AnVILWorkflow: A runnable workflow package for Cloud-implemented bioinformatics analysis pipelines [version 1; peer review: awaiting peer review]

Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) provides a cloud-based platform for democratizing access to large-scale genomics da...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:F1000 research Ročník 13; s. 1257
Hlavní autoři: Oh, Sehyun, Gravel-Pucillo, Kai, Ramos, Marcel, Schatz, Michael C., Davis, Sean, Carey, Vincent, Morgan, Martin, Waldron, Levi
Médium: Journal Article
Jazyk:angličtina
Vydáno: England F1000 Research Limited 2024
F1000 Research Ltd
Témata:
ISSN:2046-1402, 2046-1402
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) provides a cloud-based platform for democratizing access to large-scale genomics data and analysis tools. However, utilizing the full capabilities of AnVIL can be challenging for researchers without extensive bioinformatics expertise, especially for executing complex workflows. We present the AnVILWorkflow R package, which enables the convenient execution of bioinformatics workflows hosted on AnVIL directly from an R environment. AnVILWorkflow simplifies the setup of the cloud computing environment, input data formatting, workflow submission, and retrieval of results through intuitive functions. We demonstrate the utility of AnVILWorkflow for three use cases: bulk RNA-seq analysis with Salmon, metagenomics analysis with bioBakery, and digital pathology image processing with PathML. The key features of AnVILWorkflow include user-friendly browsing of available data and workflows, seamless integration of R and non-R tools within a reproducible analysis pipeline, and accessibility to scalable computing resources without direct management overhead. AnVILWorkflow lowers the barrier to utilizing AnVIL's resources, especially for exploratory analyses or bulk processing with established workflows. This empowers a broader community of researchers to leverage the latest genomics tools and datasets using familiar R syntax. This package is distributed through the Bioconductor project ( https://bioconductor.org/packages/AnVILWorkflow), and the source code is available through GitHub ( https://github.com/shbrief/AnVILWorkflow).
AbstractList Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) provides a cloud-based platform for democratizing access to large-scale genomics data and analysis tools. However, utilizing the full capabilities of AnVIL can be challenging for researchers without extensive bioinformatics expertise, especially for executing complex workflows. We present the AnVILWorkflow R package, which enables the convenient execution of bioinformatics workflows hosted on AnVIL directly from an R environment. AnVILWorkflow simplifies the setup of the cloud computing environment, input data formatting, workflow submission, and retrieval of results through intuitive functions. We demonstrate the utility of AnVILWorkflow for three use cases: bulk RNA-seq analysis with Salmon, metagenomics analysis with bioBakery, and digital pathology image processing with PathML. The key features of AnVILWorkflow include user-friendly browsing of available data and workflows, seamless integration of R and non-R tools within a reproducible analysis pipeline, and accessibility to scalable computing resources without direct management overhead. AnVILWorkflow lowers the barrier to utilizing AnVIL's resources, especially for exploratory analyses or bulk processing with established workflows. This empowers a broader community of researchers to leverage the latest genomics tools and datasets using familiar R syntax. This package is distributed through the Bioconductor project ( https://bioconductor.org/packages/AnVILWorkflow), and the source code is available through GitHub ( https://github.com/shbrief/AnVILWorkflow).Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) provides a cloud-based platform for democratizing access to large-scale genomics data and analysis tools. However, utilizing the full capabilities of AnVIL can be challenging for researchers without extensive bioinformatics expertise, especially for executing complex workflows. We present the AnVILWorkflow R package, which enables the convenient execution of bioinformatics workflows hosted on AnVIL directly from an R environment. AnVILWorkflow simplifies the setup of the cloud computing environment, input data formatting, workflow submission, and retrieval of results through intuitive functions. We demonstrate the utility of AnVILWorkflow for three use cases: bulk RNA-seq analysis with Salmon, metagenomics analysis with bioBakery, and digital pathology image processing with PathML. The key features of AnVILWorkflow include user-friendly browsing of available data and workflows, seamless integration of R and non-R tools within a reproducible analysis pipeline, and accessibility to scalable computing resources without direct management overhead. AnVILWorkflow lowers the barrier to utilizing AnVIL's resources, especially for exploratory analyses or bulk processing with established workflows. This empowers a broader community of researchers to leverage the latest genomics tools and datasets using familiar R syntax. This package is distributed through the Bioconductor project ( https://bioconductor.org/packages/AnVILWorkflow), and the source code is available through GitHub ( https://github.com/shbrief/AnVILWorkflow).
Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) provides a cloud-based platform for democratizing access to large-scale genomics data and analysis tools. However, utilizing the full capabilities of AnVIL can be challenging for researchers without extensive bioinformatics expertise, especially for executing complex workflows. We present the AnVILWorkflow R package, which enables the convenient execution of bioinformatics workflows hosted on AnVIL directly from an R environment. AnVILWorkflow simplifies the setup of the cloud computing environment, input data formatting, workflow submission, and retrieval of results through intuitive functions. We demonstrate the utility of AnVILWorkflow for three use cases: bulk RNA-seq analysis with Salmon, metagenomics analysis with bioBakery, and digital pathology image processing with PathML. The key features of AnVILWorkflow include user-friendly browsing of available data and workflows, seamless integration of R and non-R tools within a reproducible analysis pipeline, and accessibility to scalable computing resources without direct management overhead. AnVILWorkflow lowers the barrier to utilizing AnVIL's resources, especially for exploratory analyses or bulk processing with established workflows. This empowers a broader community of researchers to leverage the latest genomics tools and datasets using familiar R syntax. This package is distributed through the Bioconductor project ( https://bioconductor.org/packages/AnVILWorkflow), and the source code is available through GitHub ( https://github.com/shbrief/AnVILWorkflow).
Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) provides a cloud-based platform for democratizing access to large-scale genomics data and analysis tools. However, utilizing the full capabilities of AnVIL can be challenging for researchers without extensive bioinformatics expertise, especially for executing complex workflows. We present the AnVILWorkflow R package, which enables the convenient execution of bioinformatics workflows hosted on AnVIL directly from an R environment. AnVILWorkflow simplifies the setup of the cloud computing environment, input data formatting, workflow submission, and retrieval of results through intuitive functions. We demonstrate the utility of AnVILWorkflow for three use cases: bulk RNA-seq analysis with Salmon, metagenomics analysis with bioBakery, and digital pathology image processing with PathML. The key features of AnVILWorkflow include user-friendly browsing of available data and workflows, seamless integration of R and non-R tools within a reproducible analysis pipeline, and accessibility to scalable computing resources without direct management overhead. AnVILWorkflow lowers the barrier to utilizing AnVIL’s resources, especially for exploratory analyses or bulk processing with established workflows. This empowers a broader community of researchers to leverage the latest genomics tools and datasets using familiar R syntax. This package is distributed through the Bioconductor project (https://bioconductor.org/packages/AnVILWorkflow), and the source code is available through GitHub (https://github.com/shbrief/AnVILWorkflow).
Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) provides a cloud-based platform for democratizing access to large-scale genomics data and analysis tools. However, utilizing the full capabilities of AnVIL can be challenging for researchers without extensive bioinformatics expertise, especially for executing complex workflows. We present the R package, which enables the convenient execution of bioinformatics workflows hosted on AnVIL directly from an R environment. simplifies the setup of the cloud computing environment, input data formatting, workflow submission, and retrieval of results through intuitive functions. We demonstrate the utility of for three use cases: bulk RNA-seq analysis with , metagenomics analysis with , and digital pathology image processing with The key features of include user-friendly browsing of available data and workflows, seamless integration of R and non-R tools within a reproducible analysis pipeline, and accessibility to scalable computing resources without direct management overhead. lowers the barrier to utilizing AnVIL's resources, especially for exploratory analyses or bulk processing with established workflows. This empowers a broader community of researchers to leverage the latest genomics tools and datasets using familiar R syntax. This package is distributed through the Bioconductor project ( https://bioconductor.org/packages/AnVILWorkflow), and the source code is available through GitHub ( https://github.com/shbrief/AnVILWorkflow).
Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) provides a cloud-based platform for democratizing access to large-scale genomics data and analysis tools. However, utilizing the full capabilities of AnVIL can be challenging for researchers without extensive bioinformatics expertise, especially for executing complex workflows. We present the AnVILWorkflow R package, which enables the convenient execution of bioinformatics workflows hosted on AnVIL directly from an R environment. AnVILWorkflow simplifies the setup of the cloud computing environment, input data formatting, workflow submission, and retrieval of results through intuitive functions. We demonstrate the utility of AnVILWorkflow for three use cases: bulk RNA-seq analysis with Salmon , metagenomics analysis with bioBakery , and digital pathology image processing with PathML. The key features of AnVILWorkflow include user-friendly browsing of available data and workflows, seamless integration of R and non-R tools within a reproducible analysis pipeline, and accessibility to scalable computing resources without direct management overhead. AnVILWorkflow lowers the barrier to utilizing AnVIL’s resources, especially for exploratory analyses or bulk processing with established workflows. This empowers a broader community of researchers to leverage the latest genomics tools and datasets using familiar R syntax. This package is distributed through the Bioconductor project (https://bioconductor.org/packages/AnVILWorkflow), and the source code is available through GitHub (https://github.com/shbrief/AnVILWorkflow).
Author Carey, Vincent
Gravel-Pucillo, Kai
Davis, Sean
Waldron, Levi
Ramos, Marcel
Schatz, Michael C.
Oh, Sehyun
Morgan, Martin
Author_xml – sequence: 1
  givenname: Sehyun
  surname: Oh
  fullname: Oh, Sehyun
  email: Sehyun.Oh@sph.cuny.edu
  organization: Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, New York, USA
– sequence: 2
  givenname: Kai
  surname: Gravel-Pucillo
  fullname: Gravel-Pucillo, Kai
  organization: Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, New York, USA
– sequence: 3
  givenname: Marcel
  surname: Ramos
  fullname: Ramos, Marcel
  organization: Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, New York, USA
– sequence: 4
  givenname: Michael C.
  surname: Schatz
  fullname: Schatz, Michael C.
  organization: Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
– sequence: 5
  givenname: Sean
  surname: Davis
  fullname: Davis, Sean
  organization: Departments of Biomedical Informatics and Medicine,, University of Colorado Anschutz School of Medicine, Denver, Colorado, USA
– sequence: 6
  givenname: Vincent
  orcidid: 0000-0003-4046-0063
  surname: Carey
  fullname: Carey, Vincent
  organization: Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
– sequence: 7
  givenname: Martin
  surname: Morgan
  fullname: Morgan, Martin
  organization: Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
– sequence: 8
  givenname: Levi
  orcidid: 0000-0003-2725-0694
  surname: Waldron
  fullname: Waldron, Levi
  organization: Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, New York, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39669685$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuEzEUHaEiWkp_Abxkk-DHvEwXKIp4RIrEhscCIeuO507q1mMP9kyifAZ_zLQTSrLCG9vnnod8fZ8nZ847TJJXjM4Zz8vyTcMopQEjQtA3c5ZlaSrn7ElywWmaz1hK-dnR-Ty5ivF2VFApRc6LZ8m5kHku8zK7SH4v3LfV-rsPd431u7dkQcLgHFQWye4Akg70HWyQND6QpfVDPTNtZ7FF12NNKuONG0st9EZHAg7sPppIOtOhNQ4j-bHFEI13hF2TDjGQgFuDYxjswPTGbY7Rny-Spw3YiFeH_TL5-uH9l-Wn2frzx9VysZ5pIQs2Q1mjKGqGIATKtM5Qa1pXMh8vFQJyrLisMEXQHFhTp8CqQmS14DzjRcPEZbKafGsPt6oLpoWwVx6MegB82CgI45MsKg5iVEigTPC0oQAoaZXLLK9LoaEqR693k1c3VC3WeuxMAHtielpx5kZt_FYxlouMlcXo8PrgEPyvAWOvWhM1WgsO_RCVYGk-ron68jjsMeXvp46EYiLo4GMM2DxSGFUPE6ROJkhNE6Tue3I9KRvQg-339yz1j_Yf9R-yv9Lk
Cites_doi 10.1093/nar/gkab346
10.1093/bioinformatics/btx617
10.1371/journal.pcbi.1003285
10.7554/eLife.65088
10.5281/zenodo.13868810
10.1093/bioinformatics/btx754
10.1038/nmeth.4197
10.6084/M9.FIGSHARE.27018421.V3
10.1158/1541-7786.MCR-21-0665
10.7490/f1000research.1114631.1
ContentType Journal Article
Copyright Copyright: © 2024 Oh S et al.
Copyright: © 2024 Oh S et al. 2024
Copyright_xml – notice: Copyright: © 2024 Oh S et al.
– notice: Copyright: © 2024 Oh S et al. 2024
DBID C-E
CH4
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.12688/f1000research.155449.1
DatabaseName F1000Research
Faculty of 1000
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Women's Studies
EISSN 2046-1402
ExternalDocumentID oai_doaj_org_article_2a37f19a01324f0aae90b6956d83cab8
PMC11635187
39669685
10_12688_f1000research_155449_1
Genre Journal Article
GrantInformation_xml – fundername: National Human Genome Research Institute
  grantid: U24HG010263
– fundername: NHGRI NIH HHS
  grantid: U24 HG010263
GroupedDBID 3V.
53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
AAFWJ
ABUWG
ACGOD
ACPRK
ADBBV
ADRAZ
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C-E
CCPQU
CH4
DIK
DWQXO
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PGMZT
PIMPY
PQQKQ
PROAC
RPM
UKHRP
W2D
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c3971-e9de37d1ea33e94d5ecc0db96e94beae2eb29be4eac2a1fd4a1b735d322527f13
IEDL.DBID DOA
ISSN 2046-1402
IngestDate Fri Oct 03 12:21:53 EDT 2025
Tue Nov 04 02:04:57 EST 2025
Thu Oct 02 11:38:49 EDT 2025
Mon Jul 21 05:34:35 EDT 2025
Sat Nov 29 02:17:30 EST 2025
Tue Oct 22 03:13:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cloud computing
R/Bioconductor
AnVIL
Workflows
Genomics
Language English
License http://creativecommons.org/licenses/by/4.0/: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright: © 2024 Oh S et al.
This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3971-e9de37d1ea33e94d5ecc0db96e94beae2eb29be4eac2a1fd4a1b735d322527f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
No competing interests were disclosed.
ORCID 0000-0003-4046-0063
0000-0003-2725-0694
OpenAccessLink https://doaj.org/article/2a37f19a01324f0aae90b6956d83cab8
PMID 39669685
PQID 3146666187
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2a37f19a01324f0aae90b6956d83cab8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11635187
proquest_miscellaneous_3146666187
pubmed_primary_39669685
crossref_primary_10_12688_f1000research_155449_1
faculty1000_research_10_12688_f1000research_155449_1
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London, UK
PublicationTitle F1000 research
PublicationTitleAlternate F1000Res
PublicationYear 2024
Publisher F1000 Research Limited
F1000 Research Ltd
Publisher_xml – name: F1000 Research Limited
– name: F1000 Research Ltd
References M Schatz (ref1) 2022; 2
ref12
ref11
R Patro (ref8) 2017; 14
G Sandve (ref4) 2013; 9
D Yuen (ref5) 2021; 49
L McIver (ref9) 2018; 34
N Weber (ref16) 2018; 34
J Rosenthal (ref10) 2022; 20
ref19
F Beghini (ref15) 2021; 10
K Voss (ref13) 2017
L Hughes (ref7) 2019; 37
ref6
S Oh (ref20) 2024
S Oh (ref18) 2024
38798429 - Res Sq. 2024 May 15:rs.3.rs-4370115. doi: 10.21203/rs.3.rs-4370115/v1
References_xml – ident: ref6
  article-title: (Github).
– volume: 49
  start-page: W624-W632
  year: 2021
  ident: ref5
  article-title: The Dockstore: enhancing a community platform for sharing reproducible and accessible computational protocols.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab346
– ident: ref19
  article-title: ENA Browser.
– volume: 34
  start-page: 1411-1413
  year: 2018
  ident: ref16
  article-title: Nephele: a cloud platform for simplified, standardized and reproducible microbiome data analysis.
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btx617
– volume: 9
  start-page: e1003285
  year: 2013
  ident: ref4
  article-title: simple rules for reproducible computational research.
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003285
– volume: 37
  start-page: e18094-e18094
  year: 2019
  ident: ref7
  article-title: Harmonization of clinical data across Gen3 data commons.
  publication-title: J. Clin. Orthod.
– volume: 10
  year: 2021
  ident: ref15
  article-title: Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3.
  publication-title: elife.
  doi: 10.7554/eLife.65088
– year: 2024
  ident: ref20
  article-title: AnVILWorkflow.
  publication-title: Zenodo.
  doi: 10.5281/zenodo.13868810
– volume: 34
  start-page: 1235-1237
  year: 2018
  ident: ref9
  article-title: bioBakery: a meta’omic analysis environment.
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btx754
– volume: 14
  start-page: 417-419
  year: 2017
  ident: ref8
  article-title: Salmon provides fast and bias-aware quantification of transcript expression.
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.4197
– ident: ref12
  article-title: How much did my workflow cost? Terra Support.
– volume: 2
  year: 2022
  ident: ref1
  article-title: Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space.
  publication-title: Cell Genom.
– ident: ref11
  article-title: Google Cloud.
– year: 2024
  ident: ref18
  article-title: Test datasets for the AnVILWorkflow package.
  publication-title: figshare.
  doi: 10.6084/M9.FIGSHARE.27018421.V3
– volume: 20
  start-page: 202-206
  year: 2022
  ident: ref10
  article-title: Building Tools for Machine Learning and Artificial Intelligence in Cancer Research: Best Practices and a Case Study with the PathML Toolkit for Computational Pathology.
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-21-0665
– year: 2017
  ident: ref13
  article-title: Full-stack genomics pipelining with GATK4 + WDL + Cromwell.
  doi: 10.7490/f1000research.1114631.1
– reference: 38798429 - Res Sq. 2024 May 15:rs.3.rs-4370115. doi: 10.21203/rs.3.rs-4370115/v1
SSID ssj0000993627
Score 2.2775977
Snippet Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
faculty1000
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1257
SubjectTerms AnVIL
Cloud Computing
Computational Biology - methods
eng
Genomics
Genomics - methods
Humans
R/Bioconductor
Software
Software Tool
Workflow
Workflows
Title AnVILWorkflow: A runnable workflow package for Cloud-implemented bioinformatics analysis pipelines [version 1; peer review: awaiting peer review]
URI http://dx.doi.org/10.12688/f1000research.155449.1
https://www.ncbi.nlm.nih.gov/pubmed/39669685
https://www.proquest.com/docview/3146666187
https://pubmed.ncbi.nlm.nih.gov/PMC11635187
https://doaj.org/article/2a37f19a01324f0aae90b6956d83cab8
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgQ4g9TDAYlEtlJCSeMuJL63g8ddMmJq1VhQAVIRSdxCdaYCRVu3biF_C3OU680SKkvZAHS3Guzndif8c-_szYq4xIghBgo0RBHmnl4igziJEsCqlB5yBdozN7akajZDKx45WlvnxMWCsP3H64NxKUKYQFPyagixgAbZz1idW7ROWQNdN8Y2NXnKlvLe-hmtmEgC7ZJzev8D3ZQUHnbM83o9ruibXmqFHt32JbBXjZi5_-gn8Rz7_jJ1capOP7bDswST5oS_CA3cJqh90dhrHyHbbdLE75es5DqOBD9mtQfTo59d3jxXl9uc8HfEb01c-d4pchk5ML_Z2qGE5clh-e1wsXlT9CiDk6npV1UFr16s4cgqIJn5ZTP68d5_zLsu2A4-ItnyLOeDs3Zp9L3siXL9F9fcQ-Hh99OHwXhYUYopzoiojQOlTGCQSl0GrXI9xjl9k-7WQIKMk9txlqqsQliMJpEJlRPecrC0noqV22UdUVPmFc5So3GghLEDrHOIFcJAgxFuA0Zv0Oi6_wSKet3kbq_RQPYboGYdpCmIoOO_C4XZ_uBbObDDKjNJhRepMZdZheQT3985Cbnv3yyjxS-i_9YAtUWC_mqaImiDaRmA573JrL9Rsq8jFtP-l1WLJmSGtFWD9SlWeN9rcg_tyjmz79H4V-xu5J4mhtj9JztnExW-ALdidfXpTzWZfdNhPTpEmXbR4cjcbvu81fRulQjn1qKN0cnwzHn38DRC8vzQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AnVILWorkflow%3A+A+runnable+workflow+package+for+Cloud-implemented+bioinformatics+analysis+pipelines&rft.jtitle=F1000+research&rft.au=Oh%2C+Sehyun&rft.au=Gravel-Pucillo%2C+Kai&rft.au=Ramos%2C+Marcel&rft.au=Schatz%2C+Michael+C&rft.date=2024&rft.issn=2046-1402&rft.eissn=2046-1402&rft.volume=13&rft.spage=1257&rft_id=info:doi/10.12688%2Ff1000research.155449.1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-1402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-1402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-1402&client=summon