Drought effects on invertebrate metapopulation dynamics and quasi‐extinction risk in an intermittent river network
Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies. In turn, local stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations—but not if large‐sca...
Uloženo v:
| Vydáno v: | Global change biology Ročník 27; číslo 17; s. 4024 - 4039 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Blackwell Publishing Ltd
01.09.2021
Wiley |
| Témata: | |
| ISSN: | 1354-1013, 1365-2486, 1365-2486 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies. In turn, local stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations—but not if large‐scale stressors synchronize environmental conditions and biological responses. Here, we hypothesized that droughts could drastically decrease the stability of invertebrate metapopulations both by filtering out poorly adapted species locally, and by synchronizing their dynamics across a river network. We tested this hypothesis via multivariate autoregressive state‐space (MARSS) models on spatially replicated, long‐term data describing aquatic invertebrate communities and hydrological conditions in a set of temperate, lowland streams subject to seasonal and supraseasonal drying events. This quantitative approach allowed us to assess the influence of local (flow magnitude) and network‐scale (hydrological connectivity) drivers on invertebrate long‐term trajectories, and to simulate near‐future responses to a range of drought scenarios. We found that fluctuations in species abundances were heterogeneous across communities and driven by a combination of hydrological and stochastic drivers. Among metapopulations, increasing extent of dry reaches reduced the abundance of functional groups with low resistance or resilience capacities (i.e. low ability to persist in situ or recolonize from elsewhere, respectively). Our simulations revealed that metapopulation quasi‐extinction risk for taxa vulnerable to drought increased exponentially as flowing habitats contracted within the river network, whereas the risk for taxa with resistance and resilience traits remained stable. Our results suggest that drought can be a synchronizing agent in riverscapes, potentially leading to regional quasi‐extinction of species with lower resistance and resilience abilities. Better recognition of drought‐driven synchronization may increase realism in species extinction forecasts as hydroclimatic extremes continue to intensify worldwide.
Local community stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations (hypothesis [H]1–H2)—but not if large‐scale stressors synchronize environmental conditions and biological responses (H3). We hypothesized that droughts decrease the stability of aquatic invertebrate metapopulations both by filtering out poorly adapted species locally, and by synchronizing their dynamics across a river network (H3). We tested this hypothesis using long‐term data describing invertebrate communities and hydrological conditions in a temperate river network. Our results suggest that drought can be a synchronizing agent in riverscapes, potentially leading to regional quasi‐extinction of species with low resistance and resilience abilities. |
|---|---|
| AbstractList | Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies. In turn, local stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations-but not if large-scale stressors synchronize environmental conditions and biological responses. Here, we hypothesized that droughts could drastically decrease the stability of invertebrate metapopulations both by filtering out poorly adapted species locally, and by synchronizing their dynamics across a river network. We tested this hypothesis via multivariate autoregressive state-space (MARSS) models on spatially replicated, long-term data describing aquatic invertebrate communities and hydrological conditions in a set of temperate, lowland streams subject to seasonal and supraseasonal drying events. This quantitative approach allowed us to assess the influence of local (flow magnitude) and network-scale (hydrological connectivity) drivers on invertebrate long-term trajectories, and to simulate near-future responses to a range of drought scenarios. We found that fluctuations in species abundances were heterogeneous across communities and driven by a combination of hydrological and stochastic drivers. Among metapopulations, increasing extent of dry reaches reduced the abundance of functional groups with low resistance or resilience capacities (i.e. low ability to persist in situ or recolonize from elsewhere, respectively). Our simulations revealed that metapopulation quasi-extinction risk for taxa vulnerable to drought increased exponentially as flowing habitats contracted within the river network, whereas the risk for taxa with resistance and resilience traits remained stable. Our results suggest that drought can be a synchronizing agent in riverscapes, potentially leading to regional quasi-extinction of species with lower resistance and resilience abilities. Better recognition of drought-driven synchronization may increase realism in species extinction forecasts as hydroclimatic extremes continue to intensify worldwide.Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies. In turn, local stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations-but not if large-scale stressors synchronize environmental conditions and biological responses. Here, we hypothesized that droughts could drastically decrease the stability of invertebrate metapopulations both by filtering out poorly adapted species locally, and by synchronizing their dynamics across a river network. We tested this hypothesis via multivariate autoregressive state-space (MARSS) models on spatially replicated, long-term data describing aquatic invertebrate communities and hydrological conditions in a set of temperate, lowland streams subject to seasonal and supraseasonal drying events. This quantitative approach allowed us to assess the influence of local (flow magnitude) and network-scale (hydrological connectivity) drivers on invertebrate long-term trajectories, and to simulate near-future responses to a range of drought scenarios. We found that fluctuations in species abundances were heterogeneous across communities and driven by a combination of hydrological and stochastic drivers. Among metapopulations, increasing extent of dry reaches reduced the abundance of functional groups with low resistance or resilience capacities (i.e. low ability to persist in situ or recolonize from elsewhere, respectively). Our simulations revealed that metapopulation quasi-extinction risk for taxa vulnerable to drought increased exponentially as flowing habitats contracted within the river network, whereas the risk for taxa with resistance and resilience traits remained stable. Our results suggest that drought can be a synchronizing agent in riverscapes, potentially leading to regional quasi-extinction of species with lower resistance and resilience abilities. Better recognition of drought-driven synchronization may increase realism in species extinction forecasts as hydroclimatic extremes continue to intensify worldwide. Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies. In turn, local stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations—but not if large‐scale stressors synchronize environmental conditions and biological responses. Here, we hypothesized that droughts could drastically decrease the stability of invertebrate metapopulations both by filtering out poorly adapted species locally, and by synchronizing their dynamics across a river network. We tested this hypothesis via multivariate autoregressive state‐space (MARSS) models on spatially replicated, long‐term data describing aquatic invertebrate communities and hydrological conditions in a set of temperate, lowland streams subject to seasonal and supraseasonal drying events. This quantitative approach allowed us to assess the influence of local (flow magnitude) and network‐scale (hydrological connectivity) drivers on invertebrate long‐term trajectories, and to simulate near‐future responses to a range of drought scenarios. We found that fluctuations in species abundances were heterogeneous across communities and driven by a combination of hydrological and stochastic drivers. Among metapopulations, increasing extent of dry reaches reduced the abundance of functional groups with low resistance or resilience capacities (i.e. low ability to persist in situ or recolonize from elsewhere, respectively). Our simulations revealed that metapopulation quasi‐extinction risk for taxa vulnerable to drought increased exponentially as flowing habitats contracted within the river network, whereas the risk for taxa with resistance and resilience traits remained stable. Our results suggest that drought can be a synchronizing agent in riverscapes, potentially leading to regional quasi‐extinction of species with lower resistance and resilience abilities. Better recognition of drought‐driven synchronization may increase realism in species extinction forecasts as hydroclimatic extremes continue to intensify worldwide. Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies. In turn, local stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations—but not if large‐scale stressors synchronize environmental conditions and biological responses. Here, we hypothesized that droughts could drastically decrease the stability of invertebrate metapopulations both by filtering out poorly adapted species locally, and by synchronizing their dynamics across a river network. We tested this hypothesis via multivariate autoregressive state‐space (MARSS) models on spatially replicated, long‐term data describing aquatic invertebrate communities and hydrological conditions in a set of temperate, lowland streams subject to seasonal and supraseasonal drying events. This quantitative approach allowed us to assess the influence of local (flow magnitude) and network‐scale (hydrological connectivity) drivers on invertebrate long‐term trajectories, and to simulate near‐future responses to a range of drought scenarios. We found that fluctuations in species abundances were heterogeneous across communities and driven by a combination of hydrological and stochastic drivers. Among metapopulations, increasing extent of dry reaches reduced the abundance of functional groups with low resistance or resilience capacities (i.e. low ability to persist in situ or recolonize from elsewhere, respectively). Our simulations revealed that metapopulation quasi‐extinction risk for taxa vulnerable to drought increased exponentially as flowing habitats contracted within the river network, whereas the risk for taxa with resistance and resilience traits remained stable. Our results suggest that drought can be a synchronizing agent in riverscapes, potentially leading to regional quasi‐extinction of species with lower resistance and resilience abilities. Better recognition of drought‐driven synchronization may increase realism in species extinction forecasts as hydroclimatic extremes continue to intensify worldwide. Local community stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations (hypothesis [H]1–H2)—but not if large‐scale stressors synchronize environmental conditions and biological responses (H3). We hypothesized that droughts decrease the stability of aquatic invertebrate metapopulations both by filtering out poorly adapted species locally, and by synchronizing their dynamics across a river network (H3). We tested this hypothesis using long‐term data describing invertebrate communities and hydrological conditions in a temperate river network. Our results suggest that drought can be a synchronizing agent in riverscapes, potentially leading to regional quasi‐extinction of species with low resistance and resilience abilities. Abstract Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies. In turn, local stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations—but not if large‐scale stressors synchronize environmental conditions and biological responses. Here, we hypothesized that droughts could drastically decrease the stability of invertebrate metapopulations both by filtering out poorly adapted species locally, and by synchronizing their dynamics across a river network. We tested this hypothesis via multivariate autoregressive state‐space (MARSS) models on spatially replicated, long‐term data describing aquatic invertebrate communities and hydrological conditions in a set of temperate, lowland streams subject to seasonal and supraseasonal drying events. This quantitative approach allowed us to assess the influence of local (flow magnitude) and network‐scale (hydrological connectivity) drivers on invertebrate long‐term trajectories, and to simulate near‐future responses to a range of drought scenarios. We found that fluctuations in species abundances were heterogeneous across communities and driven by a combination of hydrological and stochastic drivers. Among metapopulations, increasing extent of dry reaches reduced the abundance of functional groups with low resistance or resilience capacities (i.e. low ability to persist in situ or recolonize from elsewhere, respectively). Our simulations revealed that metapopulation quasi‐extinction risk for taxa vulnerable to drought increased exponentially as flowing habitats contracted within the river network, whereas the risk for taxa with resistance and resilience traits remained stable. Our results suggest that drought can be a synchronizing agent in riverscapes, potentially leading to regional quasi‐extinction of species with lower resistance and resilience abilities. Better recognition of drought‐driven synchronization may increase realism in species extinction forecasts as hydroclimatic extremes continue to intensify worldwide. |
| Author | Eastman, Michael England, Judy Ruhi, Albert Stubbington, Rachel Sefton, Catherine E. M. Sarremejane, Romain Parry, Simon |
| Author_xml | – sequence: 1 givenname: Romain orcidid: 0000-0002-4943-1173 surname: Sarremejane fullname: Sarremejane, Romain email: romain.sarremejane@gmail.com organization: Centre de Lyon‐Grenoble Auvergne‐Rhône‐Alpes – sequence: 2 givenname: Rachel orcidid: 0000-0001-8475-5109 surname: Stubbington fullname: Stubbington, Rachel organization: Nottingham Trent University – sequence: 3 givenname: Judy orcidid: 0000-0001-5247-4812 surname: England fullname: England, Judy organization: Horizon House – sequence: 4 givenname: Catherine E. M. orcidid: 0000-0002-8157-0368 surname: Sefton fullname: Sefton, Catherine E. M. organization: UK Centre for Ecology & Hydrology – sequence: 5 givenname: Michael surname: Eastman fullname: Eastman, Michael organization: UK Centre for Ecology & Hydrology – sequence: 6 givenname: Simon surname: Parry fullname: Parry, Simon organization: UK Centre for Ecology & Hydrology – sequence: 7 givenname: Albert orcidid: 0000-0003-4011-6457 surname: Ruhi fullname: Ruhi, Albert organization: University of California, Berkeley |
| BackLink | https://hal.inrae.fr/hal-04865639$$DView record in HAL |
| BookMark | eNqFkc9O3DAQxq2KSgXaQ98gUi_tIeC_cXykWwqVVuqFni3HmYAhsRfbge6NR-gz8iR4d1ErIbX1wWPN_ObTeL4DtOeDB4TeE3xEyjm-tN0REZLiV2ifsEbUlLfN3uYteE0wYW_QQUrXGGNGcbOP8pcY5surXMEwgM2pCr5y_g5ihi6aDNUE2azCah5NdqXWr72ZnE2V8X11O5vkHh9-wc_svN3Wo0s3RaCUy50hTi5n8Lnki2blId-HePMWvR7MmODdczxEP76eXizO6-X3s2-Lk2VtmZK4ViVQ2fbSEqq47HoqKFZcdEQpCpySnrR2INb2rG0NtIMSA7asM42RUlLODtGnne6VGfUqusnEtQ7G6fOTpd7kcFmOaJi6I4X9uGNXMdzOkLKeXLIwjsZDmJOmDWs4l2W1_0cFo5RLxtqCfniBXoc5-vLpQgnZKE4U_TOnjSGlCMPvYQnWG1t1sVVvbS3s8QvWurz1Jkfjxn913LsR1n-X1meLz7uOJ-ijtlY |
| CitedBy_id | crossref_primary_10_1002_wat2_1745 crossref_primary_10_1093_biosci_biad067 crossref_primary_10_1002_eco_2390 crossref_primary_10_1093_biosci_biac098 crossref_primary_10_1002_lol2_10303 crossref_primary_10_1002_ecy_4219 crossref_primary_10_1080_20442041_2024_2386208 crossref_primary_10_1080_02626667_2025_2462699 crossref_primary_10_1111_gcb_70054 crossref_primary_10_1038_s43017_023_00495_w crossref_primary_10_1111_2041_210X_14105 crossref_primary_10_1111_gcb_16266 crossref_primary_10_1016_j_scitotenv_2021_150313 crossref_primary_10_1111_fwb_70053 crossref_primary_10_1016_j_jenvman_2023_119787 crossref_primary_10_1111_fwb_70072 crossref_primary_10_1016_j_cois_2022_100959 crossref_primary_10_1038_s44221_024_00298_3 crossref_primary_10_1002_hyp_14615 crossref_primary_10_1007_s10750_022_04933_6 crossref_primary_10_1111_oik_10135 crossref_primary_10_1002_ece3_11663 crossref_primary_10_1002_ecy_3911 crossref_primary_10_1007_s10750_021_04735_2 crossref_primary_10_1111_1365_2664_14771 crossref_primary_10_3390_app15116140 crossref_primary_10_5194_bg_22_995_2025 crossref_primary_10_1002_ecs2_4440 crossref_primary_10_1002_ecy_70023 crossref_primary_10_1111_ecog_06199 crossref_primary_10_1016_j_ecohyd_2022_11_005 crossref_primary_10_1007_s00027_024_01155_x crossref_primary_10_1002_eco_2422 crossref_primary_10_1111_gcb_16273 crossref_primary_10_3390_d16040209 crossref_primary_10_1111_gcb_70068 |
| Cites_doi | 10.1111/j.1600-0587.2009.05612.x 10.1890/140275 10.1111/fwb.12770 10.3390/w12092510 10.1111/gcb.14495 10.1111/gcb.14133 10.1111/j.1365-2656.2010.01668.x 10.2307/1313099 10.1146/annurev.es.15.110184.002033 10.1016/j.tree.2021.01.003 10.1890/13-0996.1 10.1111/oik.06806 10.1002/ecs2.3078 10.1111/2041-210X.12569 10.1111/j.1365-2427.2005.01473.x 10.1038/s41597-020-00732-7 10.1111/jbi.13913 10.1111/j.1365-2427.2005.01370.x 10.1002/fee.2297 10.1111/gcb.14761 10.1007/s00027-019-0659-7 10.1111/j.1365-2664.2009.01745.x 10.1111/j.1755-263X.2010.00119.x 10.1111/j.1365-2427.2009.02322.x 10.1111/ecog.04290 10.1111/j.1461-0248.2007.01105.x 10.1111/1365-2664.13538 10.1111/j.1600-0587.2013.00205.x 10.1111/ele.12582 10.1111/gcb.14280 10.1111/1365-2656.13208 10.1038/nature09060 10.1007/978-0-387-74075-1 10.1126/science.1226766 10.1038/s41467-018-04915-0 10.1046/j.1365-2427.2002.00810.x 10.1073/pnas.1320890111 10.1038/s41467-019-09736-3 10.1111/ele.12782 10.1046/j.1365-2427.2003.01086.x 10.2307/5386 10.1111/oik.07645 10.1111/gcb.15116 10.1111/gcb.14771 10.1111/fwb.12630 10.1007/s00442-009-1487-6 10.1073/pnas.1222473110 10.1111/j.1600-0587.2013.00325.x 10.1111/ecog.04985 10.1111/gcb.14856 10.1016/B978-0-12-803835-2.00013-9 10.2307/1935620 10.1038/s41467-020-17171-y 10.1111/j.1365-2427.2011.02644.x 10.1038/nclimate2746 10.1111/oik.05968 10.32614/RJ-2012-002 10.1111/fwb.12105 10.1111/fwb.12926 10.1111/gcb.15063 10.1111/ecog.04835 10.1111/fwb.13037 10.3389/fevo.2018.00224 10.1111/cobi.13515 10.1038/nature06935 10.1111/ele.12861 10.1111/ele.13699 10.1111/ele.13345 10.1016/j.ecolind.2019.105620 10.1007/978-1-4614-7138-7 10.1111/gcb.13657 10.1073/pnas.1119651109 10.1126/science.aaw2087 10.1038/307321a0 10.1038/s41598-017-00550-9 10.1127/fal/2019/1149 10.1098/rspb.1997.0069 10.1111/j.1600-0706.2008.16668.x 10.1111/j.1461-0248.2011.01702.x 10.1111/j.1365-2427.1991.tb01737.x 10.1071/ZO9530291 10.1016/j.ecolind.2017.06.058 10.1111/j.1365-2486.2011.02420.x 10.1111/gcb.12616 10.1111/fwb.12479 10.1111/ele.12275 10.1088/1748-9326/7/1/014037 10.1111/j.1523-1739.2011.01671.x 10.1016/j.tree.2003.10.002 10.1034/j.1600-0706.2003.11912.x 10.1038/srep23265 10.1139/z74-049 10.1073/pnas.0712282105 10.1111/gcb.12780 10.1002/joc.5291 10.1111/fwb.13270 10.1111/fwb.12793 10.1371/journal.pone.0176949 10.1016/S0169-5347(98)01498-0 10.1002/iroh.201601850 10.1890/08-1823.1 10.1086/673915 10.1111/jbi.13673 10.1007/978-3-319-24277-4 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd Copyright © 2021 John Wiley & Sons Ltd 2021 John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd – notice: Copyright © 2021 John Wiley & Sons Ltd – notice: 2021 John Wiley & Sons Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 1XC |
| DOI | 10.1111/gcb.15720 |
| DatabaseName | CrossRef Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences |
| EISSN | 1365-2486 |
| EndPage | 4039 |
| ExternalDocumentID | oai:HAL:hal-04865639v1 10_1111_gcb_15720 GCB15720 |
| Genre | article |
| GrantInformation_xml | – fundername: National Science Foundation funderid: 1802714 – fundername: University of California, Berkeley |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c3970-9c39278d7c12947bd2520945b1992e421d18cf1ccd388ae8f95f0c3ba6a777243 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661628100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 1365-2486 |
| IngestDate | Tue Oct 14 20:54:52 EDT 2025 Fri Jul 11 18:28:56 EDT 2025 Thu Jul 10 17:45:43 EDT 2025 Sun Sep 07 02:41:23 EDT 2025 Sat Nov 29 06:02:37 EST 2025 Tue Nov 18 22:35:34 EST 2025 Wed Jan 22 16:28:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3970-9c39278d7c12947bd2520945b1992e421d18cf1ccd388ae8f95f0c3ba6a777243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5247-4812 0000-0001-8475-5109 0000-0002-8157-0368 0000-0002-4943-1173 0000-0003-4011-6457 |
| PQID | 2557694192 |
| PQPubID | 30327 |
| PageCount | 16 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04865639v1 proquest_miscellaneous_2636447572 proquest_miscellaneous_2532247338 proquest_journals_2557694192 crossref_primary_10_1111_gcb_15720 crossref_citationtrail_10_1111_gcb_15720 wiley_primary_10_1111_gcb_15720_GCB15720 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationYear | 2021 |
| Publisher | Blackwell Publishing Ltd Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
| References | 2017; 82 1974; 52 2019; 10 1997; 47 2010; 465 2008; 105 2011; 56 2020; 12 2020; 11 2012; 15 2009; 118 2014; 20 2018; 6 2018; 9 2013; 58 2019; 22 1997; 264 2009; 90 2019; 25 2003; 48 2020; 89 2014; 17 2010; 3 2018; 38 2017; 62 2006; 51 2016; 19 2010; 162 2020; 34 2019; 107 2007; 10 2012; 109 1953; 1 2018; 24 2016; 6 2016; 7 2010; 47 2015; 60 2019; 42 2013; 339 2019; 46 2014; 37 2020; 26 2003; 100 2010; 55 2021; 24 2017; 7 1993; 62 2016; 101 2020; 129 2020; 57 2019; 128 2011; 17 2019; 365 2021; 36 2020; 7 2002; 47 2019; 64 1984; 15 2013; 94 1999; 14 2020; 47 2020; 43 2011; 25 2019; 193 2015; 13 2017; 20 2015; 5 2010; 79 2012 2010 2017; 23 2008 1984; 307 2018; 63 2004 2002 2014; 111 2019; 81 2009; 32 1991; 26 1977; 58 2004; 19 2021 2020 2017; 12 2021; 19 2015; 21 2018 2017 2014; 183 2016; 61 2016 2005; 50 2013 2008; 454 2012; 7 2012; 4 e_1_2_8_26_1 e_1_2_8_68_1 Datry T. (e_1_2_8_27_1) 2017 R Core Team (e_1_2_8_75_1) 2018 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Tonkin J. D. (e_1_2_8_98_1) 2021 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 ISO (International Organization for Standardization) (e_1_2_8_49_1) 2012 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_69_1 Tachet H. (e_1_2_8_94_1) 2010 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 Burnham K. P. (e_1_2_8_17_1) 2002 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 Gordon N. D. (e_1_2_8_32_1) 2004 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 Tallaksen L. M. (e_1_2_8_95_1) 2004 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
| References_xml | – volume: 47 start-page: 1861 issue: 9 year: 2020 end-page: 1874 article-title: As time goes by: 20 years of changes in the aquatic macroinvertebrate metacommunity of Mediterranean river networks publication-title: Journal of Biogeography – volume: 17 start-page: 2288 issue: 7 year: 2011 end-page: 2297 article-title: Impact of simulated drought on ecosystem biomass production: An experimental test in stream mesocosms publication-title: Global Change Biology – volume: 3 start-page: 340 issue: 5 year: 2010 end-page: 348 article-title: Synchronization and portfolio performance of threatened salmon publication-title: Conservation Letters – volume: 60 start-page: 2066 issue: 10 year: 2015 end-page: 2083 article-title: Drought survival strategies, dispersal potential and persistence of invertebrate species in an intermittent stream landscape publication-title: Freshwater Biology – volume: 465 start-page: 609 issue: 7298 year: 2010 end-page: 612 article-title: Population diversity and the portfolio effect in an exploited species publication-title: Nature – volume: 21 start-page: 1482 issue: 4 year: 2015 end-page: 1496 article-title: Anomalous droughts, not invasion, decrease persistence of native fishes in a desert river publication-title: Global Change Biology – volume: 15 start-page: 17 issue: 1 year: 2012 end-page: 23 article-title: Are patterns of density dependence in the Global Population Dynamics Database driven by uncertainty about population abundance? publication-title: Ecology Letters – volume: 25 start-page: 230 issue: 1 year: 2019 end-page: 244 article-title: Extreme drought pushes stream invertebrate communities over functional thresholds publication-title: Global Change Biology – volume: 37 start-page: 599 issue: 6 year: 2014 end-page: 608 article-title: Testing for temporal coherence across spatial extents: The roles of climate and local factors in regulating stream macroinvertebrate community dynamics publication-title: Ecography – volume: 58 start-page: 1016 issue: 5 year: 2013 end-page: 1028 article-title: Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid‐land stream network publication-title: Freshwater Biology – volume: 48 start-page: 1161 issue: 7 year: 2003 end-page: 1172 article-title: Ecological effects of perturbation by drought in flowing waters publication-title: Freshwater Biology – volume: 264 start-page: 481 issue: 1381 year: 1997 end-page: 486 article-title: Synchronous dynamics and rates of extinction in spatially structured populations publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences – volume: 51 start-page: 56 issue: 1 year: 2006 end-page: 75 article-title: Long‐term seasonal variation in the biological traits of benthic macroinvertebrates in two Mediterranean‐climate streams in California, U.S.A publication-title: Freshwater Biology – volume: 24 start-page: 4316 issue: 9 year: 2018 end-page: 4329 article-title: Metapopulation dynamics in a changing climate: Increasing spatial synchrony in weather conditions drives metapopulation synchrony of a butterfly inhabiting a fragmented landscape publication-title: Global Change Biology – volume: 19 start-page: 94 issue: 2 year: 2004 end-page: 100 article-title: Adaptation to natural flow regimes publication-title: Trends in Ecology and Evolution – volume: 7 start-page: 1448 issue: 1 year: 2017 article-title: Habitat connectivity and in‐stream vegetation control temporal variability of benthic invertebrate communities publication-title: Scientific Reports – volume: 90 start-page: 3566 issue: 12 year: 2009 end-page: 3574 article-title: Associations between species and groups of sites: Indices and statistical inference publication-title: Ecology – volume: 454 start-page: 331 issue: 7202 year: 2008 end-page: 334 article-title: Coherent ecological dynamics induced by large‐scale disturbance publication-title: Nature – volume: 26 start-page: 307 issue: 2 year: 1991 end-page: 324 article-title: Invertebrate colonization of a new, man‐made stream in southern Sweden publication-title: Freshwater Biology – volume: 12 start-page: 2510 year: 2020 article-title: Resilience viewed through the lens of climate change and water management publication-title: Water – year: 2008 – volume: 11 start-page: 3486 year: 2020 article-title: Meta‐analysis of multidecadal biodiversity trends in Europe publication-title: Nature Communications – volume: 100 start-page: 43 issue: 1 year: 2003 end-page: 54 article-title: Synchrony in brown trout, , population dynamics: A ‘ Moran effect ’ on early‐life stages publication-title: Oikos – volume: 17 start-page: 756 issue: 6 year: 2014 end-page: 767 article-title: Life‐history syndromes: Integrating dispersal through space and time publication-title: Ecology Letters – volume: 55 start-page: 717 issue: 4 year: 2010 end-page: 738 article-title: Emerging concepts in temporary‐river ecology publication-title: Freshwater Biology – volume: 5 start-page: 941 issue: 10 year: 2015 end-page: 946 article-title: Interacting effects of climate change and habitat fragmentation on drought‐sensitive butterflies publication-title: Nature Climate Change – volume: 47 start-page: 417 issue: 3 year: 2002 end-page: 431 article-title: Persistence and stability of lotic invertebrate communities in New Zealand publication-title: Freshwater Biology – volume: 7 issue: 1 year: 2012 article-title: How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global‐scale analysis publication-title: Environmental Research Letters – volume: 307 start-page: 321 year: 1984 end-page: 326 article-title: The complexity and stability of ecosystems publication-title: Nature – volume: 26 start-page: 3455 issue: 6 year: 2020 end-page: 3472 article-title: Habitat patchiness, ecological connectivity and the uneven recovery of boreal stream ecosystems from an experimental drought publication-title: Global Change Biology – volume: 118 start-page: 391 issue: 3 year: 2009 end-page: 402 article-title: On the challenge of treating various types of variables: Application for improving the measurement of functional diversity publication-title: Oikos – start-page: 1 year: 2002 end-page: 488 – volume: 128 start-page: 1079 issue: 8 year: 2019 end-page: 1091 article-title: Species richness change across spatial scales publication-title: Oikos – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 8 article-title: Water quality improvements offset the climatic debt for stream macroinvertebrates over twenty years publication-title: Nature Communications – volume: 62 start-page: 656 issue: 4 year: 1993 article-title: Spatial synchrony in the dynamics of moth and aphid populations publication-title: Journal of Animal Ecology – volume: 129 start-page: 1877 issue: 12 year: 2020 end-page: 1890 article-title: Local and regional drivers influence how aquatic community diversity, resistance and resilience vary in response to drying publication-title: Oikos – year: 2016 – year: 2010 – volume: 79 start-page: 571 issue: 3 year: 2010 end-page: 580 article-title: Dendritic network structure constrains metacommunity properties in riverine ecosystems publication-title: Journal of Animal Ecology – volume: 4 start-page: 11 issue: 1 year: 2012 end-page: 19 article-title: MARSS: Multivariate autoregressive state‐space models for analyzing time‐series data publication-title: The R Journal – volume: 9 issue: 1 year: 2018 article-title: Abrupt events and population synchrony in the dynamics of Bovine Tuberculosis publication-title: Nature Communications – volume: 47 start-page: 47 issue: 1 year: 2010 end-page: 56 article-title: Inferring spatial structure from time‐series data: Using multivariate state‐space models to detect metapopulation structure of California sea lions in the Gulf of California publication-title: Mexico. Journal of Applied Ecology – volume: 111 start-page: 3262 issue: 9 year: 2014 end-page: 3267 article-title: Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment publication-title: Proceedings of the National Academy of Sciences – volume: 46 start-page: 2311 issue: 10 year: 2019 end-page: 2322 article-title: Dynamic contributions of intermittent and perennial streams to fish beta diversity in dryland rivers publication-title: Journal of Biogeography – volume: 111 start-page: 13894 issue: 38 year: 2014 end-page: 13899 article-title: Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 36 start-page: 280 issue: 4 year: 2021 end-page: 283 article-title: A metabolic perspective of stochastic community sssembly publication-title: Trends in Ecology and Evolution – volume: 42 start-page: 1200 issue: 6 year: 2019 end-page: 1211 article-title: Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data publication-title: Ecography – volume: 22 start-page: 1557 year: 2019 end-page: 1567 article-title: The inherent multidimensionality of temporal variability: How common and rare species shape stability patterns publication-title: Ecology Letters – volume: 81 start-page: 62 issue: 4 year: 2019 article-title: Ecological effects of a supra‐seasonal drought on macroinvertebrate communities differ between near‐perennial and ephemeral river reaches publication-title: Aquatic Sciences – volume: 109 start-page: 5761 issue: 15 year: 2012 end-page: 5766 article-title: Dendritic connectivity controls biodiversity patterns in experimental metacommunities publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 start-page: 386 year: 2020 article-title: DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates publication-title: Scientific Data – volume: 25 start-page: 3656 issue: 11 year: 2019 end-page: 3668 article-title: Spatial heterogeneity in climate change effects decouples the long‐term dynamics of wild reindeer populations in the high Arctic publication-title: Global Change Biology – year: 2013 – volume: 12 issue: 5 year: 2017 article-title: Importance of neutral processes varies in time and space: Evidence from dryland stream ecosystems publication-title: PLoS One – volume: 61 start-page: 1293 issue: 8 year: 2016 end-page: 1307 article-title: Macroinvertebrate seedbank composition in relation to antecedent duration of drying and multiple wet‐dry cycles in a temporary stream publication-title: Freshwater Biology – volume: 129 start-page: 607 issue: 5 year: 2020 end-page: 618 article-title: Uncovering the complete biodiversity structure in spatial networks: The example of riverine systems publication-title: Oikos – volume: 339 start-page: 313 issue: 6117 year: 2013 end-page: 315 article-title: Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic publication-title: Science – volume: 38 start-page: 1718 issue: 4 year: 2018 end-page: 1736 article-title: Will drought events become more frequent and severe in Europe? publication-title: International Journal of Climatology – volume: 94 start-page: 2663 issue: 12 year: 2013 end-page: 2669 article-title: Quantifying effects of abiotic and biotic drivers on community dynamics with multivariate autoregressive (MAR) models publication-title: Ecology – volume: 365 start-page: eaaw2087 issue: 6459 year: 2019 article-title: Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration publication-title: Science – volume: 19 start-page: 510 issue: 5 year: 2016 end-page: 518 article-title: Biodiversity and ecosystem stability across scales in metacommunities publication-title: Ecology Letters – volume: 82 start-page: 344 year: 2017 end-page: 356 article-title: An index to track the ecological effects of drought development and recovery on riverine invertebrate communities publication-title: Ecological Indicators – volume: 14 start-page: 1 issue: 1 year: 1999 end-page: 2 article-title: The Moran effect: A cause of population synchrony publication-title: Trends in Ecology and Evolution – volume: 19 start-page: 47 issue: 1 year: 2021 end-page: 56 article-title: Multi‐scale biodiversity drives temporal variability in macrosystems publication-title: Frontiers in Ecology and the Environment – volume: 6 start-page: 23265 year: 2016 article-title: Quasi‐extinction risk and population targets for the Eastern, migratory population of monarch butterflies ( ) publication-title: Scientific Reports – volume: 43 start-page: 1156 issue: 8 year: 2020 end-page: 1166 article-title: Effects of nonnative species on the stability of riverine fish communities publication-title: Ecography – volume: 62 start-page: 1073 issue: 6 year: 2017 end-page: 1082 article-title: Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks publication-title: Freshwater Biology – year: 2018 – volume: 37 start-page: 191 issue: 2 year: 2014 end-page: 203 article-title: Where is positional uncertainty a problem for species distribution modelling? publication-title: Ecography – volume: 101 start-page: 113 issue: 3–4 year: 2016 end-page: 122 article-title: Causes and consequences of biotic homogenization in freshwater ecosystems publication-title: International Review of Hydrobiology – volume: 162 start-page: 641 issue: 3 year: 2010 end-page: 651 article-title: Population synchrony of a native fish across three Laurentian Great Lakes: Evaluating the effects of dispersal and climate publication-title: Oecologia – volume: 20 start-page: 1534 issue: 12 year: 2017 end-page: 1545 article-title: Asynchrony among local communities stabilises ecosystem function of metacommunities publication-title: Ecology Letters – volume: 57 start-page: 283 issue: 2 year: 2020 end-page: 295 article-title: Natural disturbances can produce misleading bioassessment results: Identifying metrics to detect anthropogenic impacts in intermittent rivers publication-title: Journal of Applied Ecology – volume: 11 issue: 4 year: 2020 article-title: Disentangling local, metapopulation, and cross‐community sources of stabilization and asynchrony in metacommunities publication-title: Ecosphere – volume: 61 start-page: 1350 issue: 8 year: 2016 end-page: 1364 article-title: Unravelling the joint effects of flow regime, climatic variability and dispersal mode on beta diversity of riverine communities publication-title: Freshwater Biology – volume: 24 start-page: 3749 issue: 8 year: 2018 end-page: 3765 article-title: Detrimental effects of a novel flow regime on the functional trajectory of an aquatic invertebrate metacommunity publication-title: Global Change Biology – volume: 26 start-page: 3834 issue: 7 year: 2020 end-page: 3845 article-title: Refuges and ecological traps: Extreme drought threatens persistence of an endangered fish in intermittent streams publication-title: Global Change Biology – volume: 20 start-page: 801 issue: 7 year: 2017 end-page: 814 article-title: The geography of spatial synchrony publication-title: Ecology Letters – volume: 63 start-page: 141 issue: 1 year: 2018 end-page: 163 article-title: The role of dispersal in river network metacommunities: Patterns, processes, and pathways publication-title: Freshwater Biology – year: 2004 – volume: 20 start-page: 2725 year: 2014 end-page: 2740 article-title: Linking interdecadal changes in British river ecosystems to water quality and climate dynamics publication-title: Global Change Biology – volume: 26 start-page: 410 issue: 2 year: 2020 end-page: 416 article-title: Research priorities for natural ecosystems in a changing global climate publication-title: Global Change Biology – volume: 56 start-page: 2094 issue: 10 year: 2011 end-page: 2104 article-title: Drought refuges, spatial scale and recolonisation by invertebrates in non‐perennial streams publication-title: Freshwater Biology – volume: 15 start-page: 353 year: 1984 end-page: 391 article-title: The role of disturbance in natural communities publication-title: Annual Review of Ecology and Systematics – volume: 1 start-page: 291 year: 1953 end-page: 298 article-title: The statistical analysis of the Canadian lynx cycle publication-title: Australian Journal of Zoology – volume: 23 start-page: 3567 issue: 9 year: 2017 end-page: 3580 article-title: Vulnerability of European freshwater catchments to climate change publication-title: Global Change Biology – volume: 64 start-page: 886 issue: 5 year: 2019 end-page: 902 article-title: Drought ecohydrology alters the structure and function of benthic invertebrate communities in mountain streams publication-title: Freshwater Biology – volume: 10 start-page: 1182 issue: 12 year: 2007 end-page: 1198 article-title: A statistical approach to quasi‐extinction forecasting publication-title: Ecology Letters – volume: 13 start-page: 257 issue: 5 year: 2015 end-page: 263 article-title: The portfolio concept in ecology and evolution publication-title: Frontiers in Ecology and the Environment – volume: 32 start-page: 778 issue: 1 year: 2009 end-page: 788 article-title: Resilience of fishes and invertebrates to prolonged drought in two California streams publication-title: Ecography – start-page: 349 year: 2017 end-page: 376 – volume: 34 start-page: 1503 issue: 6 year: 2020 end-page: 1511 article-title: The effect of summer drought on the predictability of local extinctions in a butterfly metapopulation publication-title: Conservation Biology – volume: 43 start-page: 620 issue: 4 year: 2020 end-page: 635 article-title: Drying determines the temporal dynamics of stream invertebrate structural and functional beta diversity publication-title: Ecography – volume: 58 start-page: 445 issue: 2 year: 1977 end-page: 449 article-title: Turnover rates in insular biogeography: Effect of immigration on extinction publication-title: Ecology – volume: 105 start-page: 3410 issue: 9 year: 2008 end-page: 3415 article-title: Impact of an extreme climatic event on community assembly publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 2012 – volume: 183 start-page: 1 issue: 1 year: 2014 end-page: 12 article-title: Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments publication-title: The American Naturalist – volume: 193 start-page: 21 issue: 1 year: 2019 end-page: 38 article-title: Visualising and quantifying the variability of hydrological state in intermittent rivers publication-title: Fundamental and Applied Limnology – volume: 25 start-page: 3793 issue: 11 year: 2019 end-page: 3802 article-title: Widespread drought‐induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms publication-title: Global Change Biology – volume: 7 start-page: 1146 issue: 10 year: 2016 end-page: 1151 article-title: codyn: An r package of community dynamics metrics publication-title: Methods in Ecology and Evolution – start-page: 1 year: 2021 end-page: 8 article-title: Designing flow regimes to support entire river ecosystems publication-title: Frontiers in Ecology and the Environment – year: 2020 – volume: 52 start-page: 405 issue: 3 year: 1974 end-page: 411 article-title: Bionomics of three species of glossosomatid caddis flies (Trichoptera: Glossosomatidae) in Oregon publication-title: Canadian Journal of Zoology – volume: 25 start-page: 747 issue: 4 year: 2011 end-page: 757 article-title: Variability in population abundance and the classification of extinction risk publication-title: Conservation Biology – volume: 50 start-page: 930 issue: 6 year: 2005 end-page: 943 article-title: Life history and production of (Trichoptera: Glossosomatidae) in a temporary, spring‐fed stream publication-title: Freshwater Biology – volume: 60 start-page: 282 issue: 2 year: 2015 end-page: 296 article-title: Macroinvertebrate survival during cessation of flow and streambed drying in a lowland stream publication-title: Freshwater Biology – year: 2017 – volume: 107 start-page: 105620 year: 2019 article-title: Biological indices to characterize community responses to drying in streams with contrasting flow permanence regimes publication-title: Ecological Indicators – volume: 89 start-page: 1350 issue: 6 year: 2020 end-page: 1364 article-title: Drivers of amphibian population dynamics and asynchrony at local and regional scales publication-title: Journal of Animal Ecology – volume: 24 start-page: 791 issue: 4 year: 2021 end-page: 801 article-title: The geography of metapopulation synchrony in dendritic river networks publication-title: Ecology Letters – volume: 47 start-page: 769 issue: 11 year: 1997 end-page: 784 article-title: The natural flow regime: a paradigm for river conservation and restoration publication-title: BioScience – volume: 6 start-page: 224 year: 2018 article-title: The impact of spatial and temporal dimensions of disturbances on ecosystem stability publication-title: Frontiers in Ecology and Evolution – ident: e_1_2_8_9_1 doi: 10.1111/j.1600-0587.2009.05612.x – ident: e_1_2_8_86_1 doi: 10.1890/140275 – ident: e_1_2_8_93_1 doi: 10.1111/fwb.12770 – ident: e_1_2_8_110_1 doi: 10.3390/w12092510 – ident: e_1_2_8_8_1 doi: 10.1111/gcb.14495 – ident: e_1_2_8_78_1 doi: 10.1111/gcb.14133 – ident: e_1_2_8_13_1 doi: 10.1111/j.1365-2656.2010.01668.x – ident: e_1_2_8_73_1 doi: 10.2307/1313099 – ident: e_1_2_8_91_1 doi: 10.1146/annurev.es.15.110184.002033 – ident: e_1_2_8_80_1 doi: 10.1016/j.tree.2021.01.003 – start-page: 1 year: 2021 ident: e_1_2_8_98_1 article-title: Designing flow regimes to support entire river ecosystems publication-title: Frontiers in Ecology and the Environment – ident: e_1_2_8_36_1 doi: 10.1890/13-0996.1 – ident: e_1_2_8_2_1 doi: 10.1111/oik.06806 – ident: e_1_2_8_35_1 doi: 10.1002/ecs2.3078 – ident: e_1_2_8_34_1 doi: 10.1111/2041-210X.12569 – ident: e_1_2_8_10_1 doi: 10.1111/j.1365-2427.2005.01473.x – ident: e_1_2_8_81_1 doi: 10.1038/s41597-020-00732-7 – ident: e_1_2_8_18_1 doi: 10.1111/jbi.13913 – volume-title: Intermittent rivers and ephemeral streams: Ecology and management year: 2017 ident: e_1_2_8_27_1 – ident: e_1_2_8_3_1 doi: 10.1111/j.1365-2427.2005.01370.x – start-page: 1 volume-title: Model selection and multimodel inference: A practical information‐theoretic approach year: 2002 ident: e_1_2_8_17_1 – ident: e_1_2_8_68_1 doi: 10.1002/fee.2297 – ident: e_1_2_8_38_1 doi: 10.1111/gcb.14761 – ident: e_1_2_8_42_1 doi: 10.1007/s00027-019-0659-7 – ident: e_1_2_8_108_1 doi: 10.1111/j.1365-2664.2009.01745.x – ident: e_1_2_8_62_1 doi: 10.1111/j.1755-263X.2010.00119.x – ident: e_1_2_8_56_1 doi: 10.1111/j.1365-2427.2009.02322.x – ident: e_1_2_8_106_1 doi: 10.1111/ecog.04290 – ident: e_1_2_8_43_1 doi: 10.1111/j.1461-0248.2007.01105.x – ident: e_1_2_8_90_1 doi: 10.1111/1365-2664.13538 – ident: e_1_2_8_65_1 doi: 10.1111/j.1600-0587.2013.00205.x – ident: e_1_2_8_107_1 doi: 10.1111/ele.12582 – ident: e_1_2_8_52_1 doi: 10.1111/gcb.14280 – ident: e_1_2_8_21_1 doi: 10.1111/1365-2656.13208 – ident: e_1_2_8_87_1 doi: 10.1038/nature09060 – ident: e_1_2_8_5_1 doi: 10.1007/978-0-387-74075-1 – ident: e_1_2_8_37_1 doi: 10.1126/science.1226766 – ident: e_1_2_8_64_1 doi: 10.1038/s41467-018-04915-0 – ident: e_1_2_8_85_1 doi: 10.1046/j.1365-2427.2002.00810.x – ident: e_1_2_8_50_1 doi: 10.1073/pnas.1320890111 – ident: e_1_2_8_102_1 doi: 10.1038/s41467-019-09736-3 – ident: e_1_2_8_105_1 doi: 10.1111/ele.12782 – ident: e_1_2_8_55_1 doi: 10.1046/j.1365-2427.2003.01086.x – ident: e_1_2_8_39_1 doi: 10.2307/5386 – ident: e_1_2_8_82_1 doi: 10.1111/oik.07645 – ident: e_1_2_8_101_1 doi: 10.1111/gcb.15116 – ident: e_1_2_8_4_1 doi: 10.1111/gcb.14771 – ident: e_1_2_8_24_1 doi: 10.1111/fwb.12630 – ident: e_1_2_8_15_1 doi: 10.1007/s00442-009-1487-6 – ident: e_1_2_8_74_1 doi: 10.1073/pnas.1222473110 – ident: e_1_2_8_47_1 doi: 10.1111/j.1600-0587.2013.00325.x – ident: e_1_2_8_31_1 doi: 10.1111/ecog.04985 – volume-title: R: A language and environment for statistical computing year: 2018 ident: e_1_2_8_75_1 – ident: e_1_2_8_112_1 doi: 10.1111/gcb.14856 – ident: e_1_2_8_12_1 doi: 10.1016/B978-0-12-803835-2.00013-9 – ident: e_1_2_8_14_1 doi: 10.2307/1935620 – ident: e_1_2_8_71_1 doi: 10.1038/s41467-020-17171-y – ident: e_1_2_8_25_1 doi: 10.1111/j.1365-2427.2011.02644.x – ident: e_1_2_8_66_1 doi: 10.1038/nclimate2746 – ident: e_1_2_8_23_1 doi: 10.1111/oik.05968 – ident: e_1_2_8_45_1 doi: 10.32614/RJ-2012-002 – ident: e_1_2_8_11_1 doi: 10.1111/fwb.12105 – ident: e_1_2_8_83_1 doi: 10.1111/fwb.12926 – ident: e_1_2_8_99_1 doi: 10.1111/gcb.15063 – ident: e_1_2_8_44_1 – ident: e_1_2_8_26_1 doi: 10.1111/ecog.04835 – ident: e_1_2_8_97_1 doi: 10.1111/fwb.13037 – ident: e_1_2_8_114_1 doi: 10.3389/fevo.2018.00224 – ident: e_1_2_8_100_1 doi: 10.1111/cobi.13515 – ident: e_1_2_8_53_1 doi: 10.1038/nature06935 – ident: e_1_2_8_111_1 doi: 10.1111/ele.12861 – ident: e_1_2_8_57_1 doi: 10.1111/ele.13699 – ident: e_1_2_8_7_1 doi: 10.1111/ele.13345 – ident: e_1_2_8_84_1 doi: 10.1016/j.ecolind.2019.105620 – ident: e_1_2_8_51_1 doi: 10.1007/978-1-4614-7138-7 – ident: e_1_2_8_61_1 doi: 10.1111/gcb.13657 – ident: e_1_2_8_19_1 doi: 10.1073/pnas.1119651109 – ident: e_1_2_8_67_1 doi: 10.1126/science.aaw2087 – ident: e_1_2_8_72_1 doi: 10.1038/307321a0 – volume-title: Invertébrés d’eau douce – Systématique, biologie, écologie year: 2010 ident: e_1_2_8_94_1 – ident: e_1_2_8_48_1 doi: 10.1038/s41598-017-00550-9 – ident: e_1_2_8_88_1 doi: 10.1127/fal/2019/1149 – ident: e_1_2_8_40_1 doi: 10.1098/rspb.1997.0069 – ident: e_1_2_8_69_1 doi: 10.1111/j.1600-0706.2008.16668.x – ident: e_1_2_8_54_1 doi: 10.1111/j.1461-0248.2011.01702.x – ident: e_1_2_8_60_1 doi: 10.1111/j.1365-2427.1991.tb01737.x – ident: e_1_2_8_63_1 doi: 10.1071/ZO9530291 – volume-title: Hydrological drought: Processes and estimation methods for streamflow and groundwater year: 2004 ident: e_1_2_8_95_1 – ident: e_1_2_8_22_1 doi: 10.1016/j.ecolind.2017.06.058 – ident: e_1_2_8_58_1 doi: 10.1111/j.1365-2486.2011.02420.x – ident: e_1_2_8_103_1 doi: 10.1111/gcb.12616 – ident: e_1_2_8_104_1 doi: 10.1111/fwb.12479 – ident: e_1_2_8_16_1 doi: 10.1111/ele.12275 – ident: e_1_2_8_29_1 doi: 10.1088/1748-9326/7/1/014037 – ident: e_1_2_8_113_1 doi: 10.1111/j.1523-1739.2011.01671.x – ident: e_1_2_8_59_1 doi: 10.1016/j.tree.2003.10.002 – volume-title: ISO 10870:2012 Water quality – Guidelines for the selection of sampling methods and devices for benthic macroinvertebrates in fresh waters year: 2012 ident: e_1_2_8_49_1 – ident: e_1_2_8_20_1 doi: 10.1034/j.1600-0706.2003.11912.x – ident: e_1_2_8_89_1 doi: 10.1038/srep23265 – ident: e_1_2_8_6_1 doi: 10.1139/z74-049 – volume-title: Stream hydrology: An introduction for ecologists year: 2004 ident: e_1_2_8_32_1 – ident: e_1_2_8_96_1 doi: 10.1073/pnas.0712282105 – ident: e_1_2_8_79_1 doi: 10.1111/gcb.12780 – ident: e_1_2_8_92_1 doi: 10.1002/joc.5291 – ident: e_1_2_8_41_1 doi: 10.1111/fwb.13270 – ident: e_1_2_8_77_1 doi: 10.1111/fwb.12793 – ident: e_1_2_8_30_1 doi: 10.1371/journal.pone.0176949 – ident: e_1_2_8_46_1 doi: 10.1016/S0169-5347(98)01498-0 – ident: e_1_2_8_70_1 doi: 10.1002/iroh.201601850 – ident: e_1_2_8_28_1 doi: 10.1890/08-1823.1 – ident: e_1_2_8_33_1 doi: 10.1086/673915 – ident: e_1_2_8_76_1 doi: 10.1111/jbi.13673 – ident: e_1_2_8_109_1 doi: 10.1007/978-3-319-24277-4 |
| SSID | ssj0003206 |
| Score | 2.529014 |
| Snippet | Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies. In turn,... Abstract Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies.... |
| SourceID | hal proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4024 |
| SubjectTerms | Aquatic invertebrates Aquatic organisms Autoregressive models Drought Drying Dynamics ecological resilience Endangered & extinct species Environmental conditions Environmental Sciences Extinction flow intermittence Functional groups functional traits global change Hydrology Intermittent rivers Invertebrates Low resistance Metapopulations Moran effect quantitative analysis Resilience Risk River networks Rivers spatial synchrony Species extinction Stability Streams Synchronism Synchronization Taxa Threatened species time‐series modelling |
| Title | Drought effects on invertebrate metapopulation dynamics and quasi‐extinction risk in an intermittent river network |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.15720 https://www.proquest.com/docview/2557694192 https://www.proquest.com/docview/2532247338 https://www.proquest.com/docview/2636447572 https://hal.inrae.fr/hal-04865639 |
| Volume | 27 |
| WOSCitedRecordID | wos000661628100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5tHUi8MChMFMZkEEJ7CWriOHa0p61b2cOYEGJS3yLHdkakkY4mncQbP4HfyC_ZnZOGIgFC4qlpfHGi5O78Ofl8H8CrxMQudIUN6J1-ECeOB4ibi0DyRBVSCcyJxotNyPNzNZul7zfgYLUWpq0P0b9wo8jw-ZoCXOf1WpBfmvxNKGSE8_WtCP1WDGDr-MP04qxPxDzy0pohFzFmm5B3hYWIyNMf_MtwtPmJyJBrSHMdr_oBZ7r9X5f6AO53OJMdto7xEDZcNYS7rfLk1yHsnPxc4IZmXYTXQxi9QxQ9X3gz9ppNrkqEtP7fI2iOvaZPwzoSCJtXrKxI0Jm-PjeOfXaNvu4VwZht1e5rpivLvix1Xf749h0Hg7LyiykY0dqxA2xmVLWCSgsggm9wP_bJqpag_hgupicfJ6dBp9oQGMQ24yDFn0gqKw1CiVjmNiKmTSxyIrq6OAptqEwRGmO5UtqpIhXF2PBcJ1oi1I_5DgyqeeWeABM2LXA-6LjTeaxTm7uIJ4UbW8GNHOtwBPurh5eZrqQ5KWtcZaupDd75zN_5EbzsTa_bOh6_NUIP6Nup8vbp4VlG-6gyoUA0d4Mn3V05SNbFe53hxEzSkuA0GsGLvhkjlT6_6MrNl2SDyTOWnKu_2CQ8oRKMEvvZ9y7156vN3k6O_MbTfzd9BvciIuV4ktwuDJrF0j2HO-amKevFHmzKmdrrwugWCXkhDw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED6NDQQvAwrTCgMMQmgvmZrYiRNpL1u3UkRXIbRJe4sc24FIWzqadBJv_AR-I79kd04aigQIiae28cWNkrvzZ-f8fQCvIy2sb3Pj0Zq-JyLLPcTNuSd5FOcyDjEnaic2IafT-Pw8-bAG-8u9MA0_RLfgRpHh8jUFOC1Ir0T5J53t-aEMcMK-IdCN0L83jj6OziZdJuaB09b0eSgw3fi8ZRaiSp7u5F_Go1ufqRpyBWquAlY34ozu_9-1PoDNFmmyg8Y1HsKaLXtwp9Ge_NqDreOfW9zQrI3xqgf9E8TRs7kzY2_Y8KJAUOt-PYL6yKn61KwtA2GzkhUlSTrT--fasktbq6tOE4yZRu--Yqo07MtCVcWPb99xOChKt52CUWE7doDNjHgriFwAMXyNx7FPVjYl6o_hbHR8Ohx7rW6DpxHdDLwEPwIZG6kRTAiZmYBqbUSYUamrFYFv_FjnvtaGx7GycZ6E-UDzTEVKItgXfAvWy1lpt4GFJslxRmi5VZlQiclswKPcDkzItRwovw-7y6eX6pbUnLQ1LtLl5AbvfOrufB9edaZXDZPHb43QBbp24t4eH0xSOkbchCHiuWv8052lh6RtxFcpTs0kbQpOgj687JoxVukFjCrtbEE2mD6F5Dz-i03EIyJhlNjPrvOpP19t-nZ46L48-XfTF3B3fHoySSfvpu-fwr2ASnRcydwOrNfzhX0Gt_V1XVTz52003QB1uiQX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL0aHSBe-ChMFAYYhNBegprYiROJl9GuDFGqCTFpb5FjO1ukkZYmncQbP2G_cb-Ee500FAkQEk9t41s3Sn2vj5PjcwBeRlpY3-bGo3v6nogs9xA3557kUZzLOMSaqJ3ZhJzN4pOT5GgL3qz3wjT6EN0NN8oMV68pwe3C5BtZfqqz134oA1ywbwsykenB9vjT5HjaVWIeOG9Nn4cCy43PW2UhYvJ0X_5lPrp2RmzIDai5CVjdjDO583_nehdut0iT7TdD4x5s2bIPNxrvyW992Dn4ucUNw9ocr_ow-Ig4er50YewVG50XCGrdp_tQj52rT81aGgibl6woydKZnj_Xln2xtVp0nmDMNH73FVOlYV9Xqiquvl_idFCUbjsFI2I7doDNjHQrSFwAMXyNx7FPVjYU9QdwPDn4PDr0Wt8GTyO6GXoJvgQyNlIjmBAyMwFxbUSYEdXVisA3fqxzX2vD41jZOE_CfKh5piIlEewLvgO9cl7ah8BCk-S4IrTcqkyoxGQ24FFuhybkWg6VP4C99b-X6lbUnLw1ztP14gavfOqu_ABedKGLRsnjt0E4BLp20t4-3J-mdIy0CUPEcxf4o7vrEZK2GV-luDSTtCk4CQbwvGvGXKUHMKq08xXFYPkUkvP4LzERj0iEUWI_e25M_fls03ejt-7No38PfQY3j8aTdPp-9uEx3AqIoeMYc7vQq5cr-wSu64u6qJZP22T6AcxpI5I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drought+effects+on+invertebrate+metapopulation+dynamics+and+quasi-extinction+risk+in+an+intermittent+river+network&rft.jtitle=Global+change+biology&rft.au=Sarremejane%2C+Romain&rft.au=Stubbington%2C+Rachel&rft.au=England%2C+Judy&rft.au=Sefton%2C+Catherine+E+M&rft.date=2021-09-01&rft.issn=1365-2486&rft.eissn=1365-2486&rft.volume=27&rft.issue=17&rft.spage=4024&rft_id=info:doi/10.1111%2Fgcb.15720&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |