrm.22767&rft.externalDocID=MRM22767 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |