Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations

Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k‐space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, a...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 65; no. 6; pp. 1690 - 1701
Main Authors: Wilm, Bertram J., Barmet, Christoph, Pavan, Matteo, Pruessmann, Klaas P.
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2011
Subjects:
ISSN:0740-3194, 1522-2594, 1522-2594
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k‐space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third‐order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate‐gradient algorithm that uses explicit matrix‐vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.
AbstractList Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k-space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third-order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate-gradient algorithm that uses explicit matrix-vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration.
Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k‐space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third‐order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate‐gradient algorithm that uses explicit matrix‐vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.
Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k-space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third-order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate-gradient algorithm that uses explicit matrix-vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration.Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k-space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third-order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate-gradient algorithm that uses explicit matrix-vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration.
Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k ‐space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third‐order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate‐gradient algorithm that uses explicit matrix‐vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.
Author Wilm, Bertram J.
Pavan, Matteo
Barmet, Christoph
Pruessmann, Klaas P.
Author_xml – sequence: 1
  givenname: Bertram J.
  surname: Wilm
  fullname: Wilm, Bertram J.
  organization: Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Christoph
  surname: Barmet
  fullname: Barmet, Christoph
  organization: Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
– sequence: 3
  givenname: Matteo
  surname: Pavan
  fullname: Pavan, Matteo
  organization: Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
– sequence: 4
  givenname: Klaas P.
  surname: Pruessmann
  fullname: Pruessmann, Klaas P.
  email: pruessmann@biomed.ee.ethz.ch
  organization: Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21520269$$D View this record in MEDLINE/PubMed
BookMark eNp90M1O3DAUBWALgWCgLHiByruKRcA_SRwvqxEwSIRKo7aIleXYN8VtEgfbEfD2BAZYVGo3vov7nSv57KPtwQ-A0BElJ5QQdtqH_oQxUYottKAFYxkrZL6NFkTkJONU5ntoP8bfhBApRb6L9tisCCvlAt2u3K87CNgHO78BjB9iCpNJzg-49QHX60vsBpzuAI8BIgwGsG9xHPVMEvSjD7rDrYPO4hFCmkLzshniJ7TT6i7C4ds8QD_Oz74vV9nVt4vL5derzHApRFbmYKUoqsIwpqVoRa6Zza1oCtoUpW2BG0aFNVJXlGvRUG05rwzXhlpgoPkB-rK5OwZ_P0FMqnfRQNfpAfwUVVUKwYSsyll-fpNT04NVY3C9Dk_qvY0ZHG-ACT7GAO0HoUS9NK3mptVr07M9_csal15_noJ23f8SD66Dp3-fVvW6fk9km4SLCR4_Ejr8UfNWFOrm-kLlq0r-XNdLVfNnvJCfpg
CitedBy_id crossref_primary_10_1002_mrm_30262
crossref_primary_10_3389_fphy_2023_1124980
crossref_primary_10_1002_mrm_24263
crossref_primary_10_1002_mrm_30425
crossref_primary_10_1002_nbm_4056
crossref_primary_10_1002_mrm_30427
crossref_primary_10_1016_j_jmr_2023_107572
crossref_primary_10_1016_j_neuroimage_2022_118958
crossref_primary_10_1002_mrm_29957
crossref_primary_10_1002_mrm_28505
crossref_primary_10_1002_mrm_28346
crossref_primary_10_1002_mrm_29953
crossref_primary_10_1007_s10334_019_00770_2
crossref_primary_10_1002_mrm_25235
crossref_primary_10_1002_mrm_28501
crossref_primary_10_1088_1361_6560_aaf97a
crossref_primary_10_1016_j_neuroimage_2015_10_019
crossref_primary_10_1007_s10334_015_0515_2
crossref_primary_10_1002_nbm_3753
crossref_primary_10_1002_mrm_24494
crossref_primary_10_1016_j_dib_2022_108050
crossref_primary_10_1002_mrm_29781
crossref_primary_10_1016_j_cobeha_2021_01_011
crossref_primary_10_1088_1361_6579_aa6e8c
crossref_primary_10_1002_mrm_29943
crossref_primary_10_1002_mrm_29666
crossref_primary_10_1002_nbm_3359
crossref_primary_10_1016_j_pnmrs_2019_07_001
crossref_primary_10_1002_mrm_24934
crossref_primary_10_1186_s12968_014_0097_6
crossref_primary_10_1007_s00723_023_01584_1
crossref_primary_10_1002_jmri_27411
crossref_primary_10_1002_mrm_29058
crossref_primary_10_1002_nbm_4434
crossref_primary_10_3389_fnins_2014_00427
crossref_primary_10_1002_nbm_4831
crossref_primary_10_1002_mrm_29573
crossref_primary_10_1109_TMI_2015_2427157
crossref_primary_10_1002_mrm_25770
crossref_primary_10_1002_mrm_30601
crossref_primary_10_1109_TASC_2021_3052825
crossref_primary_10_1109_TMI_2011_2174158
crossref_primary_10_1002_mrm_23111
crossref_primary_10_1007_s10334_022_01021_7
crossref_primary_10_1002_mrm_24202
crossref_primary_10_1103_PRXQuantum_5_020320
crossref_primary_10_1016_j_neuroimage_2021_118530
crossref_primary_10_1016_j_neuroimage_2020_117286
crossref_primary_10_1002_mrm_27957
crossref_primary_10_1002_mrm_24606
crossref_primary_10_1002_mrm_29161
crossref_primary_10_1002_jmri_27247
crossref_primary_10_1016_j_neuroimage_2017_11_031
crossref_primary_10_1002_mrm_25085
crossref_primary_10_1002_mrm_28078
crossref_primary_10_1002_mrm_28110
crossref_primary_10_1002_mrm_29167
crossref_primary_10_1002_mrm_30314
crossref_primary_10_1002_mrm_28591
crossref_primary_10_1002_mp_12762
crossref_primary_10_1002_mrm_70012
crossref_primary_10_1002_mrm_26735
crossref_primary_10_1002_cmr_b_21324
crossref_primary_10_1002_mrm_25487
crossref_primary_10_1016_j_neuroimage_2020_116861
crossref_primary_10_1002_mrm_24836
crossref_primary_10_3934_ipi_2013_7_1215
crossref_primary_10_1002_mrm_25802
crossref_primary_10_1002_mrm_25407
crossref_primary_10_1016_j_jmr_2014_04_018
crossref_primary_10_1016_j_neuroimage_2017_01_014
crossref_primary_10_1097_RLI_0000000000000167
crossref_primary_10_1002_mrm_27055
crossref_primary_10_1002_mrm_27176
crossref_primary_10_1002_mrm_30069
crossref_primary_10_1109_TMAG_2012_2234758
crossref_primary_10_1002_mrm_29232
crossref_primary_10_1109_TMI_2016_2514608
crossref_primary_10_1002_mrm_28261
crossref_primary_10_1093_psyrad_kkae013
crossref_primary_10_1002_mrm_26524
crossref_primary_10_1002_mrm_25432
crossref_primary_10_1002_mrm_29633
crossref_primary_10_1002_mrm_70006
crossref_primary_10_1002_mrm_25838
crossref_primary_10_1002_mrm_30180
crossref_primary_10_1109_TMI_2012_2190991
crossref_primary_10_1038_s41598_017_11138_8
crossref_primary_10_1002_mrm_29460
crossref_primary_10_1002_mrm_25303
crossref_primary_10_1002_mrm_30606
crossref_primary_10_1038_s41551_025_01457_x
crossref_primary_10_1002_mrm_26355
crossref_primary_10_1002_mrm_25827
crossref_primary_10_1016_j_neuroimage_2023_120159
crossref_primary_10_1016_j_neuroimage_2018_02_062
crossref_primary_10_1109_MSP_2019_2936964
crossref_primary_10_1002_mrm_25826
crossref_primary_10_1109_TMAG_2012_2196051
crossref_primary_10_1002_mrm_29378
crossref_primary_10_1002_mrm_30521
crossref_primary_10_1002_mrm_28168
crossref_primary_10_1002_mrm_29255
crossref_primary_10_1016_j_neuroimage_2017_07_062
crossref_primary_10_1002_mrm_24120
crossref_primary_10_1002_mrm_29130
crossref_primary_10_1002_mrm_24366
crossref_primary_10_1016_j_neuroimage_2017_04_044
crossref_primary_10_1002_mrm_28725
crossref_primary_10_1109_JSEN_2024_3509722
crossref_primary_10_1118_1_4837315
crossref_primary_10_1016_j_nic_2012_02_005
crossref_primary_10_1002_mrm_25851
crossref_primary_10_1002_mrm_28600
crossref_primary_10_1109_TMI_2013_2266259
crossref_primary_10_1016_j_neuroimage_2011_12_009
crossref_primary_10_1002_mrm_25859
crossref_primary_10_1002_mrm_30471
crossref_primary_10_1002_mrm_30351
crossref_primary_10_1088_0031_9155_59_13_3241
crossref_primary_10_1002_mrm_26493
crossref_primary_10_1002_mrm_29124
crossref_primary_10_1002_mrm_30113
crossref_primary_10_3389_fcvm_2022_826283
crossref_primary_10_1016_j_neuroimage_2017_01_022
crossref_primary_10_1002_mrm_29123
crossref_primary_10_2463_jjmrm_2025_1838
crossref_primary_10_1002_mrm_30635
crossref_primary_10_1016_j_neuroimage_2021_118738
crossref_primary_10_1002_mrm_27063
crossref_primary_10_1002_mrm_25841
crossref_primary_10_1002_mrm_30506
crossref_primary_10_1016_j_neuroimage_2014_05_024
crossref_primary_10_1002_nbm_4867
crossref_primary_10_1002_mrm_25167
crossref_primary_10_1002_mrm_28554
crossref_primary_10_1002_mrm_24478
crossref_primary_10_1002_mrm_29523
crossref_primary_10_1002_mrm_27902
crossref_primary_10_1109_TMI_2019_2936107
crossref_primary_10_1002_mrm_24518
Cites_doi 10.1002/nbm.1940080707
10.1002/mrm.10308
10.1002/mrm.10677
10.1007/s10334-008-0105-7
10.1002/mrm.21996
10.1002/mrm.1910010107
10.1002/1522-2586(200011)12:5<795::AID-JMRI20>3.0.CO;2-H
10.1002/nbm.1042
10.1002/mrm.1910390518
10.6028/jres.049.044
10.1007/BF02634590
10.1006/jmra.1994.1120
10.1002/mrm.21693
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.1910380316
10.1002/(SICI)1522-2586(199906)9:6<821::AID-JMRI9>3.0.CO;2-2
10.1016/j.jpdc.2008.05.013
10.1109/TMI.2004.827479
10.1002/mrm.1910400103
10.1006/jmre.1998.1396
10.1002/mrm.1910380623
10.1002/mrm.20261
10.1002/mrm.21624
10.1002/mrm.20758
10.1002/mrm.10200
10.1109/TMI.2005.848376
10.1002/mrm.20267
10.1002/mrm.20492
10.1016/0730-725X(90)90209-K
10.1002/mrm.1241
10.1002/mrm.1910370523
10.1002/mrm.20323
10.1109/TMI.1986.4307765
10.1109/42.97598
10.1109/42.3926
10.1109/TMI.1985.4307722
10.1002/(SICI)1522-2594(199901)41:1<103::AID-MRM15>3.0.CO;2-M
10.1016/S0730-725X(99)00077-6
10.1016/j.jmr.2004.11.009
10.1002/1522-2594(200103)45:3<525::AID-MRM1070>3.0.CO;2-S
10.1002/mrm.21603
10.1016/j.jcp.2004.12.004
10.1002/mrm.1910370619
10.1002/mrm.1910390411
10.1002/mrm.1910200209
ContentType Journal Article
Copyright Copyright © 2011 Wiley‐Liss, Inc.
Copyright © 2011 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley‐Liss, Inc.
– notice: Copyright © 2011 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mrm.22767
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1701
ExternalDocumentID 21520269
10_1002_mrm_22767
MRM22767
ark_67375_WNG_4H89VRMC_M
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Philips Healthcare
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3977-64ed97585c22a97f74a2d4d7b51b56dfe3c217dc9a813a7b1ad338c3ac1de2ea3
IEDL.DBID WIN
ISICitedReferencesCount 151
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291115500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Fri Sep 05 13:59:10 EDT 2025
Thu Apr 03 06:50:29 EDT 2025
Sat Nov 29 02:37:27 EST 2025
Tue Nov 18 21:52:32 EST 2025
Tue Nov 11 03:09:13 EST 2025
Sun Sep 21 06:26:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2011 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3977-64ed97585c22a97f74a2d4d7b51b56dfe3c217dc9a813a7b1ad338c3ac1de2ea3
Notes ArticleID:MRM22767
istex:0F2D5F3F86A424474A03188E149BB869AD7C1823
Philips Healthcare
ark:/67375/WNG-4H89VRMC-M
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22767
PMID 21520269
PQID 867727986
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_867727986
pubmed_primary_21520269
crossref_primary_10_1002_mrm_22767
crossref_citationtrail_10_1002_mrm_22767
wiley_primary_10_1002_mrm_22767_MRM22767
istex_primary_ark_67375_WNG_4H89VRMC_M
PublicationCentury 2000
PublicationDate June 2011
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: June 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Boesch C, Gruetter R, Martin E. Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems. Magn Reson Med 1991; 20: 268-284.
Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding computerised tomography application]. IEEE Trans Med Imaging 1991; 10: 473-478.
Langlois S, Desvignes M, Constans JM, Revenu M. MRI geometric distortion: a simple approach to correcting the effects of non-linear gradient fields. J Magn Reson Imaging 1999; 9: 821-831.
Chen NK, Wyrwicz AM. Optimized distortion correction technique for echo planar imaging. Magn Reson Med 2001; 45: 525-528.
Tyler DJ, Gowland PA. Rapid quantitation of magnetization transfer using pulsed off-resonance irradiation and echo planar imaging. Magn Reson Med 2005; 53: 103-109.
Norris DG, Hutchison JM. Concomitant magnetic field gradients and their effects on imaging at low magnetic field strengths. Magn Reson Imaging 1990; 8: 33-37.
Edler K, Hoult D. Spherical harmonic inductive detection coils for dynamic pre-emphasis. Magn Reson Med 2008; 60: 277-287.
Bernstein MA, Zhou XHJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH. Concomitant gradient terms in phase contrast MR: Analysis and correction. Anal Chem 1998; 39: 300-308.
Wan X, Gullberg GT, Parker DL, Zeng GL. Reduction of geometric and intensity distortions in echo-planar imaging using a multireference scan. Magn Reson Med 1997; 37: 932-942.
Morrell G, Spielman D. Dynamic shimming for multi-slice magnetic resonance imaging. Magn Reson Med 1997; 38: 477-483.
Boernert P, Schomberg H, Aldefeld B, Groen J. Improvements in spiral MR imaging. Magn Reson Mater Phys 1999; 9: 29-41.
Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995; 8: 333-344.
Zaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 2004; 52: 1156-1166.
Alley MT, Glover GH, Pelc NJ. Gradient characterization using a Fourier-transform technique. Magn Reson Med 1998; 39: 581-587.
Bachmann P. Analytische Zahlentheorie, Bd. 2: Die Analytische Zahlentheorie. Leipzig, Germany: Teubner; 1894.
Larkman DJ, Herlihy AH, Coutts GA, Hajnal JV. Elimination of magnetic field foldover artifacts in MR images. J Magn Reson Imaging 2000; 12: 795-797.
Netsch T, van Muiswinkel A. Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Trans Med Imaging 2004; 23: 789-798.
Romeo F, Hoult DI. Magnet field profiling: analysis and correcting coil design. Magn Reson Med 1984; 1: 44-65.
Maeda A, Sano K, Yokoyama T. Reconstruction by weighted correlation for MRI with time-varying gradients. IEEE Trans Med Imaging 1988; 7: 26-31.
Pruessmann KP, Weiger M, Boernert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001; 46: 638-651.
Whittaker ET, Watson GN. A course of modern analysis. Cambridge Mathematical Library; Cambridge: United Kingdom, 1973.
Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 1998; 39: 801-812.
Sekihara K, Matsui S, Kohno H. NMR imaging for magnets with large nonuniformities. IEEE Trans Med Imaging 1985; 4: 193-199.
Wider G, Dotsch V, Wuthrich K. Self-Compensating Pulsed Magnetic-Field Gradients For Short Recovery Times. J Magn Reson Ser A 1994; 108: 255-258.
Sanchez-Gonzalez J, Tsao J, Dydak U, Desco M, Boesiger P, Pruessmann KP. Minimum-norm reconstruction for sensitivity-encoded magnetic resonance spectroscopic imaging. Magn Reson Med 2006; 55: 287-295.
Shen Y, Larkman DJ, Counsell S, Pu IM, Edwards D, Hajnal JV. Correction of high-order eddy current induced geometric distortion in diffusion-weighted echo-planar images. Magn Reson Med 2004; 52: 1184-1189.
Zeng H, Constable RT. Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magn Reson Med 2002; 48: 137-146.
King KF, Ganin A, Zhou XHJ, Bernstein MA. Concomitant gradient field effects in spiral scans. Magn Reson Med 1999; 41: 103-112.
Horsfield MA. Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images. Magn Reson Imaging 1999; 17: 1335-1345.
De Zanche N, Barmet C, Nordmeyer-Massner JA, Pruessmann KP. NMR probes for measuring magnetic fields and field dynamics in MR systems. Magn Reson Med 2008; 60: 176-186.
Barmet C, De Zanche N, Pruessmann KP. Spatiotemporal magnetic field monitoring for MR. Magn Reson Med 2008; 60: 187-197.
Man LC, Pauly JM, Macovski A. Multifrequency interpolation for fast off-resonance correction. Magn Reson Med 1997; 37: 785-792.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
Beatty PJ, Nishimura DG, Pauly JM. Rapid gridding reconstruction with a minimal oversampling ratio. IEEE Trans Med Imaging 2005; 24: 799-808.
Chen DQ, Marr RB, Lauterbur PC. Reconstruction from NMR data acquired with imaging gradients having arbitrary time-dependence. IEEE Trans Med Imaging 1986; 5: 162-164.
Barmet C, De Zanche N, Pruessmann KP. A transmit/receive system for magnetic field monitoring of in-vivo MRI. Magn Reson Med 2009; 62: 269-276.
Zhao YS, Anderson AW, Gore JC. Computer simulation studies of the effects of dynamic shimming on susceptibility artifacts in EPI at high field. J Magn Reson 2005; 173: 10-22.
Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 2004; 51: 103-114.
Pruessmann KP. Encoding and reconstruction in parallel MRI. NMR Biomed 2006; 19: 288-299.
Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003; 49: 177-182.
Duyn JH, Yang YH, Frank JA, van der Veen JW. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998; 132: 150-153.
Bydder M, Robson MD. Partial Fourier partially parallel imaging. Magn Reson Med 2005; 53: 1393-1401.
Lee JY, Greengard L. The type 3 nonuniform FFT and its applications. J Comput Phys 2005; 206: 1-5.
Stone SS, Haldar JP, Tsao SC, Hwu WMW, Sutton BP, Liang ZP. Accelerating advanced MRI reconstructions on GPU's. J Parallel Distrib Comput 2008; 68: 1307-1318.
Rosenfeld D. An optimal and efficient new gridding algorithm using singular value decomposition. Magn Reson Med 1998; 40: 14-23.
Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Stand 1952; 49: 409-436.
Alexander AL, Tsuruda JS, Parker DL. Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med 1997; 38: 1016-1021.
Hennig J, Welz AM, Schultz G, Korvink J, Liu Z, Speck O, Zaitsev M. Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. Magn Reson Mater Phy 2008; 21: 5-14.
Kannengiesser SAR, Brenner AR, Noll TG. Memory- and time-efficient deconvolution of B0 field inhomogeneity effects. Proc ESMRMB Seville 1999; 1999: 67-68.
2005; 173
2009; 62
1985; 4
2010
1991; 10
2006; 55
2004; 23
2009
1973
2006; 19
2006
1999; 42
1950
1999; 41
1894
2002
2001; 45
1998; 40
1998; 132
2001; 46
1995; 8
2005; 24
1999; 9
2004; 52
1998; 39
2002; 48
2004; 51
1952; 49
2000; 12
1984; 1
1997; 37
1999; 17
1999; 1999
1991; 20
1986; 5
1988; 7
2005; 206
2005; 53
1997; 38
2003; 49
2008; 68
2008; 21
1990; 8
1994; 108
2008; 60
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
Bachmann P (e_1_2_7_46_2) 1894
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
Whittaker ET (e_1_2_7_37_2) 1973
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_40_2
Kannengiesser SAR (e_1_2_7_32_2) 1999; 1999
e_1_2_7_42_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
Bernstein MA (e_1_2_7_12_2) 1998; 39
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_38_2
References_xml – reference: Zaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 2004; 52: 1156-1166.
– reference: Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding computerised tomography application]. IEEE Trans Med Imaging 1991; 10: 473-478.
– reference: Morrell G, Spielman D. Dynamic shimming for multi-slice magnetic resonance imaging. Magn Reson Med 1997; 38: 477-483.
– reference: Hennig J, Welz AM, Schultz G, Korvink J, Liu Z, Speck O, Zaitsev M. Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. Magn Reson Mater Phy 2008; 21: 5-14.
– reference: Horsfield MA. Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images. Magn Reson Imaging 1999; 17: 1335-1345.
– reference: Chen NK, Wyrwicz AM. Optimized distortion correction technique for echo planar imaging. Magn Reson Med 2001; 45: 525-528.
– reference: Norris DG, Hutchison JM. Concomitant magnetic field gradients and their effects on imaging at low magnetic field strengths. Magn Reson Imaging 1990; 8: 33-37.
– reference: Kannengiesser SAR, Brenner AR, Noll TG. Memory- and time-efficient deconvolution of B0 field inhomogeneity effects. Proc ESMRMB Seville 1999; 1999: 67-68.
– reference: Sanchez-Gonzalez J, Tsao J, Dydak U, Desco M, Boesiger P, Pruessmann KP. Minimum-norm reconstruction for sensitivity-encoded magnetic resonance spectroscopic imaging. Magn Reson Med 2006; 55: 287-295.
– reference: Alley MT, Glover GH, Pelc NJ. Gradient characterization using a Fourier-transform technique. Magn Reson Med 1998; 39: 581-587.
– reference: Stone SS, Haldar JP, Tsao SC, Hwu WMW, Sutton BP, Liang ZP. Accelerating advanced MRI reconstructions on GPU's. J Parallel Distrib Comput 2008; 68: 1307-1318.
– reference: Maeda A, Sano K, Yokoyama T. Reconstruction by weighted correlation for MRI with time-varying gradients. IEEE Trans Med Imaging 1988; 7: 26-31.
– reference: Wider G, Dotsch V, Wuthrich K. Self-Compensating Pulsed Magnetic-Field Gradients For Short Recovery Times. J Magn Reson Ser A 1994; 108: 255-258.
– reference: Boernert P, Schomberg H, Aldefeld B, Groen J. Improvements in spiral MR imaging. Magn Reson Mater Phys 1999; 9: 29-41.
– reference: Pruessmann KP, Weiger M, Boernert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001; 46: 638-651.
– reference: Barmet C, De Zanche N, Pruessmann KP. Spatiotemporal magnetic field monitoring for MR. Magn Reson Med 2008; 60: 187-197.
– reference: Wan X, Gullberg GT, Parker DL, Zeng GL. Reduction of geometric and intensity distortions in echo-planar imaging using a multireference scan. Magn Reson Med 1997; 37: 932-942.
– reference: Bernstein MA, Zhou XHJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH. Concomitant gradient terms in phase contrast MR: Analysis and correction. Anal Chem 1998; 39: 300-308.
– reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
– reference: Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995; 8: 333-344.
– reference: Netsch T, van Muiswinkel A. Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Trans Med Imaging 2004; 23: 789-798.
– reference: Shen Y, Larkman DJ, Counsell S, Pu IM, Edwards D, Hajnal JV. Correction of high-order eddy current induced geometric distortion in diffusion-weighted echo-planar images. Magn Reson Med 2004; 52: 1184-1189.
– reference: Duyn JH, Yang YH, Frank JA, van der Veen JW. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 1998; 132: 150-153.
– reference: Tyler DJ, Gowland PA. Rapid quantitation of magnetization transfer using pulsed off-resonance irradiation and echo planar imaging. Magn Reson Med 2005; 53: 103-109.
– reference: Beatty PJ, Nishimura DG, Pauly JM. Rapid gridding reconstruction with a minimal oversampling ratio. IEEE Trans Med Imaging 2005; 24: 799-808.
– reference: Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 2004; 51: 103-114.
– reference: Lee JY, Greengard L. The type 3 nonuniform FFT and its applications. J Comput Phys 2005; 206: 1-5.
– reference: Edler K, Hoult D. Spherical harmonic inductive detection coils for dynamic pre-emphasis. Magn Reson Med 2008; 60: 277-287.
– reference: Bydder M, Robson MD. Partial Fourier partially parallel imaging. Magn Reson Med 2005; 53: 1393-1401.
– reference: Romeo F, Hoult DI. Magnet field profiling: analysis and correcting coil design. Magn Reson Med 1984; 1: 44-65.
– reference: King KF, Ganin A, Zhou XHJ, Bernstein MA. Concomitant gradient field effects in spiral scans. Magn Reson Med 1999; 41: 103-112.
– reference: Langlois S, Desvignes M, Constans JM, Revenu M. MRI geometric distortion: a simple approach to correcting the effects of non-linear gradient fields. J Magn Reson Imaging 1999; 9: 821-831.
– reference: Boesch C, Gruetter R, Martin E. Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems. Magn Reson Med 1991; 20: 268-284.
– reference: Pruessmann KP. Encoding and reconstruction in parallel MRI. NMR Biomed 2006; 19: 288-299.
– reference: Rosenfeld D. An optimal and efficient new gridding algorithm using singular value decomposition. Magn Reson Med 1998; 40: 14-23.
– reference: Man LC, Pauly JM, Macovski A. Multifrequency interpolation for fast off-resonance correction. Magn Reson Med 1997; 37: 785-792.
– reference: Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003; 49: 177-182.
– reference: Larkman DJ, Herlihy AH, Coutts GA, Hajnal JV. Elimination of magnetic field foldover artifacts in MR images. J Magn Reson Imaging 2000; 12: 795-797.
– reference: Chen DQ, Marr RB, Lauterbur PC. Reconstruction from NMR data acquired with imaging gradients having arbitrary time-dependence. IEEE Trans Med Imaging 1986; 5: 162-164.
– reference: Barmet C, De Zanche N, Pruessmann KP. A transmit/receive system for magnetic field monitoring of in-vivo MRI. Magn Reson Med 2009; 62: 269-276.
– reference: Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 1998; 39: 801-812.
– reference: Alexander AL, Tsuruda JS, Parker DL. Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med 1997; 38: 1016-1021.
– reference: Zeng H, Constable RT. Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magn Reson Med 2002; 48: 137-146.
– reference: De Zanche N, Barmet C, Nordmeyer-Massner JA, Pruessmann KP. NMR probes for measuring magnetic fields and field dynamics in MR systems. Magn Reson Med 2008; 60: 176-186.
– reference: Whittaker ET, Watson GN. A course of modern analysis. Cambridge Mathematical Library; Cambridge: United Kingdom, 1973.
– reference: Sekihara K, Matsui S, Kohno H. NMR imaging for magnets with large nonuniformities. IEEE Trans Med Imaging 1985; 4: 193-199.
– reference: Bachmann P. Analytische Zahlentheorie, Bd. 2: Die Analytische Zahlentheorie. Leipzig, Germany: Teubner; 1894.
– reference: Zhao YS, Anderson AW, Gore JC. Computer simulation studies of the effects of dynamic shimming on susceptibility artifacts in EPI at high field. J Magn Reson 2005; 173: 10-22.
– reference: Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Stand 1952; 49: 409-436.
– volume: 39
  start-page: 300
  year: 1998
  end-page: 308
  article-title: Concomitant gradient terms in phase contrast MR: Analysis and correction
  publication-title: Anal Chem
– volume: 51
  start-page: 103
  year: 2004
  end-page: 114
  article-title: Comprehensive approach for correction of motion and distortion in diffusion‐weighted MRI
  publication-title: Magn Reson Med
– year: 2009
– volume: 173
  start-page: 10
  year: 2005
  end-page: 22
  article-title: Computer simulation studies of the effects of dynamic shimming on susceptibility artifacts in EPI at high field
  publication-title: J Magn Reson
– volume: 40
  start-page: 14
  year: 1998
  end-page: 23
  article-title: An optimal and efficient new gridding algorithm using singular value decomposition
  publication-title: Magn Reson Med
– volume: 49
  start-page: 409
  year: 1952
  end-page: 436
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J Res Natl Bureau Stand
– volume: 5
  start-page: 162
  year: 1986
  end-page: 164
  article-title: Reconstruction from NMR data acquired with imaging gradients having arbitrary time‐dependence
  publication-title: IEEE Trans Med Imaging
– volume: 21
  start-page: 5
  year: 2008
  end-page: 14
  article-title: Parallel imaging in non‐bijective, curvilinear magnetic field gradients: a concept study
  publication-title: Magn Reson Mater Phy
– volume: 23
  start-page: 789
  year: 2004
  end-page: 798
  article-title: Quantitative evaluation of image‐based distortion correction in diffusion tensor imaging
  publication-title: IEEE Trans Med Imaging
– volume: 1999
  start-page: 67
  year: 1999
  end-page: 68
  article-title: Memory‐ and time‐efficient deconvolution of B0 field inhomogeneity effects
  publication-title: Proc ESMRMB Seville
– volume: 60
  start-page: 187
  year: 2008
  end-page: 197
  article-title: Spatiotemporal magnetic field monitoring for MR
  publication-title: Magn Reson Med
– volume: 62
  start-page: 269
  year: 2009
  end-page: 276
  article-title: A transmit/receive system for magnetic field monitoring of in‐vivo MRI
  publication-title: Magn Reson Med
– volume: 19
  start-page: 288
  year: 2006
  end-page: 299
  article-title: Encoding and reconstruction in parallel MRI
  publication-title: NMR Biomed
– volume: 17
  start-page: 1335
  year: 1999
  end-page: 1345
  article-title: Mapping eddy current induced fields for the correction of diffusion‐weighted echo planar images
  publication-title: Magn Reson Imaging
– volume: 24
  start-page: 799
  year: 2005
  end-page: 808
  article-title: Rapid gridding reconstruction with a minimal oversampling ratio
  publication-title: IEEE Trans Med Imaging
– volume: 20
  start-page: 268
  year: 1991
  end-page: 284
  article-title: Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems
  publication-title: Magn Reson Med
– volume: 41
  start-page: 103
  year: 1999
  end-page: 112
  article-title: Concomitant gradient field effects in spiral scans
  publication-title: Magn Reson Med
– volume: 132
  start-page: 150
  year: 1998
  end-page: 153
  article-title: Simple correction method for k‐space trajectory deviations in MRI
  publication-title: J Magn Reson
– volume: 53
  start-page: 1393
  year: 2005
  end-page: 1401
  article-title: Partial Fourier partially parallel imaging
  publication-title: Magn Reson Med
– volume: 9
  start-page: 821
  year: 1999
  end-page: 831
  article-title: MRI geometric distortion: a simple approach to correcting the effects of non‐linear gradient fields
  publication-title: J Magn Reson Imaging
– year: 1894
– volume: 49
  start-page: 177
  year: 2003
  end-page: 182
  article-title: Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo
  publication-title: Magn Reson Med
– volume: 37
  start-page: 785
  year: 1997
  end-page: 792
  article-title: Multifrequency interpolation for fast off‐resonance correction
  publication-title: Magn Reson Med
– volume: 8
  start-page: 333
  year: 1995
  end-page: 344
  article-title: Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images
  publication-title: NMR Biomed
– volume: 108
  start-page: 255
  year: 1994
  end-page: 258
  article-title: Self‐Compensating Pulsed Magnetic‐Field Gradients For Short Recovery Times
  publication-title: J Magn Reson Ser A
– volume: 55
  start-page: 287
  year: 2006
  end-page: 295
  article-title: Minimum‐norm reconstruction for sensitivity‐encoded magnetic resonance spectroscopic imaging
  publication-title: Magn Reson Med
– volume: 206
  start-page: 1
  year: 2005
  end-page: 5
  article-title: The type 3 nonuniform FFT and its applications
  publication-title: J Comput Phys
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary ‐space trajectories
  publication-title: Magn Reson Med
– volume: 7
  start-page: 26
  year: 1988
  end-page: 31
  article-title: Reconstruction by weighted correlation for MRI with time‐varying gradients
  publication-title: IEEE Trans Med Imaging
– volume: 60
  start-page: 176
  year: 2008
  end-page: 186
  article-title: NMR probes for measuring magnetic fields and field dynamics in MR systems
  publication-title: Magn Reson Med
– volume: 8
  start-page: 33
  year: 1990
  end-page: 37
  article-title: Concomitant magnetic field gradients and their effects on imaging at low magnetic field strengths
  publication-title: Magn Reson Imaging
– year: 1973
– volume: 52
  start-page: 1184
  year: 2004
  end-page: 1189
  article-title: Correction of high‐order eddy current induced geometric distortion in diffusion‐weighted echo‐planar images
  publication-title: Magn Reson Med
– volume: 53
  start-page: 103
  year: 2005
  end-page: 109
  article-title: Rapid quantitation of magnetization transfer using pulsed off‐resonance irradiation and echo planar imaging
  publication-title: Magn Reson Med
– year: 1950
– volume: 12
  start-page: 795
  year: 2000
  end-page: 797
  article-title: Elimination of magnetic field foldover artifacts in MR images
  publication-title: J Magn Reson Imaging
– volume: 68
  start-page: 1307
  year: 2008
  end-page: 1318
  article-title: Accelerating advanced MRI reconstructions on GPU's
  publication-title: J Parallel Distrib Comput
– volume: 39
  start-page: 801
  year: 1998
  end-page: 812
  article-title: Characterization of and correction for eddy current artifacts in echo planar diffusion imaging
  publication-title: Magn Reson Med
– start-page: 216
  year: 2010
– year: 2010
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 48
  start-page: 137
  year: 2002
  end-page: 146
  article-title: Image distortion correction in EPI: comparison of field mapping with point spread function mapping
  publication-title: Magn Reson Med
– volume: 38
  start-page: 477
  year: 1997
  end-page: 483
  article-title: Dynamic shimming for multi‐slice magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 4
  start-page: 193
  year: 1985
  end-page: 199
  article-title: NMR imaging for magnets with large nonuniformities
  publication-title: IEEE Trans Med Imaging
– volume: 10
  start-page: 473
  year: 1991
  end-page: 478
  article-title: Selection of a convolution function for Fourier inversion using gridding computerised tomography application]
  publication-title: IEEE Trans Med Imaging
– volume: 1
  start-page: 44
  year: 1984
  end-page: 65
  article-title: Magnet field profiling: analysis and correcting coil design
  publication-title: Magn Reson Med
– volume: 38
  start-page: 1016
  year: 1997
  end-page: 1021
  article-title: Elimination of eddy current artifacts in diffusion‐weighted echo‐planar images: the use of bipolar gradients
  publication-title: Magn Reson Med
– volume: 60
  start-page: 277
  year: 2008
  end-page: 287
  article-title: Spherical harmonic inductive detection coils for dynamic pre‐emphasis
  publication-title: Magn Reson Med
– year: 2002
– year: 2006
– volume: 9
  start-page: 29
  year: 1999
  end-page: 41
  article-title: Improvements in spiral MR imaging
  publication-title: Magn Reson Mater Phys
– volume: 52
  start-page: 1156
  year: 2004
  end-page: 1166
  article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo‐planar imaging distortion correction
  publication-title: Magn Reson Med
– volume: 37
  start-page: 932
  year: 1997
  end-page: 942
  article-title: Reduction of geometric and intensity distortions in echo‐planar imaging using a multireference scan
  publication-title: Magn Reson Med
– volume: 45
  start-page: 525
  year: 2001
  end-page: 528
  article-title: Optimized distortion correction technique for echo planar imaging
  publication-title: Magn Reson Med
– volume: 39
  start-page: 581
  year: 1998
  end-page: 587
  article-title: Gradient characterization using a Fourier‐transform technique
  publication-title: Magn Reson Med
– volume: 1999
  start-page: 67
  year: 1999
  ident: e_1_2_7_32_2
  article-title: Memory‐ and time‐efficient deconvolution of B0 field inhomogeneity effects
  publication-title: Proc ESMRMB Seville
– ident: e_1_2_7_13_2
  doi: 10.1002/nbm.1940080707
– ident: e_1_2_7_18_2
  doi: 10.1002/mrm.10308
– ident: e_1_2_7_24_2
  doi: 10.1002/mrm.10677
– ident: e_1_2_7_4_2
  doi: 10.1007/s10334-008-0105-7
– volume: 39
  start-page: 300
  year: 1998
  ident: e_1_2_7_12_2
  article-title: Concomitant gradient terms in phase contrast MR: Analysis and correction
  publication-title: Anal Chem
– ident: e_1_2_7_35_2
  doi: 10.1002/mrm.21996
– ident: e_1_2_7_36_2
  doi: 10.1002/mrm.1910010107
– ident: e_1_2_7_3_2
  doi: 10.1002/1522-2586(200011)12:5<795::AID-JMRI20>3.0.CO;2-H
– ident: e_1_2_7_42_2
  doi: 10.1002/nbm.1042
– ident: e_1_2_7_10_2
  doi: 10.1002/mrm.1910390518
– ident: e_1_2_7_34_2
– ident: e_1_2_7_45_2
– ident: e_1_2_7_47_2
  doi: 10.6028/jres.049.044
– ident: e_1_2_7_19_2
  doi: 10.1007/BF02634590
– ident: e_1_2_7_16_2
  doi: 10.1006/jmra.1994.1120
– ident: e_1_2_7_28_2
  doi: 10.1002/mrm.21693
– ident: e_1_2_7_15_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_7_56_2
– ident: e_1_2_7_8_2
  doi: 10.1002/mrm.1910380316
– ident: e_1_2_7_2_2
  doi: 10.1002/(SICI)1522-2586(199906)9:6<821::AID-JMRI9>3.0.CO;2-2
– ident: e_1_2_7_55_2
  doi: 10.1016/j.jpdc.2008.05.013
– ident: e_1_2_7_25_2
  doi: 10.1109/TMI.2004.827479
– ident: e_1_2_7_31_2
  doi: 10.1002/mrm.1910400103
– ident: e_1_2_7_52_2
  doi: 10.1006/jmre.1998.1396
– ident: e_1_2_7_17_2
  doi: 10.1002/mrm.1910380623
– ident: e_1_2_7_23_2
  doi: 10.1002/mrm.20261
– ident: e_1_2_7_29_2
  doi: 10.1002/mrm.21624
– ident: e_1_2_7_41_2
  doi: 10.1002/mrm.20758
– ident: e_1_2_7_22_2
  doi: 10.1002/mrm.10200
– ident: e_1_2_7_49_2
  doi: 10.1109/TMI.2005.848376
– ident: e_1_2_7_27_2
  doi: 10.1002/mrm.20267
– ident: e_1_2_7_54_2
  doi: 10.1002/mrm.20492
– ident: e_1_2_7_7_2
  doi: 10.1016/0730-725X(90)90209-K
– ident: e_1_2_7_44_2
  doi: 10.1002/mrm.1241
– ident: e_1_2_7_6_2
  doi: 10.1002/mrm.1910370523
– ident: e_1_2_7_43_2
– volume-title: A course of modern analysis
  year: 1973
  ident: e_1_2_7_37_2
– ident: e_1_2_7_14_2
  doi: 10.1002/mrm.20323
– ident: e_1_2_7_30_2
  doi: 10.1109/TMI.1986.4307765
– ident: e_1_2_7_48_2
  doi: 10.1109/42.97598
– ident: e_1_2_7_5_2
  doi: 10.1109/42.3926
– ident: e_1_2_7_40_2
  doi: 10.1109/TMI.1985.4307722
– volume-title: Analytische Zahlentheorie, Bd. 2: Die Analytische Zahlentheorie
  year: 1894
  ident: e_1_2_7_46_2
– ident: e_1_2_7_11_2
  doi: 10.1002/(SICI)1522-2594(199901)41:1<103::AID-MRM15>3.0.CO;2-M
– ident: e_1_2_7_26_2
  doi: 10.1016/S0730-725X(99)00077-6
– ident: e_1_2_7_9_2
  doi: 10.1016/j.jmr.2004.11.009
– ident: e_1_2_7_21_2
  doi: 10.1002/1522-2594(200103)45:3<525::AID-MRM1070>3.0.CO;2-S
– ident: e_1_2_7_38_2
  doi: 10.1002/mrm.21603
– ident: e_1_2_7_50_2
  doi: 10.1016/j.jcp.2004.12.004
– ident: e_1_2_7_39_2
– ident: e_1_2_7_20_2
  doi: 10.1002/mrm.1910370619
– ident: e_1_2_7_33_2
– ident: e_1_2_7_53_2
  doi: 10.1002/mrm.1910390411
– ident: e_1_2_7_51_2
  doi: 10.1002/mrm.1910200209
SSID ssj0009974
Score 2.4229164
Snippet Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1690
SubjectTerms algebraic image reconstruction
Algorithms
Brain Mapping - methods
diffusion imaging
DTI
Echo-Planar Imaging
Eddy current correction
Feasibility Studies
Humans
Image Processing, Computer-Assisted - methods
magnetic field monitoring
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Phantoms, Imaging
Title Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations
URI https://api.istex.fr/ark:/67375/WNG-4H89VRMC-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22767
https://www.ncbi.nlm.nih.gov/pubmed/21520269
https://www.proquest.com/docview/867727986
Volume 65
WOSCitedRecordID wos000291115500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB909cQXP09dP5YgctxLz22abhp8ktVVwS6ynOf6FNIkBVG7y1bFP998dCuCwoFvfZiGkMkk85vM_AbgICRxZuP7QZaHBqDotgyYASIBk9QCDEZi3XbNJmi_nwyH7GoGjqa1MJ4fog64Wctw57U1cJGVh--koY-Txz8Y046tJA-JM8qbi_474S7zDMyU2HOGkSmrUBsf1n9-uIvm7LK-fuZofvRb3cXTW_7WlFdgqfI30bHfIKswo4s1WEirF_U1-OFSQGW5Drc-5QM5Mk7kgHJNLouMa4vSwQW6K5DxGNHYFS1JjUY5Kl1OdkVx9YBcShwa64m5yzIfDvwJ173Tv93zoGq8EEjrDwYdohWzQEJiLBjNKRFYEUWzOMzijsp1JA2SUZKJJIwEzUKhDNKVkZCh0liLaAMaxajQW4BUpvI4yo2fRBSRmCR5m5iRNY2JxrHSTfg9VQGXFSu5bY7xwD2fMuZm0bhbtCbs16JjT8XxmdAvp8daQkzube4ajflN_4yT84T9G6RdnjYBTRXNjUXZZxJR6NFzyS3DH6Ys6TRh02-AejDbBNiAVmZm7fT89Tx4Okjdx_b_i-7Aoo9Y2xjPLjSMjvUezMuXp7ty0oJZOkxaMHcy6F1fttxmfwOEc_6O
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xFthe9gFsdBvMmia0l0Dj2HUs8YIYXRFNhSoY3ZPl2I6E1qZVyyb-fPyRBiGBhLS3PFwsy3dn3-98_h3At5jQ3OX3o7yILUAxbRVxC0QirpgDGJxQ0_bNJthgkI5G_HwFDpdvYQI_RJ1wc57h92vn4C4hfXDPGjqZT_YxZh32AprEmhFtQPPHsHvZvyfd5YGFmRG313CyZBZq44P65wfnUdMt7e1jwebD2NUfPt03_zftt_C6CjrRUbCSd7Biyg1Yz6pr9Q1Y83WgarEJv0PdB_KMnMij5ZphFtn4FmXDU3RdIhs2opl_uaQMmhZo4QuzK56rMfJ1cWhm5vZAy0NOcAsuuycXx72o6r4QKRcURh1iNHdoQmEsOSsYkVgTzXIa57SjC5MoC2e04jKNE8nyWGoLd1UiVawNNjJ5D41yWpptQDrXBU0KGywRTRQmadEmdmTDKDGYatOC70sdCFVRk7sOGWMRSJWxsIsm_KK14GstOgt8HI8J7XlF1hJy_scVsDEqrgY_Beml_NcwOxZZC9BS08K6lbsrkaWZ_l0IR_OHGU87LfgQLKAezHUCtsiV21l7RT89D5ENM__x8fmiX-Bl7yLri_7p4OwTvAopbJf0-QwNq2-zA6vq3831Yr5bWfsdehoBYQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_UU-mLVu3HqW2DiPiyeptNNhvwRdSrUveQQ9vzKWSTLEh177hrxT_ffOytCAqCb_swG0JmJpnfZPIbgO2Y0MLl96OijC1AMR0VcQtEIq6YAxicUNPxzSZYr5cNBvxiBg6mb2ECP0STcHOe4fdr5-BmpMv9J9bQu_HdHsYsZbPQIpSn1i1bx_3u1fkT6S4PLMyMuL2GkymzUAfvNz8_O49abmkfXgo2n8eu_vDpLr9v2h9hqQ460WGwkhWYMdUqLOb1tfoqLPg6UDVZg-tQ94E8IyfyaLlhmEU2vkV5_wzdVMiGjWjkXy4pg4YlmvjC7Jrn6hb5ujg0MmN7oBUhJ_gJrronl0enUd19IVIuKIxSYjR3aEJhLDkrGZFYE80KGhc01aVJlIUzWnGZxYlkRSy1hbsqkSrWBhuZfIa5aliZr4B0oUualDZYIpooTLKyQ-zIhlFiMNWmDbtTHQhVU5O7Dhm3IpAqY2EXTfhFa8NWIzoKfBwvCe14RTYScvzXFbAxKv70fgpymvHf_fxI5G1AU00L61burkRWZvh_IhzNH2Y8S9vwJVhAM5jrBGyRK7ez9op-fR4i7-f-Y_3toj9g8eK4K87Per824EPIYLuczybMWXWbbzCv7v_dTMbfa2N_BAPGANw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+order+reconstruction+for+MRI+in+the+presence+of+spatiotemporal+field+perturbations&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Wilm%2C+Bertram+J&rft.au=Barmet%2C+Christoph&rft.au=Pavan%2C+Matteo&rft.au=Pruessmann%2C+Klaas+P&rft.date=2011-06-01&rft.eissn=1522-2594&rft.volume=65&rft.issue=6&rft.spage=1690&rft_id=info:doi/10.1002%2Fmrm.22767&rft_id=info%3Apmid%2F21520269&rft.externalDocID=21520269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon